1
|
Song Y, Lee JK, Lee JO, Kwon B, Seo EJ, Suh DC. Whole Exome Sequencing in Patients with Phenotypically Associated Familial Intracranial Aneurysm. Korean J Radiol 2021; 23:101-111. [PMID: 34668355 PMCID: PMC8743149 DOI: 10.3348/kjr.2021.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Familial intracranial aneurysms (FIAs) are found in approximately 6%–20% of patients with intracranial aneurysms (IAs), suggesting that genetic predisposition likely plays a role in its pathogenesis. The aim of this study was to identify possible IA-associated variants using whole exome sequencing (WES) in selected Korean families with FIA. Materials and Methods Among the 26 families in our institutional database with two or more IA-affected first-degree relatives, three families that were genetically enriched (multiple, early onset, or common site involvement within the families) for IA were selected for WES. Filtering strategies, including a family-based approach and knowledge-based prioritization, were applied to derive possible IA-associated variants from the families. A chromosomal microarray was performed to detect relatively large chromosomal abnormalities. Results Thirteen individuals from the three families were sequenced, of whom seven had IAs. We noted three rare, potentially deleterious variants (PLOD3 c.1315G>A, NTM c.968C>T, and CHST14 c.58C>T), which are the most promising candidates among the 11 potential IA-associated variants considering gene-phenotype relationships, gene function, co-segregation, and variant pathogenicity. Microarray analysis did not reveal any significant copy number variants in the families. Conclusion Using WES, we found that rare, potentially deleterious variants in PLOD3, NTM, and CHST14 genes are likely responsible for the subsets of FIAs in a cohort of Korean families.
Collapse
Affiliation(s)
- Yunsun Song
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Keuk Lee
- Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ok Lee
- Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Boseong Kwon
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Dae Chul Suh
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Yu X, Xia L, Jiang Q, Wei Y, Wei X, Cao S. Prevalence of Intracranial Aneurysm in Patients with Aortopathy: A Systematic Review with Meta-Analyses. J Stroke 2020; 22:76-86. [PMID: 32027793 PMCID: PMC7005354 DOI: 10.5853/jos.2019.01312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Patients with aortic disease might have an increased risk of intracranial aneurysm (IA). We conducted this research to assess the prevalence of IA in patients with aortopathy, considering the impact of gender, age, and cardiovascular risk factors. METHODS We searched PubMed and Scopus from inception to August 2019 for epidemiological studies reporting the prevalence of IA in patients with aortopathy. Random-effect meta-analyses were performed to calculate the overall prevalence, and the effect of risk factors on the prevalence was also evaluated. Anatomical location of IAs in patients suffered from distinct aortic disease was extracted and further analyzed. RESULTS Thirteen cross-sectional studies involving 4,041 participants were included in this systematic review. We reported an estimated prevalence of 12% (95% confidence interval [CI], 9% to 14%) of IA in patients with aortopathy. The pooled prevalence of IA in patients with bicuspid aortic valve, coarctation of the aorta, aortic aneurysm, and aortic dissection was 8% (95% CI, 6% to 10%), 10% (95% CI, 7% to 14%), 12% (95% CI, 9% to 15%), and 23% (95% CI, 12% to 34%), respectively. Gender (female) and smoking are risk factors related to an increased risk of IA. The anatomical distribution of IAs was heterogeneously between participants with different aortic disease. CONCLUSIONS According to current epidemiological evidence, the prevalence of IA in patients with aortic disease is quadrupled compared to that in the general population, which suggests that an early IA screening should be considered among patients with aortic disease for timely diagnosis and treatment of IA.
Collapse
Affiliation(s)
- Xinyu Yu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangtao Xia
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Jiang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yupeng Wei
- Biological Science Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
van 't Hof FNG, Ruigrok YM, Lee CH, Ripke S, Anderson G, de Andrade M, Baas AF, Blankensteijn JD, Böttinger EP, Bown MJ, Broderick J, Bijlenga P, Carrell DS, Crawford DC, Crosslin DR, Ebeling C, Eriksson JG, Fornage M, Foroud T, von Und Zu Fraunberg M, Friedrich CM, Gaál EI, Gottesman O, Guo DC, Harrison SC, Hernesniemi J, Hofman A, Inoue I, Jääskeläinen JE, Jones GT, Kiemeney LALM, Kivisaari R, Ko N, Koskinen S, Kubo M, Kullo IJ, Kuivaniemi H, Kurki MI, Laakso A, Lai D, Leal SM, Lehto H, LeMaire SA, Low SK, Malinowski J, McCarty CA, Milewicz DM, Mosley TH, Nakamura Y, Nakaoka H, Niemelä M, Pacheco J, Peissig PL, Pera J, Rasmussen-Torvik L, Ritchie MD, Rivadeneira F, van Rij AM, Santos-Cortez RLP, Saratzis A, Slowik A, Takahashi A, Tromp G, Uitterlinden AG, Verma SS, Vermeulen SH, Wang GT, Han B, Rinkel GJE, de Bakker PIW. Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms. J Am Heart Assoc 2016; 5:e002603. [PMID: 27418160 PMCID: PMC5015357 DOI: 10.1161/jaha.115.002603] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/16/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Intracranial aneurysms (IAs), abdominal aortic aneurysms (AAAs), and thoracic aortic aneurysms (TAAs) all have a familial predisposition. Given that aneurysm types are known to co-occur, we hypothesized that there may be shared genetic risk factors for IAs, AAAs, and TAAs. METHODS AND RESULTS We performed a mega-analysis of 1000 Genomes Project-imputed genome-wide association study (GWAS) data of 4 previously published aneurysm cohorts: 2 IA cohorts (in total 1516 cases, 4305 controls), 1 AAA cohort (818 cases, 3004 controls), and 1 TAA cohort (760 cases, 2212 controls), and observed associations of 4 known IA, AAA, and/or TAA risk loci (9p21, 18q11, 15q21, and 2q33) with consistent effect directions in all 4 cohorts. We calculated polygenic scores based on IA-, AAA-, and TAA-associated SNPs and tested these scores for association to case-control status in the other aneurysm cohorts; this revealed no shared polygenic effects. Similarly, linkage disequilibrium-score regression analyses did not show significant correlations between any pair of aneurysm subtypes. Last, we evaluated the evidence for 14 previously published aneurysm risk single-nucleotide polymorphisms through collaboration in extended aneurysm cohorts, with a total of 6548 cases and 16 843 controls (IA) and 4391 cases and 37 904 controls (AAA), and found nominally significant associations for IA risk locus 18q11 near RBBP8 to AAA (odds ratio [OR]=1.11; P=4.1×10(-5)) and for TAA risk locus 15q21 near FBN1 to AAA (OR=1.07; P=1.1×10(-3)). CONCLUSIONS Although there was no evidence for polygenic overlap between IAs, AAAs, and TAAs, we found nominally significant effects of two established risk loci for IAs and TAAs in AAAs. These two loci will require further replication.
Collapse
Affiliation(s)
- Femke N G van 't Hof
- Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ynte M Ruigrok
- Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cue Hyunkyu Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences Asan Medical Center, Seoul, Korea Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Graig Anderson
- The George Institute for International Health, University of Sydney, Australia
| | | | - Annette F Baas
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan D Blankensteijn
- Department of Vascular Surgery, VU Medical Center, Amsterdam, The Netherlands
| | - Erwin P Böttinger
- Icahn School of Medicine Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY
| | - Matthew J Bown
- Department of Cardiovascular Sciences and the NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, United Kingdom
| | - Joseph Broderick
- Department of Neurology, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Philippe Bijlenga
- Hôpitaux Universitaire de Genève et Faculté de médecine de Genève, Geneva, Switzerland
| | | | - Dana C Crawford
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH Center for Human Genetics Research, Vanderbilt University, Nashville, TN
| | - David R Crosslin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Christian Ebeling
- Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen, Sankt Augustin, Germany
| | - Johan G Eriksson
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland Folkhälsan Research Center, Helsinki, Finland Department of General Practice and Primary Health Care, and Helsinki University Hospital, University of Helsinki, Finland
| | - Myriam Fornage
- Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | | | - Christoph M Friedrich
- Department of Computer Science, University of Applied Science and Arts, Dortmund, Germany
| | - Emília I Gaál
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Omri Gottesman
- Icahn School of Medicine Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY
| | - Dong-Chuan Guo
- Department of Internal Medicine, The University of Texas Medical School at Houston, TX
| | - Seamus C Harrison
- Department of Cardiovascular Science, University of Leicester, United Kingdom
| | - Juha Hernesniemi
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | | | - Gregory T Jones
- Surgery Department, University of Otago, Dunedin, New Zealand
| | - Lambertus A L M Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Nerissa Ko
- Department of Neurology, University of California, San Francisco, CA
| | - Seppo Koskinen
- Department of Health, Functional Capacity and Welfare, National Institute for Health and Welfare, Helsinki, Finland
| | - Michiaki Kubo
- Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | | | - Helena Kuivaniemi
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA Department of Surgery, Temple University School of Medicine, Philadelphia, PA Department of Biomedical Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mitja I Kurki
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA Medical and Population Genetics Program, Broad Institute, Boston, MA
| | - Aki Laakso
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Suzanne M Leal
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | - Hanna Lehto
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Scott A LeMaire
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine and the Texas Heart Institute, Houston, TX
| | - Siew-Kee Low
- Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Jennifer Malinowski
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN Department of Surgery, Yale School of Medicine, New Haven, CT
| | | | - Dianna M Milewicz
- Department of Internal Medicine, The University of Texas Medical School at Houston, TX
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Yusuke Nakamura
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, IL
| | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Jennifer Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Peggy L Peissig
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI
| | - Joanna Pera
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | - Laura Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marylyn D Ritchie
- Center for Systems Genomics, The Pennsylvania State University, Pennsylvania, PA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andre M van Rij
- Surgery Department, University of Otago, Dunedin, New Zealand
| | | | - Athanasios Saratzis
- Department of Cardiovascular Sciences and the NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, United Kingdom
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | | | - Gerard Tromp
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA Department of Biomedical Sciences, Stellenbosch University, Tygerberg, South Africa
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Shefali S Verma
- Center for Systems Genomics, The Pennsylvania State University, Pennsylvania, PA
| | - Sita H Vermeulen
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Gao T Wang
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | - Buhm Han
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences Asan Medical Center, Seoul, Korea
| | - Gabriël J E Rinkel
- Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Farlow JL, Lin H, Sauerbeck L, Lai D, Koller DL, Pugh E, Hetrick K, Ling H, Kleinloog R, van der Vlies P, Deelen P, Swertz MA, Verweij BH, Regli L, Rinkel GJE, Ruigrok YM, Doheny K, Liu Y, Broderick J, Foroud T. Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm. PLoS One 2015; 10:e0121104. [PMID: 25803036 PMCID: PMC4372548 DOI: 10.1371/journal.pone.0121104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022] Open
Abstract
Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.
Collapse
Affiliation(s)
- Janice L. Farlow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hai Lin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Laura Sauerbeck
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Daniel L. Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Elizabeth Pugh
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Kurt Hetrick
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Hua Ling
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Rachel Kleinloog
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Morris A. Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bon H. Verweij
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Luca Regli
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Gabriel J. E. Rinkel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kimberly Doheny
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph Broderick
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | |
Collapse
|