1
|
Hervella P, Sampedro-Viana A, Rodríguez-Yáñez M, López-Dequidt I, Pumar JM, Mosqueira AJ, Fernández-Rodicio S, Bazarra-Barreiros M, Serena J, Silva-Blas Y, Gubern-Merida C, Rey-Aldana D, Cinza S, Campos F, Sobrino T, Castillo J, Alonso-Alonso ML, Iglesias-Rey R. Systemic biomarker associated with poor outcome after futile reperfusion. Eur J Clin Invest 2024; 54:e14181. [PMID: 38361320 DOI: 10.1111/eci.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Successful recanalization does not lead to complete tissue reperfusion in a considerable percentage of ischemic stroke patients. This study aimed to identify biomarkers associated with futile recanalization. Leukoaraiosis predicts poor outcomes of this phenomenon. Soluble tumour necrosis factor-like weak inducer of apoptosis (sTWEAK), which is associated with leukoaraiosis degrees, could be a potential biomarker. METHODS This study includes two cohorts of ischemic stroke patients in a multicentre retrospective observational study. Effective reperfusion, defined as a reduction of ≥8 points in the National Institutes of Health Stroke Scale (NIHSS) within the first 24 h, was used as a clinical marker of effective reperfusion. RESULTS In the first cohort study, female sex, age, and high NIHSS at admission (44.7% vs. 81.1%, 71.3 ± 13.7 vs. 81.1 ± 6.7; 16 [13, 21] vs. 23 [17, 28] respectively; p < .0001) were confirmed as predictors of futile recanalization. ROC curve analysis showed that leukocyte levels (sensitivity of 99%, specificity of 55%) and sTWEAK level (sensitivity of 92%, specificity of 88%) can discriminate between poor and good outcomes. Both biomarkers simultaneously are higher associated with outcome after effective reperfusion (OR: 2.17; CI 95% 1.63-4.19; p < .0001) than individually (leukocytes OR: 1.38; CI 95% 1.00-1.64, p = .042; sTWEAK OR: 1.00; C I95% 1.00-1.01, p = .019). These results were validated using a second cohort, where leukocytes and sTWEAK showed a sensitivity of 100% and specificity of 66.7% and 75% respectively. CONCLUSIONS Leukocyte and sTWEAK could be biomarkers of reperfusion failure and subsequent poor outcomes. Further studies will be necessary to explore its role in reperfusion processes.
Collapse
Affiliation(s)
- Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Ana Sampedro-Viana
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | | | - Iria López-Dequidt
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, A Coruña, Spain
| | - José M Pumar
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Antonio J Mosqueira
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Sabela Fernández-Rodicio
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Marcos Bazarra-Barreiros
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Joaquín Serena
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Hospital Universitari Dr. Josep Trueta de Girona, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Yolanda Silva-Blas
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Hospital Universitari Dr. Josep Trueta de Girona, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Carme Gubern-Merida
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí I Julià, Salt, Spain
| | - Daniel Rey-Aldana
- Centro de Salud de A Estrada, Area Sanitaria de Santiago de Compostela, A Estrada, Spain
| | - Sergio Cinza
- Centro de Saúde O Milladoiro, Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Tomás Sobrino
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| |
Collapse
|
2
|
Li J, Zhang Y, Zhang D, Wang W, Xie H, Ruan J, Jin Y, Li T, Li X, Zhao B, Zhang X, Lin J, Shi H, Jia JM. Ca 2+ oscillation in vascular smooth muscle cells control myogenic spontaneous vasomotion and counteract post-ischemic no-reflow. Commun Biol 2024; 7:332. [PMID: 38491167 PMCID: PMC10942987 DOI: 10.1038/s42003-024-06010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Ischemic stroke produces the highest adult disability. Despite successful recanalization, no-reflow, or the futile restoration of the cerebral perfusion after ischemia, is a major cause of brain lesion expansion. However, the vascular mechanism underlying this hypoperfusion is largely unknown, and no approach is available to actively promote optimal reperfusion to treat no-reflow. Here, by combining two-photon laser scanning microscopy (2PLSM) and a mouse middle cerebral arteriolar occlusion (MCAO) model, we find myogenic vasomotion deficits correlated with post-ischemic cerebral circulation interruptions and no-reflow. Transient occlusion-induced transient loss of mitochondrial membrane potential (ΔΨm) permanently impairs mitochondria-endoplasmic reticulum (ER) contacts and abolish Ca2+ oscillation in smooth muscle cells (SMCs), the driving force of myogenic spontaneous vasomotion. Furthermore, tethering mitochondria and ER by specific overexpression of ME-Linker in SMCs restores cytosolic Ca2+ homeostasis, remotivates myogenic spontaneous vasomotion, achieves optimal reperfusion, and ameliorates neurological injury. Collectively, the maintaining of arteriolar myogenic vasomotion and mitochondria-ER contacts in SMCs, are of critical importance in preventing post-ischemic no-reflow.
Collapse
Affiliation(s)
- Jinze Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dongdong Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wentao Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huiqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuxiao Jin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoxuan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayi Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Hongjun Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
3
|
Ishikawa H, Shindo A, Mizutani A, Tomimoto H, Lo EH, Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab 2023; 43:18-36. [PMID: 36883344 PMCID: PMC10638994 DOI: 10.1177/0271678x231154597] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive disorder related to cerebrovascular diseases, including vascular mild cognitive impairment, post-stroke dementia, multi-infarct dementia, subcortical ischemic vascular dementia (SIVD), and mixed dementia. Among the causes of VCI, more attention has been paid to SIVD because the causative cerebral small vessel pathologies are frequently observed in elderly people and because the gradual progression of cognitive decline often mimics Alzheimer's disease. In most cases, small vessel diseases are accompanied by cerebral hypoperfusion. In mice, prolonged cerebral hypoperfusion is induced by bilateral carotid artery stenosis (BCAS) with surgically implanted metal micro-coils. This cerebral hypoperfusion BCAS model was proposed as a SIVD mouse model in 2004, and the spreading use of this mouse SIVD model has provided novel data regarding cognitive dysfunction and histological/genetic changes by cerebral hypoperfusion. Oxidative stress, microvascular injury, excitotoxicity, blood-brain barrier dysfunction, and secondary inflammation may be the main mechanisms of brain damage due to prolonged cerebral hypoperfusion, and some potential therapeutic targets for SIVD have been proposed by using transgenic mice or clinically used drugs in BCAS studies. This review article overviews findings from the studies that used this hypoperfused-SIVD mouse model, which were published between 2004 and 2021.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akane Mizutani
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
Zedde M, Grisendi I, Assenza F, Vandelli G, Napoli M, Moratti C, Lochner P, Seiffge DJ, Piazza F, Valzania F, Pascarella R. The Venular Side of Cerebral Amyloid Angiopathy: Proof of Concept of a Neglected Issue. Biomedicines 2023; 11:2663. [PMID: 37893037 PMCID: PMC10604278 DOI: 10.3390/biomedicines11102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Small vessel diseases (SVD) is an umbrella term including several entities affecting small arteries, arterioles, capillaries, and venules in the brain. One of the most relevant and prevalent SVDs is cerebral amyloid angiopathy (CAA), whose pathological hallmark is the deposition of amyloid fragments in the walls of small cortical and leptomeningeal vessels. CAA frequently coexists with Alzheimer's Disease (AD), and both are associated with cerebrovascular events, cognitive impairment, and dementia. CAA and AD share pathophysiological, histopathological and neuroimaging issues. The venular involvement in both diseases has been neglected, although both animal models and human histopathological studies found a deposition of amyloid beta in cortical venules. This review aimed to summarize the available information about venular involvement in CAA, starting from the biological level with the putative pathomechanisms of cerebral damage, passing through the definition of the peculiar angioarchitecture of the human cortex with the functional organization and consequences of cortical arteriolar and venular occlusion, and ending to the hypothesized links between cortical venular involvement and the main neuroimaging markers of the disease.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Federica Assenza
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Gabriele Vandelli
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Claudio Moratti
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - David J. Seiffge
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
5
|
Wasiak S, Fu L, Daze E, Gilham D, Rakai BD, Stotz SC, Tsujikawa LM, Sarsons CD, Studer D, Rinker KD, Jahagirdar R, Wong NCW, Sweeney M, Johansson JO, Kulikowski E. The BET inhibitor apabetalone decreases neuroendothelial proinflammatory activation in vitro and in a mouse model of systemic inflammation. Transl Neurosci 2023; 14:20220332. [PMID: 38222824 PMCID: PMC10787226 DOI: 10.1515/tnsci-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
Brain vascular inflammation is characterized by endothelial activation and immune cell recruitment to the blood vessel wall, potentially causing a breach in the blood - brain barrier, brain parenchyma inflammation, and a decline of cognitive function. The clinical-stage small molecule, apabetalone, reduces circulating vascular endothelial inflammation markers and improves cognitive scores in elderly patients by targeting epigenetic regulators of gene transcription, bromodomain and extraterminal proteins. However, the effect of apabetalone on cytokine-activated brain vascular endothelial cells (BMVECs) is unknown. Here, we show that apabetalone treatment of BMVECs reduces hallmarks of in vitro endothelial activation, including monocyte chemoattractant protein-1 (MCP-1) and RANTES chemokine secretion, cell surface expression of endothelial cell adhesion molecule VCAM-1, as well as endothelial capture of THP-1 monocytes in static and shear stress conditions. Apabetalone pretreatment of THP-1 downregulates cell surface expression of chemokine receptors CCR1, CCR2, and CCR5, and of the VCAM-1 cognate receptor, integrin α4. Consequently, apabetalone reduces THP-1 chemoattraction towards soluble CCR ligands MCP-1 and RANTES, and THP-1 adhesion to activated BMVECs. In a mouse model of brain inflammation, apabetalone counters lipopolysaccharide-induced transcription of endothelial and myeloid cell markers, consistent with decreased neuroendothelial inflammation. In conclusion, apabetalone decreases proinflammatory activation of brain endothelial cells and monocytes in vitro and in the mouse brain during systemic inflammation.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Li Fu
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Emily Daze
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Dean Gilham
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Brooke D. Rakai
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Stephanie C. Stotz
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Laura M. Tsujikawa
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Chris D. Sarsons
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Deborah Studer
- Department of Biomedical Engineering, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Kristina D. Rinker
- Department of Biomedical Engineering, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Ravi Jahagirdar
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Norman C. W. Wong
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Michael Sweeney
- Resverlogix Corp., 535 Mission Street, 14th Floor, San Francisco, CA, 94105, USA
| | - Jan O. Johansson
- Resverlogix Corp., 535 Mission Street, 14th Floor, San Francisco, CA, 94105, USA
| | - Ewelina Kulikowski
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| |
Collapse
|
6
|
Depletion of regulatory T cells exacerbates inflammatory responses after chronic cerebral hypoperfusion in mice. Mol Cell Neurosci 2022; 123:103788. [PMID: 36302461 DOI: 10.1016/j.mcn.2022.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Vascular cognitive impairment is the second most common cause of dementia which can be induced by chronic cerebral hypoperfusion. Regulatory T cells (Tregs) have been proven to provide beneficial effects in several central nervous system (CNS) diseases, but the roles of Tregs in chronic cerebral hypoperfusion-induced white matter damage have not been explored. In this study, Foxp3-diphtheria toxin receptor (DTR) mice treated with diphtheria toxin (DT) and wild type C57BL/6 mice treated with anti-CD25 antibody were subjected to bilateral carotid artery stenosis (BCAS). Flow cytometry analysis showed Tregs were widely distributed in spleen whereas barely distributed in brain under normal conditions. The distribution of lymphocytes and Tregs did not change significantly in spleen and brain after BCAS. Depletion of Tregs decreased the numbers of mature oligodendrocytes and anti-inflammatory microglia at 14 days and 28 days following BCAS. And pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interferon-γ (IFN-γ) showed higher expression after Tregs depletion. In contrast, Tregs depletion did not change the overall severity of white matter injury as shown by the expression of myelin-associated glycoprotein (MAG), myelin basic protein (MBP), luxol fast blue (LFB) staining and electron microscopy assay. Moreover, Tregs depletion had marginal effect on cognition defects after BCAS revealed by Morris water maze and novel object recognition examination at 28 days after BCAS. In summary, our results suggest an anti-inflammatory role of Tregs with marginal effects on white matter damage in mice after BCAS-induced chronic cerebral hypoperfusion.
Collapse
|
7
|
Zhang Z, Pan C, McBride D, Wu Z, Zhang G, Chen D, Zhang JH, Tang Z. Progress in the treatment of chronic intracranial large artery occlusion: Time for large, randomized trials? BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Yoon JH, Shin P, Joo J, Kim GS, Oh WY, Jeong Y. Increased capillary stalling is associated with endothelial glycocalyx loss in subcortical vascular dementia. J Cereb Blood Flow Metab 2022; 42:1383-1397. [PMID: 35139674 PMCID: PMC9274855 DOI: 10.1177/0271678x221076568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Proper regulation and patency of cerebral microcirculation are crucial for maintaining a healthy brain. Capillary stalling, i.e., the brief interruption of microcirculation has been observed in the normal brain and several diseases related to microcirculation. We hypothesized that endothelial glycocalyx, which is located on the luminal side of the vascular endothelium and involved in cell-to-cell interaction regulation in peripheral organs, is also related to cerebral capillary stalling. We measured capillary stalling and the cerebral endothelial glycocalyx (cEG) in male mice using in vivo optical coherence tomography angiography (OCT-A) and two-photon microscopy. Our findings revealed that some capillary segments were prone to capillary stalling and had less cEG. In addition, we demonstrated that the enzymatic degradation of the cEG increased the capillary stalling, mainly by leukocyte plugging. Further, we noted decreased cEG along with increased capillary stalling in a mouse model of subcortical vascular dementia (SVaD) with impaired cortical microcirculation. Moreover, gene expression related to cEG production or degradation changed in the SVaD model. These results indicate that cEG mediates capillary stalling and impacts cerebral blood flow and is involved in the pathogenesis of SVaD.
Collapse
Affiliation(s)
- Jin-Hui Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Paul Shin
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Jongyoon Joo
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gaon S Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wang-Yuhl Oh
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
9
|
Poh L, Sim WL, Jo DG, Dinh QN, Drummond GR, Sobey CG, Chen CLH, Lai MKP, Fann DY, Arumugam TV. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 2022; 17:4. [PMID: 35000611 PMCID: PMC8744307 DOI: 10.1186/s13024-021-00506-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
There is an increasing prevalence of Vascular Cognitive Impairment (VCI) worldwide, and several studies have suggested that Chronic Cerebral Hypoperfusion (CCH) plays a critical role in disease onset and progression. However, there is a limited understanding of the underlying pathophysiology of VCI, especially in relation to CCH. Neuroinflammation is a significant contributor in the progression of VCI as increased systemic levels of the proinflammatory cytokine interleukin-1β (IL-1β) has been extensively reported in VCI patients. Recently it has been established that CCH can activate the inflammasome signaling pathways, involving NLRP3 and AIM2 inflammasomes that critically regulate IL-1β production. Given that neuroinflammation is an early event in VCI, it is important that we understand its molecular and cellular mechanisms to enable development of disease-modifying treatments to reduce the structural brain damage and cognitive deficits that are observed clinically in the elderly. Hence, this review aims to provide a comprehensive insight into the molecular and cellular mechanisms involved in the pathogenesis of CCH-induced inflammasome signaling in VCI.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K. P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
10
|
Rolfes L, Riek-Burchardt M, Pawlitzki M, Minnerup J, Bock S, Schmidt M, Meuth SG, Gunzer M, Neumann J. Neutrophil granulocytes promote flow stagnation due to dynamic capillary stalls following experimental stroke. Brain Behav Immun 2021; 93:322-330. [PMID: 33486002 DOI: 10.1016/j.bbi.2021.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/01/2022] Open
Abstract
Flow stagnation of peri-ischemic capillaries due to dynamic leukocyte stalls has been described to be a contributor to ongoing penumbral injury in transient brain ischemia, but has not been investigated in permanent experimental stroke so far. Moreover, it is discussed that obstructing neutrophils are involved in this process; however, their contribution has not yet been proven. Here, we characterize the dynamics of neutrophil granulocytes in two models of permanent stroke (photothrombosis and permanent middle cerebral artery occlusion) using intravital two-photon fluorescence microscopy. Different to previous studies on LysM-eGFP+ cells we additionally apply a transgenic mouse model with tdTomato-expressing neutrophils to avoid interference from additional immune cell subsets. We identify repetitively occurring capillary stalls of varying duration promoted by neutrophils in both models of permanent cerebral ischemia, validating the suitability of our new transgenic mouse model in determining neutrophil occlusion formation in vivo. Flow cytometric analysis of peripheral blood (PB) and brain tissue from mice subjected to photothrombosis reveal an increase in the total proportion of neutrophils, with selective upregulation of endothelial adherence markers in the PB. In conclusion, the dynamic microcirculatory stall phenomenon that is described after transient ischemia followed by reperfusion also occurs after permanent small- or large-vessel stroke and is clearly attributable to neutrophils.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | | | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Stefanie Bock
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Mariella Schmidt
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany; Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Germany.
| | - Jens Neumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
11
|
Jann K, Shao X, Ma SJ, Cen SY, D'Orazio L, Barisano G, Yan L, Casey M, Lamas J, Staffaroni AM, Kramer JH, Ringman JM, Wang DJJ. Evaluation of Cerebral Blood Flow Measured by 3D PCASL as Biomarker of Vascular Cognitive Impairment and Dementia (VCID) in a Cohort of Elderly Latinx Subjects at Risk of Small Vessel Disease. Front Neurosci 2021; 15:627627. [PMID: 33584191 PMCID: PMC7873482 DOI: 10.3389/fnins.2021.627627] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023] Open
Abstract
Cerebral small vessel disease (cSVD) affects arterioles, capillaries, and venules and can lead to cognitive impairments and clinical symptomatology of vascular cognitive impairment and dementia (VCID). VCID symptoms are similar to Alzheimer’s disease (AD) but the neurophysiologic alterations are less well studied, resulting in no established biomarkers. The purpose of this study was to evaluate cerebral blood flow (CBF) measured by 3D pseudo-continuous arterial spin labeling (pCASL) as a potential biomarker of VCID in a cohort of elderly Latinx subjects at risk of cSVD. Forty-five elderly Latinx subjects (12 males, 69 ± 7 years) underwent repeated MRI scans ∼6 weeks apart. CBF was measured using 3D pCASL in the whole brain, white matter and 4 main vascular territories (leptomeningeal anterior, middle, and posterior cerebral artery (leptoACA, leptoMCA, leptoPCA), as well as MCA perforator). The test-retest repeatability of CBF was assessed by intra-class correlation coefficient (ICC) and within-subject coefficient of variation (wsCV). Absolute and relative CBF was correlated with gross cognitive measures and domain specific assessment of executive and memory function, vascular risks, and Fazekas scores and volumes of white matter hyperintensity (WMH). Neurocognitive evaluations were performed using Montreal Cognitive Assessment (MoCA) and neuropsychological test battery in the Uniform Data Set v3 (UDS3). Good to excellent test-retest repeatability was achieved (ICC = 0.77–0.85, wsCV 3–9%) for CBF measurements in the whole brain, white matter, and 4 vascular territories. Relative CBF normalized by global mean CBF in the leptoMCA territory was positively correlated with the executive function composite score, while relative CBF in the leptoMCA and MCA perforator territory was positively correlated with MoCA scores, controlling for age, gender, years of education, and testing language. Relative CBF in WM was negatively correlated with WMH volume and MoCA scores, while relative leptoMCA CBF was positively correlated with WMH volume. Reliable 3D pCASL CBF measurements were achieved in the cohort of elderly Latinx subjects. Relative CBF in the leptomeningeal and perforator MCA territories were the most likely candidate biomarker of VCID. These findings need to be replicated in larger cohorts with greater variability of stages of cSVD.
Collapse
Affiliation(s)
- Kay Jann
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xingfeng Shao
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Samantha J Ma
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Steven Y Cen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lina D'Orazio
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Giuseppe Barisano
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lirong Yan
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Marlena Casey
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jesse Lamas
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Danny J J Wang
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Bryant AG, Hu M, Carlyle BC, Arnold SE, Frosch MP, Das S, Hyman BT, Bennett RE. Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease. Front Neurol 2020; 11:575953. [PMID: 33041998 PMCID: PMC7525127 DOI: 10.3389/fneur.2020.575953] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's Disease (AD) is associated with neuropathological changes, including aggregation of tau neurofibrillary tangles (NFTs) and amyloid-beta plaques. Mounting evidence indicates that vascular dysfunction also plays a key role in the pathogenesis and progression of AD, in part through endothelial dysfunction. Based on findings in animal models that tau pathology induces vascular abnormalities and cellular senescence, we hypothesized that tau pathology in the human AD brain leads to vascular senescence. To explore this hypothesis, we isolated intact microvessels from the dorsolateral prefrontal cortex (PFC, BA9) from 16 subjects with advanced Braak stages (Braak V/VI, B3) and 12 control subjects (Braak 0/I/II, B1), and quantified expression of 42 genes associated with senescence, cell adhesion, and various endothelial cell functions. Genes associated with endothelial senescence and leukocyte adhesion, including SERPINE1 (PAI-1), CXCL8 (IL8), CXCL1, CXCL2, ICAM-2, and TIE1, were significantly upregulated in B3 microvessels after adjusting for sex and cerebrovascular pathology. In particular, the senescence-associated secretory phenotype genes SERPINE1 and CXCL8 were upregulated by more than 2-fold in B3 microvessels after adjusting for sex, cerebrovascular pathology, and age at death. Protein quantification data from longitudinal plasma samples for a subset of 13 (n = 9 B3, n = 4 B1) subjects showed no significant differences in plasma senescence or adhesion-associated protein levels, suggesting that these changes were not associated with systemic vascular alterations. Future investigations of senescence biomarkers in both the peripheral and cortical vasculature could further elucidate links between tau pathology and vascular changes in human AD.
Collapse
Affiliation(s)
- Annie G Bryant
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Miwei Hu
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Becky C Carlyle
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Steven E Arnold
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Matthew P Frosch
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Pathology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Sudeshna Das
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bradley T Hyman
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Rachel E Bennett
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
13
|
Regeneration of the neurogliovascular unit visualized in vivo by transcranial live-cell imaging. J Neurosci Methods 2020; 343:108808. [DOI: 10.1016/j.jneumeth.2020.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
14
|
Leardini-Tristão M, Andrade G, Garcia C, Reis PA, Lourenço M, Moreira ETS, Lima FRS, Castro-Faria-Neto HC, Tibirica E, Estato V. Physical exercise promotes astrocyte coverage of microvessels in a model of chronic cerebral hypoperfusion. J Neuroinflammation 2020; 17:117. [PMID: 32299450 PMCID: PMC7161182 DOI: 10.1186/s12974-020-01771-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/12/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Brain circulation disorders such as chronic cerebral hypoperfusion have been associated with a decline in cognitive function during the development of dementia. Astrocytes together with microglia participate in the immune response in the CNS and make them potential sentinels in the brain parenchyma. In addition, astrocytes coverage integrity has been related to brain homeostasis. Currently, physical exercise has been proposed as an effective intervention to promote brain function improvement. However, the neuroprotective effects of early physical exercise on the astrocyte communication with the microcirculation and the microglial activation in a chronic cerebral hypoperfusion model are still unclear. The aim of this study was to investigate the impact of early intervention with physical exercise on cognition, brain microcirculatory, and inflammatory parameters in an experimental model of chronic cerebral hypoperfusion induced by permanent bilateral occlusion of the common carotid arteries (2VO). METHODS Wistar rats aged 12 weeks were randomly divided into four groups: Sham-sedentary group (Sham-Sed), Sham-exercised group (Sham-Ex), 2VO-sedentary group (2VO-Sed), and 2VO-exercised group (2VO-Ex). The early intervention with physical exercise started 3 days after 2VO or Sham surgery during 12 weeks. Then, the brain functional capillary density and endothelial-leukocyte interactions were evaluated by intravital microscopy; cognitive function was evaluated by open-field test; hippocampus postsynaptic density protein 95 and synaptophysin were evaluated by western blotting; astrocytic coverage of the capillaries, microglial activation, and structural capillary density were evaluated by immunohistochemistry. RESULTS Early moderate physical exercise was able to normalize functional capillary density and reduce leukocyte rolling in the brain of animals with chronic cerebral hypoperfusion. These effects were accompanied by restore synaptic protein and the improvement of cognitive function. In addition, early moderate exercise improves astrocytes coverage in blood vessels of the cerebral cortex and hippocampus, decreases microglial activation in the hippocampus, and improves structural capillaries in the hippocampus. CONCLUSIONS Microcirculatory and inflammatory changes in the brain appear to be involved in triggering a cognitive decline in animals with chronic cerebral ischemia. Therefore, early intervention with physical exercise may represent a preventive approach to neurodegeneration caused by chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Marina Leardini-Tristão
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Giulia Andrade
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Celina Garcia
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia A Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - Millena Lourenço
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - Emilio T S Moreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - Flavia R S Lima
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - Eduardo Tibirica
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Cardiology, Rio de Janeiro, Brazil
| | - Vanessa Estato
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil.
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Dalby RB, Eskildsen SF, Videbech P, Frandsen J, Mouridsen K, Sørensen L, Jeppesen P, Bek T, Rosenberg R, Østergaard L. Oxygenation differs among white matter hyperintensities, intersected fiber tracts and unaffected white matter. Brain Commun 2019; 1:fcz033. [PMID: 32954272 PMCID: PMC7425421 DOI: 10.1093/braincomms/fcz033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023] Open
Abstract
White matter hyperintensities of presumed vascular origin are frequently observed on magnetic resonance imaging in normal aging. They are typically found in cerebral small vessel disease and suspected culprits in the etiology of complex age- and small vessel disease-related conditions, such as late-onset depression. White matter hyperintensities may interfere with surrounding white matter metabolic demands by disrupting fiber tract integrity. Meanwhile, risk factors for small vessel disease are thought to reduce tissue oxygenation, not only by reducing regional blood supply, but also by impairing capillary function. To address white matter oxygen supply–demand balance, we estimated voxel-wise capillary density as an index of resting white matter metabolism, and combined estimates of blood supply and capillary function to calculate white matter oxygen availability. We conducted a cross-sectional study with structural, perfusion- and diffusion-weighted magnetic resonance imaging in 21 patients with late-onset depression and 21 controls. We outlined white matter hyperintensities and used tractography to identify the tracts they intersect. Perfusion data comprised cerebral blood flow, blood volume, mean transit time and relative transit time heterogeneity—the latter a marker of capillary dysfunction. Based on these, white matter oxygenation was calculated as the steady state cerebral metabolic rate of oxygen under the assumption of normal tissue oxygen tension and vice versa. The number, volume and perfusion characteristics of white matter hyperintensities did not differ significantly between groups. Hemodynamic data showed white matter hyperintensities to have lower blood flow and blood volume, but higher relative transit time heterogeneity, than normal-appearing white matter, resulting in either reduced capillary metabolic rate of oxygen or oxygen tension. Intersected tracts showed significantly lower blood flow, blood volume and capillary metabolic rate of oxygen than normal-appearing white matter. Across groups, lower lesion oxygen tension was associated with higher lesion number and volume. Compared with normal-appearing white matter, tissue oxygenation is significantly reduced in white matter hyperintensities as well as the fiber tracts they intersect, independent of parallel late-onset depression. In white matter hyperintensities, reduced microvascular blood volume and concomitant capillary dysfunction indicate a severe oxygen supply–demand imbalance with hypoxic tissue injury. In intersected fiber tracts, parallel reductions in oxygenation and microvascular blood volume are consistent with adaptations to reduced metabolic demands. We speculate, that aging and vascular risk factors impair white matter hyperintensity perfusion and capillary function to create hypoxic tissue injury, which in turn affect the function and metabolic demands of the white matter tracts they disrupt.
Collapse
Affiliation(s)
- Rikke B Dalby
- Center of Functionally Integrative Neuroscience & MINDLab, Aarhus University Hospital, 8200 Aarhus C., Denmark.,Centre for Psychiatric Research, Aarhus University Hospital, 8340 Risskov, Denmark.,Department of Neuroradiology, Aarhus University Hospital, 8200 Aarhus N., Denmark
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience & MINDLab, Aarhus University Hospital, 8200 Aarhus C., Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, 2600 Glostrup, Denmark
| | - Jesper Frandsen
- Center of Functionally Integrative Neuroscience & MINDLab, Aarhus University Hospital, 8200 Aarhus C., Denmark
| | - Kim Mouridsen
- Center of Functionally Integrative Neuroscience & MINDLab, Aarhus University Hospital, 8200 Aarhus C., Denmark
| | - Leif Sørensen
- Department of Neuroradiology, Aarhus University Hospital, 8200 Aarhus N., Denmark
| | - Peter Jeppesen
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N., Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N., Denmark
| | - Raben Rosenberg
- Centre of Psychiatry Amager, Mental Health Services in the Capital Region of Denmark, 2300 Copenhagen S., Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience & MINDLab, Aarhus University Hospital, 8200 Aarhus C., Denmark.,Department of Neuroradiology, Aarhus University Hospital, 8200 Aarhus N., Denmark
| |
Collapse
|
16
|
He Y, Wang B. Hybrid surgery for symptomatic chronic complete occlusion of the internal carotid artery: A case report. J Interv Med 2019; 2:171-177. [PMID: 34805897 PMCID: PMC8562257 DOI: 10.1016/j.jimed.2019.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Currently, there are antiplatelet drugs, extracranial-intracranial (EC-IC) vascular bypass, carotid endarterectomy (CEA), endovascular intervention (EI), and other revascularization procedures for symptomatic chronic internal carotid artery occlusion (CICAO). In consulting the literature, we found that existing techniques for single treatments cannot achieve satisfactory results when there is a long segment occlusion with plaque attached to the intracranial segment and a short stump at the initial segment. We reported the case of a 50-year-old male patient with blurred vision, headache, and weakness in the right upper limb. After the exclusion of other neurological diseases, he was diagnosed with symptomatic CICAO; the occlusion segment was long and the stump was too short. We performed a novel hybrid surgery for the patient—a carotid endarterectomy combined with internal carotid artery stenting. After 6 months of follow-up, computed tomography angiography (CTA) confirmed that the left internal carotid artery was unobstructed, and the symptoms were relieved. A brief review of the literature is presented in addition to this report.
Collapse
|
17
|
Tanaka T, Koiwa J. [Next generation zebrafish-based drug discovery and precision medicine]. Nihon Yakurigaku Zasshi 2019; 154:78-83. [PMID: 31406047 DOI: 10.1254/fpj.154.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Even after entering the era of genomic drug discovery in the 21st century, development of a breakthrough therapeutic drug (first-in-class) for intractable diseases (unmet medical needs) has been extremely difficult, but to the US FDA 62% of the approved first-in-class drugs are found by phenotypic screening. The next-generation zebrafish drug discovery enables high-throughput quantitative live in vivo phenotypic screening, and has been impacting global drug discovery strategies now. Compared to severe immunodeficient mice, zebrafish is expected to become a true individualized medical tool as a clinical ex vivo diagnostic system because of the high efficiency and speed of engraftment of patient-derived cancer xenotransplantation. Phenomics-based personalized medicine with the patient-derived cancer xenograft zebrafish in addition to conventional omics platform of individualized medicine is a true next-generation precision medicine to utilize for selection of therapeutic drugs and decision of their doses for the patient, and emerging paradigm shift is realizing in this century.
Collapse
Affiliation(s)
- Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of Medicine.,Mie University Medical Zebrafish Research Center
| | - Junko Koiwa
- Department of Systems Pharmacology, Mie University Graduate School of Medicine
| |
Collapse
|
18
|
Erdener ŞE, Tang J, Sajjadi A, Kılıç K, Kura S, Schaffer CB, Boas DA. Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells. J Cereb Blood Flow Metab 2019; 39:886-900. [PMID: 29168661 PMCID: PMC6501506 DOI: 10.1177/0271678x17743877] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optical coherence tomography (OCT) allows label-free imaging of red blood cell (RBC) flux within capillaries with high spatio-temporal resolution. In this study, we utilized time-series OCT-angiography to demonstrate interruptions in capillary RBC flux in mouse brain in vivo. We noticed ∼7.5% of ∼200 capillaries had at least one stall in awake mice with chronic windows during a 9-min recording. At any instant, ∼0.45% of capillaries were stalled. Average stall duration was ∼15 s but could last over 1 min. Stalls were more frequent and longer lasting in acute window preparations. Further, isoflurane anesthesia in chronic preparations caused an increase in the number of stalls. In repeated imaging, the same segments had a tendency to stall again over a period of one month. In awake animals, functional stimulation decreased the observance of stalling events. Stalling segments were located distally, away from the first couple of arteriolar-side capillary branches and their average RBC and plasma velocities were lower than nonstalling capillaries within the same region. This first systematic analysis of capillary RBC stalls in the brain, enabled by rapid and continuous volumetric imaging of capillaries with OCT-angiography, will lead to future investigations of the potential role of stalling events in cerebral pathologies.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jianbo Tang
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Amir Sajjadi
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kıvılcım Kılıç
- 2 Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sreekanth Kura
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chris B Schaffer
- 3 Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David A Boas
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,2 Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
19
|
Østergaard L, Jørgensen MB, Knudsen GM. Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev 2018; 94:248-270. [DOI: 10.1016/j.neubiorev.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
|
20
|
Ferrucci M, Biagioni F, Ryskalin L, Limanaqi F, Gambardella S, Frati A, Fornai F. Ambiguous Effects of Autophagy Activation Following Hypoperfusion/Ischemia. Int J Mol Sci 2018; 19:ijms19092756. [PMID: 30217100 PMCID: PMC6163197 DOI: 10.3390/ijms19092756] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy primarily works to counteract nutrient deprivation that is strongly engaged during starvation and hypoxia, which happens in hypoperfusion. Nonetheless, autophagy is slightly active even in baseline conditions, when it is useful to remove aged proteins and organelles. This is critical when the mitochondria and/or proteins are damaged by toxic stimuli. In the present review, we discuss to that extent the recruitment of autophagy is beneficial in counteracting brain hypoperfusion or, vice-versa, its overactivity may per se be detrimental for cell survival. While analyzing these opposite effects, it turns out that the autophagy activity is likely not to be simply good or bad for cell survival, but its role varies depending on the timing and amount of autophagy activation. This calls for the need for an appropriate autophagy tuning to guarantee a beneficial effect on cell survival. Therefore, the present article draws a theoretical pattern of autophagy activation, which is hypothesized to define the appropriate timing and intensity, which should mirrors the duration and severity of brain hypoperfusion. The need for a fine tuning of the autophagy activation may explain why confounding outcomes occur when autophagy is studied using a rather simplistic approach.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
21
|
Arsava EM, Hansen MB, Kaplan B, Peker A, Gocmen R, Arat A, Oguz KK, Topcuoglu MA, Østergaard L, Dalkara T. The effect of carotid artery stenting on capillary transit time heterogeneity in patients with carotid artery stenosis. Eur Stroke J 2018; 3:263-271. [PMID: 31008357 DOI: 10.1177/2396987318772686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/01/2018] [Indexed: 11/17/2022] Open
Abstract
Introduction Carotid revascularisation improves haemodynamic compromise in cerebral circulation as an additional benefit to the primary goal of reducing future thromboembolic risk. We determined the effect of carotid artery stenting on cerebral perfusion and oxygenation using a perfusion-weighted MRI algorithm that is based on assessment of capillary transit-time heterogeneity together with other perfusion and metabolism-related metrics. Patients and methods A consecutive series of 33 patients were evaluated by dynamic susceptibility contrast perfusion-weighted MRI prior to and within 24 h of the endovascular procedure. The level of relative change induced by stenting, and relationship of these changes with respect to baseline stenosis degree were analysed. Results Stenting led to significant increase in cerebral blood flow (p < 0.001), and decrease in cerebral blood volume (p = 0.001) and mean transit time (p < 0.001); this was accompanied by reduction in oxygen extraction fraction (p < 0.001) and capillary transit-time heterogeneity (p < 0.001), but an overall increase in relative capillary transit-time heterogeneity (RTH: CTH divided by MTT; p = 0.008). No significant change was observed with respect to cerebral metabolic rate of oxygen. The median volume of tissue with MTT > 2s decreased from 24 ml to 12 ml (p = 0.009), with CTH > 2s from 29 ml to 19 ml (p = 0.041), and with RTH < 0.9 from 61 ml to 39 ml (p = 0.037) following stenting. These changes were correlated with the baseline degree of stenosis.Discussion: Stenting improved the moderate stage of haemodynamic compromise at baseline in our cohort. The decreased relative transit-time heterogeneity, which increases following stenting, is probably a reflection of decreased functional capillary density secondary to chronic hypoperfusion induced by the proximal stenosis.Conclusion: Carotid artery stenting, is not only important for prophylaxis of future vascular events, but also is critical for restoration of microvascular function in the cerebral tissue.
Collapse
Affiliation(s)
- Ethem M Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, Turkey
| | - Mikkel B Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Berkan Kaplan
- Department of Neurology, Faculty of Medicine, Hacettepe University, Turkey
| | - Ahmet Peker
- Department of Radiology, Faculty of Medicine, Hacettepe University, Turkey
| | - Rahsan Gocmen
- Department of Radiology, Faculty of Medicine, Hacettepe University, Turkey
| | - Anil Arat
- Department of Radiology, Faculty of Medicine, Hacettepe University, Turkey
| | - Kader K Oguz
- Department of Radiology, Faculty of Medicine, Hacettepe University, Turkey
| | - Mehmet A Topcuoglu
- Department of Neurology, Faculty of Medicine, Hacettepe University, Turkey
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Denmark
| | - Turgay Dalkara
- Department of Neurology, Faculty of Medicine, Hacettepe University, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Turkey
| |
Collapse
|
22
|
TRPM2 Channel Aggravates CNS Inflammation and Cognitive Impairment via Activation of Microglia in Chronic Cerebral Hypoperfusion. J Neurosci 2018; 38:3520-3533. [PMID: 29507145 DOI: 10.1523/jneurosci.2451-17.2018] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023] Open
Abstract
Chronic cerebral hypoperfusion is a characteristic seen in widespread CNS diseases, including neurodegenerative and mental disorders, and is commonly accompanied by cognitive impairment. Recently, several studies demonstrated that chronic cerebral hypoperfusion can induce the excessive inflammatory responses that precede neuronal dysfunction; however, the precise mechanism of cognitive impairment due to chronic cerebral hypoperfusion remains unknown. Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable channel that is abundantly expressed in immune cells and is involved in aggravation of inflammatory responses. Therefore, we investigated the pathophysiological role of TRPM2 in a mouse chronic cerebral hypoperfusion model with bilateral common carotid artery stenosis (BCAS). When male mice were subjected to BCAS, cognitive dysfunction and white matter injury at day 28 were significantly improved in TRPM2 knock-out (TRPM2-KO) mice compared with wild-type (WT) mice, whereas hippocampal damage was not observed. There were no differences in blood-brain barrier breakdown and H2O2 production between the two genotypes at 14 and 28 d after BCAS. Cytokine production was significantly suppressed in BCAS-operated TRPM2-KO mice compared with WT mice at day 28. In addition, the number of Iba1-positive cells gradually decreased from day 14. Moreover, daily treatment with minocycline significantly improved cognitive perturbation. Surgical techniques using bone marrow chimeric mice revealed that activated Iba1-positive cells in white matter could be brain-resident microglia, not peripheral macrophages. Together, these findings suggest that microglia contribute to the aggravation of cognitive impairment by chronic cerebral hypoperfusion, and that TRPM2 may be a potential target for chronic cerebral hypoperfusion-related disorders.SIGNIFICANCE STATEMENT Chronic cerebral hypoperfusion is manifested in a wide variety of CNS diseases, including neurodegenerative and mental disorders that are accompanied by cognitive impairment; however, the underlying mechanisms require clarification. Here, we used a chronic cerebral hypoperfusion mouse model to investigate whether TRPM2, a Ca2+-permeable cation channel highly expressed in immune cells, plays a destructive role in the development of chronic cerebral hypoperfusion-induced cognitive impairment, and propose a new hypothesis in which TRPM2-mediated activation of microglia, not macrophages, specifically contributes to the pathology through the aggravation of inflammatory responses. These findings shed light on the understanding of the mechanisms of chronic cerebral hypoperfusion-related inflammation, and are expected to provide a novel therapeutic molecule for cognitive impairment in CNS diseases.
Collapse
|
23
|
Hartmann DA, Hyacinth HI, Liao FF, Shih AY. Does pathology of small venules contribute to cerebral microinfarcts and dementia? J Neurochem 2018; 144:517-526. [PMID: 28950410 PMCID: PMC5869083 DOI: 10.1111/jnc.14228] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Microinfarcts are small, but strikingly common, ischemic brain lesions in the aging human brain. There is mounting evidence that microinfarcts contribute to vascular cognitive impairment and dementia, but the origins of microinfarcts are unclear. Understanding the vascular pathologies that cause microinfarcts may yield strategies to prevent their occurrence and reduce their deleterious effects on brain function. Current thinking suggests that cortical microinfarcts arise from the occlusion of penetrating arterioles, which are responsible for delivering oxygenated blood to small volumes of tissue. Unexpectedly, pre-clinical studies have shown that the occlusion of penetrating venules, which drain deoxygenated blood from cortex, lead to microinfarcts that appear identical to those resulting from arteriole occlusion. Here we discuss the idea that cerebral venule pathology could be an overlooked source for brain microinfarcts in humans. This article is part of the Special Issue "Vascular Dementia". Cover Image for this Issue: doi: 10.1111/jnc.14167.
Collapse
Affiliation(s)
- David A. Hartmann
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Hyacinth I. Hyacinth
- Aflac Cancer and Blood Disorder Center, Children’s Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andy Y. Shih
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
24
|
Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131:2451-2468. [PMID: 28963120 DOI: 10.1042/cs20160727] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments.
Collapse
|
25
|
Michalski D, Hofmann S, Pitsch R, Grosche J, Härtig W. Neurovascular Specifications in the Alzheimer-Like Brain of Mice Affected by Focal Cerebral Ischemia: Implications for Future Therapies. J Alzheimers Dis 2017; 59:655-674. [DOI: 10.3233/jad-170185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Sarah Hofmann
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Roman Pitsch
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | | | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
Wang DP, Liu KJ, Kasper G, Lin Q, Hai J. Inhibition of SENP3 by URB597 ameliorates neurovascular unit dysfunction in rats with chronic cerebral hypoperfusion. Biomed Pharmacother 2017; 91:872-879. [PMID: 28501776 DOI: 10.1016/j.biopha.2017.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
Disruption of the neurovascular unit (NVU), induced by chronic cerebral hypoperfusion (CCH), has been broadly found in various neurological disorders. SUMO-specific protease 3 (SENP3) is expressed in neurons, astrocytes, and microglia, and regulates a variety of cell events. However, whether SENP3 is involved in neurovascular injury under the condition of CCH is still elusive. To address this issue, we investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on NVU and the role of SENP3 in this process, as well as the underling mechanisms. The expression of SENP3 was detected by immunochemistry. The function and structure of the NVU was assessed by Western blot analysis and transmission electron microscopy. CCH caused the upregulation of SENP3, the disruption of cell and non-cell components at the protein level within the NVU, and ultrastructural deterioration. The NVU impairment as well as overexpression of SENP3 were reversed by treatment with URB597. These results reveal a novel neuroprotective role in URB597, which implicates URB597 in the amelioration of CCH-induced NVU impairment by inhibiting SENP3.
Collapse
Affiliation(s)
- Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ke-Jia Liu
- Department of Cell Biology, Key Laboratory of Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Graham Kasper
- McGill Neuroscience, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
27
|
Leukocyte plugging and cortical capillary flow after subarachnoid hemorrhage. Acta Neurochir (Wien) 2016; 158:1057-67. [PMID: 27040552 DOI: 10.1007/s00701-016-2792-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND It is believed that increased intracranial pressure immediately after subarachnoid hemorrhage (SAH) causes extensive brain ischemia and results in worsening clinical status. Arterial flow to the cerebral surfaces is clinically well maintained during clipping surgery regardless of the severity of the World Federation of Neurological Societies grade after SAH. To explore what kinds of changes occur in the cortical microcirculation, not at the cerebral surface, we examined cortical microcirculation after SAH using two-photon laser scanning microscopy (TPLSM). METHODS SAH was induced in mice with an endovascular perforation model. Following continuous injection of rhodamine 6G, velocities of labeled platelets and leukocytes and unlabeled red blood cells (RBCs) were measured in the cortical capillaries 60 min after SAH with a line-scan method using TPLSM, and the data were compared to a sham group and P-selectin monoclonal antibody-treated group. RESULTS Velocities of leukocytes, platelets, and RBCs in capillaries decreased significantly 60 min after SAH. Rolling and adherent leukocytes suddenly prevented other blood cells from flowing in the capillaries. Flowing blood cells also decreased significantly in each capillary after SAH. This no-reflow phenomenon induced by plugging leukocytes was often observed in the SAH group but not in the sham group. The decreased velocities of blood cells were reversed by pretreatment with the monoclonal antibody of P-selection, an adhesion molecule expressed on the surfaces of both endothelial cells and platelets. CONCLUSIONS SAH caused sudden worsening of cortical microcirculation at the onset. Leukocyte plugging in capillaries is one of the reasons why cortical microcirculation is aggravated after SAH.
Collapse
|
28
|
Nishino A, Tajima Y, Takuwa H, Masamoto K, Taniguchi J, Wakizaka H, Kokuryo D, Urushihata T, Aoki I, Kanno I, Tomita Y, Suzuki N, Ikoma Y, Ito H. Long-term effects of cerebral hypoperfusion on neural density and function using misery perfusion animal model. Sci Rep 2016; 6:25072. [PMID: 27116932 PMCID: PMC4846861 DOI: 10.1038/srep25072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/23/2016] [Indexed: 11/09/2022] Open
Abstract
We investigated the chronic effects of cerebral hypoperfusion on neuronal density and functional hyperemia using our misery perfusion mouse model under unilateral common carotid artery occlusion (UCCAO). Neuronal density evaluated 28 days after UCCAO using [(11)C]flumazenil-PET and histology indicated no neurologic deficit in the hippocampus and neocortex. CBF response to sensory stimulation was assessed using laser-Doppler flowmetry. Percentage changes in CBF response of the ipsilateral hemisphere to UCCAO were 18.4 ± 3.0%, 6.9 ± 2.8%, 6.8 ± 2.3% and 4.9 ± 2.4% before, and 7, 14 and 28 days after UCCAO, respectively. Statistical significance was found at 7, 14 and 28 days after UCCAO (P < 0.01). Contrary to our previous finding (Tajima et al. 2014) showing recovered CBF response to hypercapnia on 28 days after UCCAO using the same model, functional hyperemia was sustained and became worse 28 days after UCCAO.
Collapse
Affiliation(s)
- Asuka Nishino
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Yosuke Tajima
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan.,Department of Neurosurgery, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu, Chiba 292-8535, Japan
| | - Hiroyuki Takuwa
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Kazuto Masamoto
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan.,Brain Science Inspired Life Support Research Center, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Junko Taniguchi
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Daisuke Kokuryo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takuya Urushihata
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Ichio Aoki
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Iwao Kanno
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoko Ikoma
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Hiroshi Ito
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
29
|
Interleukin-6 mediates enhanced thrombus development in cerebral arterioles following a brief period of focal brain ischemia. Exp Neurol 2015; 271:351-7. [PMID: 26054883 DOI: 10.1016/j.expneurol.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The cerebral microvasculature is rendered more vulnerable to thrombus formation following a brief (5.0 min) period of focal ischemia. This study examined the contribution of interleukin-6 (IL-6), a neuroprotective and prothrombotic cytokine produced by the brain, to transient ischemia-induced thrombosis in cerebral arterioles. APPROACH & RESULTS The middle cerebral artery of C57BL/6J mice was occluded for 5 min, followed by 24h of reperfusion (MCAo/R). Intravital fluorescence microscopy was used to monitor thrombus development in cerebral arterioles induced by light/dye photoactivation. Thrombosis was quantified as the time of onset of platelet aggregation on the vessel wall and the time for complete blood flow cessation. MCAo/R in wild type (WT) mice yielded an acceleration of thrombus formation that was accompanied by increased IL-6 levels in plasma and in post-ischemic brain tissue. The exaggerated thrombosis response to MCAo/R was blunted in WT mice receiving an IL-6 receptor-blocking antibody and in IL-6 deficient (IL-6(-/-)) mice. Bone marrow chimeras, produced by transplanting IL-6(-/-) marrow into WT recipients, did not exhibit protection against MCAo/R-induced thrombosis. CONCLUSIONS The increased vulnerability of the cerebral vasculature to thrombus development after MCAo/R is mediated by IL-6, which is likely derived from brain cells rather than circulating blood cells. These findings suggest that anti-IL-6 therapy may reduce the likelihood of cerebral thrombus development after a transient ischemic attack.
Collapse
|