1
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, M SC, Jose DA, Torres K, Guzman J, Dunn A, T PK, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2024:10.1007/s12975-024-01295-0. [PMID: 39294532 DOI: 10.1007/s12975-024-01295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus, 12/15-LOX is an important target to prevent delayed cerebral ischemia. SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day 5 to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. In SAH mice, 12/15-LOX was upregulated in brain vascular cells, and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| | - Sung Ha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Shafeeque C M
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Dania A Jose
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - P Kumar T
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| |
Collapse
|
2
|
Yang S, Tan B, Lin J, Wang X, Fu C, Wang K, Qian J, Liu J, Xian J, Tan L, Feng H, Chen Y, Wang L. Monitoring of Perioperative Microcirculation Dysfunction by Near-Infrared Spectroscopy for Neurological Deterioration and Prognosis of Aneurysmal Subarachnoid Hemorrhage: An Observational, Longitudinal Cohort Study. Neurol Ther 2024; 13:475-495. [PMID: 38367176 PMCID: PMC10951157 DOI: 10.1007/s40120-024-00585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
INTRODUCTION No evidence has established a direct causal relationship between early microcirculation disturbance after aneurysmal subarachnoid hemorrhage (aSAH) and neurological function prognosis, which is the key pathophysiological mechanism of early brain injury (EBI) in patients with aSAH. METHODS A total of 252 patients with aSAH were enrolled in the Neurosurgical Intensive Care Unit of Southwest Hospital between January 2020 and December 2022 and divided into the no neurological deterioration, early neurological deterioration, and delayed neurological deterioration groups. Indicators of microcirculation disorders in EBI included regional cerebral oxygen saturation (rSO2) measured by near-infrared spectroscopy (NIRS), brain oxygen monitoring, and other clinical parameters for evaluating neurological function and determining the prognosis of patients with aSAH. RESULTS Our data suggest that the rSO2 is generally lower in patients who develop neurological deterioration than in those who do not and that there is at least one time point in the population of patients who develop neurological deterioration where left and right cerebral hemisphere differences can be significantly monitored by NIRS. An unordered multiple-classification logistic regression model was constructed, and the results revealed that multiple factors were effective predictors of early neurological deterioration: reoperation, history of brain surgery, World Federation of Neurosurgical Societies (WFNS) grade 4-5, Fisher grade 3-4, SAFIRE grade 3-5, abnormal serum sodium and potassium levels, and reduced rSO2 during the perioperative period. However, for delayed neurological deterioration in patients with aSAH, only a history of brain surgery and perioperative RBC count were predictive indicators. CONCLUSIONS The rSO2 concentration in patients with neurological deterioration is generally lower than that in patients without neurological deterioration, and at least one time point in the population with neurological deterioration can be significantly monitored via NIRS. However, further studies are needed to determine the role of microcirculation and other predictive factors in the neurocritical management of EBI after aSAH, as these factors can reduce the incidence of adverse outcomes and mortality during hospitalization.
Collapse
Affiliation(s)
- Shunyan Yang
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou Province, China
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Binbin Tan
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Lin
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, The 943 Hospital of Joint Logistics Support Force of PLA, Wuwei, 733099, Gansu Province, China
| | - Xia Wang
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Congying Fu
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou Province, China
| | - Kaishan Wang
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jinyu Qian
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Liu
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jishu Xian
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liang Tan
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Lihua Wang
- Hospital Administration Office, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
3
|
Chen Y, Galea I, Macdonald RL, Wong GKC, Zhang JH. Rethinking the initial changes in subarachnoid haemorrhage: Focusing on real-time metabolism during early brain injury. EBioMedicine 2022; 83:104223. [PMID: 35973388 PMCID: PMC9396538 DOI: 10.1016/j.ebiom.2022.104223] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Over the last two decades, neurological researchers have uncovered many pathophysiological mechanisms associated with subarachnoid haemorrhage (SAH), with early brain injury and delayed cerebral ischaemia both contributing to morbidity and mortality. The current dilemma in SAH management inspired us to rethink the nature of the insult in SAH: sudden bleeding into the subarachnoid space and hypoxia due to disturbed cerebral circulation and increased intracranial pressure, generating exogenous stimuli and subsequent pathophysiological processes. Exogenous stimuli are defined as factors which the brain tissue is not normally exposed to when in the healthy state. Intersections of these initial pathogenic factors lead to secondary brain injury with related metabolic changes after SAH. Herein, we summarized the current understanding of efforts to monitor and analyse SAH-related metabolic changes to identify those precise pathophysiological processes and potential therapeutic strategies; in particular, we highlight the restoration of normal cerebrospinal fluid circulation and the normalization of brain-blood interface physiology to alleviate early brain injury and delayed neurological deterioration after SAH.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ian Galea
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - R Loch Macdonald
- Community Neurosciences Institutes, Community Regional Medical Center, Fresno, CA 93701, USA
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - John H Zhang
- Neuroscience Research Center, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
4
|
Delayed cerebral ischemia: A look at the role of endothelial dysfunction, emerging endovascular management, and glymphatic clearance. Clin Neurol Neurosurg 2022; 218:107273. [PMID: 35537284 DOI: 10.1016/j.clineuro.2022.107273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
|
5
|
Schmidt TP, Albanna W, Weiss M, Veldeman M, Conzen C, Nikoubashman O, Blume C, Kluger DS, Clusmann H, Loosen SH, Schubert GA. The Role of Soluble Urokinase Plasminogen Activator Receptor (suPAR) in the Context of Aneurysmal Subarachnoid Hemorrhage (aSAH)—A Prospective Observational Study. Front Neurol 2022; 13:841024. [PMID: 35359651 PMCID: PMC8960720 DOI: 10.3389/fneur.2022.841024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023] Open
Abstract
Objective Outcome after aneurysmal subarachnoid hemorrhage (aSAH) is highly variable and largely determined by early brain injury and delayed cerebral ischemia (DCI). Soluble urokinase plasminogen activator receptor (suPAR) represents a promising inflammatory marker which has previously been associated with outcome in traumatic brain injury and stroke patients. However, its relevance in the context of inflammatory changes after aSAH is unclear. Here, we aimed to characterize the role of circulating suPAR in both serum and cerebrospinal fluid (CSF) as a novel biomarker for aSAH patients. Methods A total of 36 aSAH patients, 10 control patients with unruptured abdominal aneurysm and 32 healthy volunteers were included for analysis. suPAR was analyzed on the day of admission in all patients. In aSAH patients, suPAR was also determined on the day of DCI and the respective time frame in asymptomatic patients. One- and two-sample t-tests were used for simple difference comparisons within and between groups. Regression analysis was used to assess the influence of suPAR levels on outcome in terms of modified Rankin score. Results Significantly elevated suPAR serum levels (suPAR-SL) on admission were found for aSAH patients compared to healthy controls, but not compared to vascular control patients. Disease severity as documented according to Hunt and Hess grade and modified Fisher grade was associated with higher suPAR CSF levels (suPAR-CSFL). In aSAH patients, suPAR-SL increased daily by 4%, while suPAR-CSFL showed a significantly faster daily increase by an average of 22.5% per day. Each increase of the suPAR-SL by 1 ng/ml more than tripled the odds of developing DCI (OR = 3.06). While admission suPAR-CSFL was not predictive of DCI, we observed a significant correlation with modified Rankin's degree of disability at discharge. Conclusion Elevated suPAR serum level on admission as a biomarker for early inflammation after aSAH is associated with an increased risk of DCI. Elevated suPAR-CSFL levels correlate with a higher degree of disability at discharge. These distinct relations and the observation of a continuous increase over time affirm the role of inflammation in aSAH and require further study.
Collapse
Affiliation(s)
- Tobias P. Schmidt
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
- *Correspondence: Tobias P. Schmidt
| | - Walid Albanna
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Miriam Weiss
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Catharina Conzen
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Omid Nikoubashman
- Clinic for Diagnostic and Interventional Neuroradiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Blume
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Daniel S. Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Hans Clusmann
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerrit A. Schubert
- Department of Neurosurgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
- Gerrit A. Schubert
| |
Collapse
|
6
|
Fung C, Z'Graggen WJ, Jakob SM, Gralla J, Haenggi M, Rothen HU, Mordasini P, Lensch M, Söll N, Terpolilli N, Feiler S, Oertel MF, Raabe A, Plesnila N, Takala J, Beck J. Inhaled Nitric Oxide Treatment for Aneurysmal SAH Patients With Delayed Cerebral Ischemia. Front Neurol 2022; 13:817072. [PMID: 35250821 PMCID: PMC8894247 DOI: 10.3389/fneur.2022.817072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background We demonstrated experimentally that inhaled nitric oxide (iNO) dilates hypoperfused arterioles, increases tissue perfusion, and improves neurological outcome following subarachnoid hemorrhage (SAH) in mice. We performed a prospective pilot study to evaluate iNO in patients with delayed cerebral ischemia after SAH. Methods SAH patients with delayed cerebral ischemia and hypoperfusion despite conservative treatment were included. iNO was administered at a maximum dose of 40 ppm. The response to iNO was considered positive if: cerebral artery diameter increased by 10% in digital subtraction angiography (DSA), or tissue oxygen partial pressure (PtiO2) increased by > 5 mmHg, or transcranial doppler (TCD) values decreased more than 30 cm/sec, or mean transit time (MTT) decreased below 6.5 secs in CT perfusion (CTP). Patient outcome was assessed at 6 months with the modified Rankin Scale (mRS). Results Seven patients were enrolled between February 2013 and September 2016. Median duration of iNO administration was 23 h. The primary endpoint was reached in all patients (five out of 17 DSA examinations, 19 out of 29 PtiO2 time points, nine out of 26 TCD examinations, three out of five CTP examinations). No adverse events necessitating the cessation of iNO were observed. At 6 months, three patients presented with a mRS score of 0, one patient each with an mRS score of 2 and 3, and two patients had died. Conclusion Administration of iNO in SAH patients is safe. These results call for a larger prospective evaluation.
Collapse
Affiliation(s)
- Christian Fung
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Werner J Z'Graggen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Gralla
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Ulrich Rothen
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pasquale Mordasini
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Lensch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Söll
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Terpolilli
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
- Department of Neurosurgery, Munich University Hospital, Munich, Germany
| | - Sergej Feiler
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Dienel A, Hong SH, Guzman J, Kumar TP, Blackburn SL, McBride DW. Confirming Subarachnoid Hemorrhage Induction in the Endovascular Puncture Mouse Model. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Schwarzmaiera SM, Knarr MR, Hu S, Ertürk A, Hellal F, Plesnila N. Perfusion pressure determines vascular integrity and histomorphological quality following perfusion fixation of the brain. J Neurosci Methods 2022; 372:109493. [DOI: 10.1016/j.jneumeth.2022.109493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
9
|
Sienel RI, Kataoka H, Kim SW, Seker FB, Plesnila N. Adhesion of Leukocytes to Cerebral Venules Precedes Neuronal Cell Death and Is Sufficient to Trigger Tissue Damage After Cerebral Ischemia. Front Neurol 2022; 12:807658. [PMID: 35140676 PMCID: PMC8818753 DOI: 10.3389/fneur.2021.807658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Leukocytes contribute to tissue damage after cerebral ischemia; however, the mechanisms underlying this process are still unclear. This study investigates the temporal and spatial relationship between vascular leukocyte recruitment and tissue damage and aims to uncover which step of the leukocyte recruitment cascade is involved in ischemic brain injury. Methods Male wild-type, ICAM-1-deficient, anti-CD18 antibody treated, or selectin-deficient [fucusyltransferase (FucT IV/VII−/−)] mice were subjected to 60 min of middle cerebral artery occlusion (MCAo). The interaction between leukocytes and the cerebrovascular endothelium was quantified by in vivo fluorescence microscopy up to 15 h thereafter. Temporal dynamics of neuronal cell death and leukocyte migration were assessed at the same time points and in the same tissue volume by histology. Results In wild-type mice, leukocytes started to firmly adhere to the wall of pial postcapillary venules two hours after reperfusion. Three hours later, neuronal loss started and 13 h later, leukocytes transmigrated into brain tissue. Loss of selectin function did not influence this process. Application of an anti-CD18 antibody or genetic deletion of ICAM-1, however, significantly reduced tight adhesion of leukocytes to the cerebrovascular endothelium (-60%; p < 0.01) and increased the number of viable neurons in the ischemic penumbra by 5-fold (p < 0.01); the number of intraparenchymal leukocytes was not affected. Conclusions Our findings suggest that ischemia triggers only a transient adhesion of leukocytes to the venous endothelium and that inhibition of this process is sufficient to partly prevent ischemic tissue damage.
Collapse
Affiliation(s)
- Rebecca Isabella Sienel
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Hiroharu Kataoka
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seong-Woong Kim
- Department of Neurosurgery, University of Giessen, Giessen, Germany
| | - Fatma Burcu Seker
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
- *Correspondence: Nikolaus Plesnila
| |
Collapse
|
10
|
Naraoka M, Matsuda N, Shimamura N, Ohkuma H. Role of microcirculatory impairment in delayed cerebral ischemia and outcome after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2022; 42:186-196. [PMID: 34496662 PMCID: PMC8721782 DOI: 10.1177/0271678x211045446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Early brain injury (EBI) is considered an important cause of morbidity and mortality after aneurysmal subarachnoid hemorrhage (aSAH). As a factor in EBI, microcirculatory dysfunction has become a focus of interest, but whether microcirculatory dysfunction is more important than angiographic vasospasm (aVS) remains unclear. Using data from 128 cases, we measured the time to peak (TTP) in several regions of interest on digital subtraction angiography. The intracerebral circulation time (iCCT) was obtained between the TTP in the ultra-early phase (the baseline iCCT) and in the subacute phase and/or at delayed cerebral ischemia (DCI) onset (the follow-up iCCT). In addition, the difference in the iCCT was calculated by subtracting the baseline iCCT from the follow-up iCCT. Univariate analysis showed that DCI was significantly increased in those patients with a prolonged baseline iCCT, prolonged follow-up iCCT, increased differences in the iCCT, and with severe aVS. Poor outcome was significantly increased in patients with prolonged follow-up iCCT and increased differences in the iCCT. Multivariate analysis revealed that increased differences in the iCCT were a significant risk factor that increased DCI and poor outcome. The results suggest that the increasing microcirculatory dysfunction over time, not aVS, causes DCI and poor outcome after aneurysmal aSAH.
Collapse
Affiliation(s)
- Masato Naraoka
- Department of Neurosurgery, Hirosaki University School of Medicine & Hospital, Hirosaki, Japan
| | - Naoya Matsuda
- Department of Neurosurgery, Hirosaki University School of Medicine & Hospital, Hirosaki, Japan
| | - Norihito Shimamura
- Department of Neurosurgery, Hirosaki University School of Medicine & Hospital, Hirosaki, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University School of Medicine & Hospital, Hirosaki, Japan
| |
Collapse
|
11
|
Liu H, Schwarting J, Terpolilli NA, Nehrkorn K, Plesnila N. Scavenging Free Iron Reduces Arteriolar Microvasospasms After Experimental Subarachnoid Hemorrhage. Stroke 2021; 52:4033-4042. [PMID: 34749506 DOI: 10.1161/strokeaha.120.033472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is associated with acute and delayed cerebral ischemia resulting in high acute mortality and severe chronic neurological deficits. Spasms of the pial and intraparenchymal microcirculation (microvasospasms) contribute to acute cerebral ischemia after SAH; however, the underlying mechanisms remain unknown. We hypothesize that free iron (Fe3+) released from hemolytic red blood cells into the subarachnoid space may be involved in microvasospasms formation. METHODS Male C57BL/6 mice (n=8/group) received 200 mg/kg of the iron scavenger deferoxamine or vehicle intravenously and were then subjected to SAH by filament perforation. Microvasospasms of pial and intraparenchymal vessels were imaged three hours after SAH by in vivo 2-photon microscopy. RESULTS Microvasospasms occurred in all investigated vessel categories down to the capillary level. Deferoxamine significantly reduced the number of microvasospasms after experimental SAH. The effect was almost exclusively observed in larger pial arterioles (>30 µm) covered with blood. CONCLUSIONS These results provide proof-of-principle evidence that Fe3+ is involved in the formation of arteriolar microvasospasms after SAH and that arteriolar and capillary microvasospasms are triggered by different mechanisms. Deciphering the mechanisms of Fe3+-induced microvasospasms may result in novel therapeutic strategies for SAH patients.
Collapse
Affiliation(s)
- Hanhan Liu
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
| | - Julian Schwarting
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
- Department of Neurosurgery (J.S., N.A.T.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
| | - Nicole Angela Terpolilli
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
- Munich Cluster of Systems Neurology (Synergy), Germany (N.A.T., K.N., N.P.)
| | - Kathrin Nehrkorn
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
- Munich Cluster of Systems Neurology (Synergy), Germany (N.A.T., K.N., N.P.)
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
- Munich Cluster of Systems Neurology (Synergy), Germany (N.A.T., K.N., N.P.)
| |
Collapse
|
12
|
Ikram A, Javaid MA, Ortega-Gutierrez S, Selim M, Kelangi S, Anwar SMH, Torbey MT, Divani AA. Delayed Cerebral Ischemia after Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:106064. [PMID: 34464924 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is the most feared complication of aneurysmal subarachnoid hemorrhage (aSAH). It increases the mortality and morbidity associated with aSAH. Previously, large cerebral artery vasospasm was thought to be the sole major contributing factor associated with increased risk of DCI. Recent literature has challenged this concept. We conducted a literature search using PUBMED as the prime source of articles discussing various other factors which may contribute to the development of DCI both in the presence or absence of large cerebral artery vasospasm. These factors include microvascular spasm, micro-thrombosis, cerebrovascular dysregulation, and cortical spreading depolarization. These factors collectively result in inflammation of brain parenchyma, which is thought to precipitate early brain injury and DCI. We conclude that diagnostic modalities need to be refined in order to diagnose DCI more efficiently in its early phase, and newer interventions need to be developed to prevent and treat this condition. These newer interventions are currently being studied in experimental models. However, their effectiveness on patients with aSAH is yet to be determined.
Collapse
Affiliation(s)
- Asad Ikram
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Muhammad Ali Javaid
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Kelangi
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Michel T Torbey
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA.
| |
Collapse
|
13
|
Schwarting J, Nehrkorn K, Liu H, Plesnila N, Terpolilli NA. Role of Pial Microvasospasms and Leukocyte Plugging for Parenchymal Perfusion after Subarachnoid Hemorrhage Assessed by In Vivo Multi-Photon Microscopy. Int J Mol Sci 2021; 22:8444. [PMID: 34445151 PMCID: PMC8395146 DOI: 10.3390/ijms22168444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/05/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is associated with acute and delayed cerebral ischemia. We suggested spasms of pial arterioles as a possible mechanism; however, it remained unclear whether and how pial microvasospasms (MVSs) induce cerebral ischemia. Therefore, we used in vivo deep tissue imaging by two-photon microscopy to investigate MVSs together with the intraparenchymal microcirculation in a clinically relevant murine SAH model. Male C57BL/6 mice received a cranial window. Cerebral vessels and leukocytes were labelled with fluorescent dyes and imaged by in vivo two-photon microscopy before and three hours after SAH induced by filament perforation. After SAH, a large clot formed around the perforation site at the skull base, and blood distributed along the perivascular space of the middle cerebral artery up to the cerebral cortex. Comparing the cerebral microvasculature before and after SAH, we identified three different patterns of constrictions: pearl string, global, and bottleneck. At the same time, the volume of perfused intraparenchymal vessels and blood flow velocity in individual arterioles were significantly reduced by more than 60%. Plugging of capillaries by leukocytes was observed but infrequent. The current study demonstrates that perivascular blood is associated with spasms of pial arterioles and that these spasms result in a significant reduction in cortical perfusion after SAH. Thus, the pial microvasospasm seems to be an important mechanism by which blood in the subarachnoid space triggers cerebral ischemia after SAH. Identifying the mechanisms of pial vasospasm may therefore result in novel therapeutic options for SAH patients.
Collapse
Affiliation(s)
- Julian Schwarting
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
- Department of Neurosurgery, Munich University Hospital, 81377 Munich, Germany
| | - Kathrin Nehrkorn
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
| | - Hanhan Liu
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
| | - Nicole Angela Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
- Department of Neurosurgery, Munich University Hospital, 81377 Munich, Germany
| |
Collapse
|
14
|
Veldeman M, Lepore D, Höllig A, Clusmann H, Stoppe C, Schubert GA, Albanna W. Procalcitonin in the context of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg 2021; 135:29-37. [PMID: 32886914 DOI: 10.3171/2020.5.jns201337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) initiates a deleterious cascade activating multiple inflammatory processes, which can contribute to delayed cerebral ischemia (DCI). Procalcitonin (PCT) is an established marker for sepsis treatment monitoring, and its time course in the context of DCI after aSAH remains unclear. The aim of this trial was to assess the predictive and confirmative value of PCT levels in the context of DCI. METHODS All patients admitted to the authors' institution with aSAH between 2014 and 2018 were prospectively screened for eligibility. Daily PCT levels were recorded alongside relevant aSAH characteristics. The predictive and confirmative values of PCT levels were assessed using a receiver operating characteristic and area under the curve (AUC) analysis. The course of PCT levels around the DCI event was evaluated in an infection-free subgroup of patients. RESULTS A total of 132 patients with aSAH were included. Early PCT levels (first 3 days post-aSAH) had a low predictive value for the development of DCI (AUC 0.661, standard error [SE] 0.050; p = 0.003) and unfavorable long-term outcome (i.e., Glasgow Outcome Scale-Extended scores 1-4; AUC 0.674, SE 0.054; p = 0.003). In a subgroup analysis of infection-free patients (n = 72), PCT levels were higher in patients developing DCI (p = 0.001) and DCI-related cerebral infarction (p = 0.002). PCT concentrations increased gradually after DCI and decreased with successful intervention. In refractory cases progressing to cerebral infarction, PCT levels showed a secondary increase. CONCLUSIONS Early higher PCT levels were associated with the later development of DCI and unfavorable outcome. Analysis of PCT beyond the first couple of days after hemorrhage is hampered by nosocomial infections. In infection-free patients, however, PCT levels rise during DCI and an additional increase develops in patients developing cerebral infarction. Clinical trial registration no.: NCT02142166 (clinicaltrials.gov).
Collapse
Affiliation(s)
| | - Daniel Lepore
- 2Intensive Care and Intermediate Care, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
- 3Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège, Belgium
| | | | | | - Christian Stoppe
- 2Intensive Care and Intermediate Care, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | | | | |
Collapse
|
15
|
Lenz IJ, Plesnila N, Terpolilli NA. Role of endothelial nitric oxide synthase for early brain injury after subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab 2021; 41:1669-1681. [PMID: 33256507 PMCID: PMC8221759 DOI: 10.1177/0271678x20973787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first few hours and days after subarachnoid hemorrhage (SAH) are characterized by cerebral ischemia, spasms of pial arterioles, and a significant reduction of cerebral microperfusion, however, the mechanisms of this early microcirculatory dysfunction are still unknown. Endothelial nitric oxide production is reduced after SAH and exogenous application of NO reduces post-hemorrhagic microvasospasm. Therefore, we hypothesize that the endothelial NO-synthase (eNOS) may be involved in the formation of microvasospasms, microcirculatory dysfunction, and unfavorable outcome after SAH. SAH was induced in male eNOS deficient (eNOS-/-) mice by endovascular MCA perforation. Three hours later, the cerebral microcirculation was visualized using in vivo 2-photon-microscopy. eNOS-/- mice had more severe SAHs, more severe ischemia, three time more rebleedings, and a massively increased mortality (50 vs. 0%) as compared to wild type (WT) littermate controls. Three hours after SAH eNOS-/- mice had fewer perfused microvessels and 40% more microvasospasms than WT mice. The current study indicates that a proper function of eNOS plays a key role for a favorable outcome after SAH and helps to explain why patients suffering from hypertension or other conditions associated with impaired eNOS function, have a higher risk of unfavorable outcome after SAH.
Collapse
Affiliation(s)
- Irina J Lenz
- Institute for Stroke- and Dementia Research (ISD), Munich University Hospital and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke- and Dementia Research (ISD), Munich University Hospital and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke- and Dementia Research (ISD), Munich University Hospital and Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
16
|
Albanna W, Weiss M, Veldeman M, Conzen C, Schmidt T, Blume C, Zayat R, Clusmann H, Stoppe C, Schubert GA. Urea-Creatinine Ratio (UCR) After Aneurysmal Subarachnoid Hemorrhage: Association of Protein Catabolism with Complication Rate and Outcome. World Neurosurg 2021; 151:e961-e971. [PMID: 34020058 DOI: 10.1016/j.wneu.2021.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The urea-creatinine ratio (UCR) has been proposed as potential biomarker for critical illness-associated catabolism. Its role in the context of aneurysmal subarachnoid hemorrhage (aSAH) remains to be elucidated, which was the aim of the present study. METHODS We enrolled 66 patients with aSAH with normal renal function and 36 patients undergoing elective cardiac surgery as a control group for the effects of surgery. In patients with aSAH, the predictive or diagnostic value of early (day 0-2) and critical (day 5-7) UCRs was assessed with regard to delayed cerebral ischemia (DCI), DCI-related infarction, and clinical outcome after 12 months. RESULTS Preoperatively, UCR was similar both groups. Within 2 days postoperatively, UCRs increased significantly in patients in the elective cardiac surgery group (P < 0.001) but decreased back to baseline on day 5-7 (P = 0.245), whereas UCRs in patients with aSAH increased to significantly greater levels on day 5-7 (P = 0.028). Greater early or critical UCRs were associated with poor clinical outcomes (P = 0.015) or DCI (P = 0.011), DCI-related infarction (P = 0.006), and poor clinical outcomes (P < 0.001) respectively. In multivariate analysis, there was an independent association between greater early UCRs and poor clinical outcomes (P = 0.026). CONCLUSIONS In this exploratory study of UCR in the context of aSAH, greater early values were predictive for a poor clinical outcome after 12 months, whereas greater critical values were associated with DCI, DCI-related infarctions, and poor clinical outcomes. The clinical implications as well as the pathophysiologic relevance of protein catabolism should be explored further in the context of aSAH.
Collapse
Affiliation(s)
- Walid Albanna
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany.
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Catharina Conzen
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Tobias Schmidt
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Christian Blume
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Rachad Zayat
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Department of Intensive Care Medicine and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
17
|
Veldeman M, Albanna W, Weiss M, Conzen C, Schmidt TP, Schulze-Steinen H, Wiesmann M, Clusmann H, Schubert GA. Invasive neuromonitoring with an extended definition of delayed cerebral ischemia is associated with improved outcome after poor-grade subarachnoid hemorrhage. J Neurosurg 2021; 134:1527-1534. [PMID: 32413866 DOI: 10.3171/2020.3.jns20375] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The current definition of delayed cerebral ischemia (DCI) is based on clinical characteristics precluding its use in patients with poor-grade subarachnoid hemorrhage (SAH). Additional concepts to evaluate the unconscious patient are required. Invasive neuromonitoring (INM) may allow timely detection of metabolic and oxygenation crises before irreversible damage has occurred. METHODS The authors present a cohort analysis of all consecutive SAH patients referred to a single tertiary care center between 2010 and 2018. The cohort (n = 190) was split into two groups: one before (n = 96) and one after (n = 94) the introduction of INM in 2014. A total of 55 poor-grade SAH patients were prospectively monitored using parenchymal oxygen saturation measurement and cerebral microdialysis. The primary outcome was the Glasgow Outcome Scale-Extended (GOSE) score after 12 months. RESULTS With neuromonitoring, the first DCI event was detected earlier (mean 2.2 days, p = 0.002). The overall rate of DCI-related infarctions decreased significantly (from 44.8% to 22.3%; p = 0.001) after the introduction of invasive monitoring. After 12 months, a higher rate of favorable outcome was observed in the post-INM group, compared to the pre-INM group (53.8% vs 39.8%), with a significant difference in the GOSE score distribution (OR 4.86, 95% CI -1.17 to -0.07, p = 0.028). CONCLUSIONS In this cohort analysis of poor-grade SAH patients, the introduction of INM and the extension of the classic DCI definition toward a functional dimension resulted in an earlier detection and treatment of DCI events. This led to an overall decrease in DCI-related infarctions and an improvement in outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Martin Wiesmann
- 3Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
18
|
Maruhashi T, Higashi Y. An overview of pharmacotherapy for cerebral vasospasm and delayed cerebral ischemia after subarachnoid hemorrhage. Expert Opin Pharmacother 2021; 22:1601-1614. [PMID: 33823726 DOI: 10.1080/14656566.2021.1912013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Survival from aneurysmal subarachnoid hemorrhage has increased in the past few decades. However, functional outcome after subarachnoid hemorrhage is still suboptimal. Delayed cerebral ischemia (DCI) is one of the major causes of morbidity.Areas covered: Mechanisms underlying vasospasm and DCI after aneurysmal subarachnoid hemorrhage and pharmacological treatment are summarized in this review.Expert opinion: Oral nimodine, an L-type dihydropyridine calcium channel blocker, is the only FDA-approved drug for the prevention and treatment of neurological deficits after aneurysmal subarachnoid hemorrhage. Fasudil, a potent Rho-kinase inhibitor, has also been shown to improve the clinical outcome and has been approved in some countries for use in patients with aneurysmal subarachnoid hemorrhage. Although other drugs, including nicardipine, cilostazol, statins, clazosentan, magnesium and heparin, have been expected to have beneficial effects on DCI, there has been no convincing evidence supporting the routine use of those drugs in patients with aneurysmal subarachnoid hemorrhage in clinical practice. Further elucidation of the mechanisms underlying DCI and the development of effective therapeutic strategies for DCI, including combination therapy, are necessary to further improve the functional outcome and mortality after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
19
|
Neulen A, Molitor M, Kosterhon M, Pantel T, Holzbach E, Rudi WS, Karbach SH, Wenzel P, Ringel F, Thal SC. Correlation of cardiac function and cerebral perfusion in a murine model of subarachnoid hemorrhage. Sci Rep 2021; 11:3317. [PMID: 33558609 PMCID: PMC7870815 DOI: 10.1038/s41598-021-82583-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Cerebral hypoperfusion is a key factor for determining the outcome after subarachnoid hemorrhage (SAH). A subset of SAH patients develop neurogenic stress cardiomyopathy (NSC), but it is unclear to what extent cerebral hypoperfusion is influenced by cardiac dysfunction after SAH. The aims of this study were to examine the association between cardiac function and cerebral perfusion in a murine model of SAH and to identify electrocardiographic and echocardiographic signs indicative of NSC. We quantified cortical perfusion by laser SPECKLE contrast imaging, and myocardial function by serial high-frequency ultrasound imaging, for up to 7 days after experimental SAH induction in mice by endovascular filament perforation. Cortical perfusion decreased significantly whereas cardiac output and left ventricular ejection fraction increased significantly shortly post-SAH. Transient pathological ECG and echocardiographic abnormalities, indicating NSC (right bundle branch block, reduced left ventricular contractility), were observed up to 3 h post-SAH in a subset of model animals. Cerebral perfusion improved over time after SAH and correlated significantly with left ventricular end-diastolic volume at 3, 24, and 72 h. The murine SAH model is appropriate to experimentally investigate NSC. We conclude that in addition to cerebrovascular dysfunction, cardiac dysfunction may significantly influence cerebral perfusion, with LVEDV presenting a potential parameter for risk stratification.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Michael Molitor
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Elisa Holzbach
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Wolf-Stephan Rudi
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Susanne H Karbach
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Philip Wenzel
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany. .,Center for Molecular Surgical Research (MFO), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
20
|
Juif PE, Dingemanse J, Ufer M. Clinical Pharmacology of Clazosentan, a Selective Endothelin A Receptor Antagonist for the Prevention and Treatment of aSAH-Related Cerebral Vasospasm. Front Pharmacol 2021; 11:628956. [PMID: 33613288 PMCID: PMC7890197 DOI: 10.3389/fphar.2020.628956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) may lead to cerebral vasospasm and is associated with significant morbidity and mortality. It represents a major unmet medical need due to few treatment options with limited efficacy. The role of endothelin-1 (ET-1) and its receptor ETA in the pathogenesis of aSAH-induced vasospasm suggests antagonism of this receptor as promising asset for pharmacological treatment. Clazosentan is a potent ETA receptor antagonist for intravenous use currently under development for the prevention of aSAH-induced cerebral vasospasm. The pharmacokinetics of clazosentan are characterized by an intermediate clearance, a volume of distribution similar to that of the extracellular fluid volume, dose-proportional exposure, an elimination independent of drug-metabolizing enzymes, and a disposition mainly dependent on the hepatic uptake transporter organic anion transport polypeptide 1B1/1B3. In healthy subjects, clazosentan leads to an increase in ET-1 concentration and prevents the cardiac and renal effects mediated by infusion of ET-1. In patients, it significantly reduced the incidence of moderate or severe vasospasm as well as post-aSAH vasospasm-related morbidity and mortality. Clazosentan is well tolerated up to the expected therapeutic dose of 15 mg/h and, in aSAH patients, lung complications, hypotension, and anemia were adverse events more commonly reported following clazosentan than placebo. In summary, clazosentan has a pharmacokinetic, pharmacodynamic, and safety profile suitable to become a valuable asset in the armamentarium of therapeutic modalities to prevent aSAH-induced cerebral vasospasm.
Collapse
Affiliation(s)
- Pierre-Eric Juif
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Mike Ufer
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|
21
|
Veldeman M, Albanna W, Weiss M, Conzen C, Schmidt TP, Clusmann H, Schulze-Steinen H, Nikoubashman O, Temel Y, Schubert GA. Treatment of Delayed Cerebral Ischemia in Good-Grade Subarachnoid Hemorrhage: Any Role for Invasive Neuromonitoring? Neurocrit Care 2020; 35:172-183. [PMID: 33305337 PMCID: PMC8285339 DOI: 10.1007/s12028-020-01169-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Background Good-grade aneurysmal subarachnoid hemorrhage (Hunt and Hess 1–2) is generally associated with a favorable prognosis. Nonetheless, patients may still experience secondary deterioration due to delayed cerebral ischemia (DCI), contributing to poor outcome. In those patients, neurological assessment is challenging and invasive neuromonitoring (INM) may help guide DCI treatment. Methods An observational analysis of 135 good-grade SAH patients referred to a single tertiary care center between 2010 and 2018 was performed. In total, 54 good-grade SAH patients with secondary deterioration evading further neurological assessment, were prospectively enrolled for this analysis. The cohort was separated into two groups: before and after introduction of INM in 2014 (pre-INMSecD: n = 28; post-INMSecD: n = 26). INM included either parenchymal oxygen saturation measurement (ptiO2), cerebral microdialysis or both. Episodes of DCI (ptiO2 < 10 mmHg or lactate/pyruvate > 40) were treated via induced hypertension or in refractory cases by endovascular means. The primary outcome was defined as the extended Glasgow outcome scale after 12 months. In addition, we recorded the amount of imaging studies performed and the occurrence of silent and overall DCI-related infarction.
Results Secondary deterioration, impeding neurological assessment, occurred in 54 (40.0%) of all good-grade SAH patients. In those patients, a comparable rate of favorable outcome at 12 months was observed before and after the introduction of INM (pre-INMSecD 14 (50.0%) vs. post-INMSecD 16, (61.6%); p = 0.253). A significant increase in good recovery (pre-INMSecD 6 (50.0%) vs. post-INMSecD 14, (61.6%); p = 0.014) was observed alongside a reduction in the incidence of silent infarctions (pre-INMSecD 8 (28.6%) vs. post-INMSecD 2 (7.7%); p = 0.048) and of overall DCI-related infarction (pre-INMSecD 12 (42.8%) vs. post-INMSecD 4 (23.1%); p = 0.027). The number of CT investigations performed during the DCI time frame decreased from 9.8 ± 5.2 scans in the pre-INMSecD group to 6.1 ± 4.0 (p = 0.003) in the post-INMSecD group. Conclusions A considerable number of patients with good-grade SAH experiences secondary deterioration rendering them neurologically not assessable. In our cohort, the introduction of INM to guide DCI treatment in patients with secondary deterioration increased the rate of good recovery after 12 months. Additionally, a significant reduction of CT scans and infarction load was recorded, which may have an underestimated impact on quality of life and more subtle neuropsychological deficits common after SAH. Electronic supplementary material The online version of this article (10.1007/s12028-020-01169-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Catharina Conzen
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tobias Philip Schmidt
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | | | - Omid Nikoubashman
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
22
|
Suzuki H, Kanamaru H, Kawakita F, Asada R, Fujimoto M, Shiba M. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol Histopathol 2020; 36:143-158. [PMID: 32996580 DOI: 10.14670/hh-18-253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a serious cerebrovascular disease. Even if SAH patients survive the initial insults, delayed cerebral ischemia (DCI) may occur at 4 days or later post-SAH. DCI is characteristics of SAH, and is considered to develop by blood breakdown products and inflammatory reactions, or secondary to early brain injury, acute pathophysiological events that occur in the brain within the first 72 hours of aneurysmal SAH. The pathology underlying DCI may involve large artery vasospasm and/or microcirculatory disturbances by microvasospasm, microthrombosis, dysfunction of venous outflow and compression of microvasculature by vasogenic or cytotoxic tissue edema. Recent clinical evidence has shown that large artery vasospasm is not the only cause of DCI, and that both large artery vasospasm-dependent and -independent cerebral infarction causes poor outcome. Animal studies suggest that mechanisms of vasospasm may differ between large artery and arterioles or capillaries, and that many kinds of cells in the vascular wall and brain parenchyma may be involved in the pathogenesis of microcirculatory disturbances. The impairment of the paravascular and glymphatic systems also may play important roles in the development of DCI. As pathological mediators for DCI, glutamate and several matricellular proteins have been investigated in addition to inflammatory molecules. Glutamate is involved in excitotoxicity contributing to cortical spreading ischemia and epileptic activity-related events. Microvascular dysfunction is an attractive mechanism to explain the cause of poor outcomes independently of large cerebral artery vasospasm, but needs more studies to clarify the pathophysiologies or mechanisms and to develop a novel therapeutic strategy.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
23
|
Khalin I, Heimburger D, Melnychuk N, Collot M, Groschup B, Hellal F, Reisch A, Plesnila N, Klymchenko AS. Ultrabright Fluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for Live Tracking in the Mouse Brain. ACS NANO 2020; 14:9755-9770. [PMID: 32680421 DOI: 10.1021/acsnano.0c01505] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Visualizing single organic nanoparticles (NPs) in vivo remains a challenge, which could greatly improve our understanding of the bottlenecks in the field of nanomedicine. To achieve high single-particle fluorescence brightness, we loaded polymer poly(methyl methacrylate)-sulfonate (PMMA-SO3H) NPs with octadecyl rhodamine B together with a bulky hydrophobic counterion (perfluorinated tetraphenylborate) as a fluorophore insulator to prevent aggregation-caused quenching. To create NPs with stealth properties, we used the amphiphilic block copolymers pluronic F-127 and F-68. Fluorescence correlation spectroscopy and Förster resonance energy transfer (FRET) revealed that pluronics remained at the NP surface after dialysis (at one amphiphile per 5.5 nm2) and prevented NPs from nonspecific interactions with serum proteins and surfactants. In primary cultured neurons, pluronics stabilized the NPs, preventing their prompt aggregation and binding to neurons. By increasing dye loading to 20 wt % and optimizing particle size, we obtained 74 nm NPs showing 150-fold higher single-particle brightness with two-photon excitation than commercial Nile Red-loaded FluoSpheres of 39 nm hydrodynamic diameter. The obtained ultrabright pluronic-coated NPs enabled direct single-particle tracking in vessels of mice brains by two-photon intravital microscopy for at least 1 h, whereas noncoated NPs were rapidly eliminated from the circulation. Following brain injury or neuroinflammation, which can open the blood-brain barrier, extravasation of NPs was successfully monitored. Moreover, we demonstrated tracking of individual NPs from meningeal vessels until their uptake by meningeal macrophages. Thus, single NPs can be tracked in animals in real time in vivo in different brain compartments and their dynamics visualized with subcellular resolution.
Collapse
Affiliation(s)
- Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, D-81377 Munich, Germany
| | - Doriane Heimburger
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Nina Melnychuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Bernhard Groschup
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, D-81377 Munich, Germany
| | - Farida Hellal
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, D-81377 Munich, Germany
- Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, D-81377 Munich, Germany
- Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
24
|
Muhammad S, Chaudhry SR, Kahlert UD, Lehecka M, Korja M, Niemelä M, Hänggi D. Targeting High Mobility Group Box 1 in Subarachnoid Hemorrhage: A Systematic Review. Int J Mol Sci 2020; 21:ijms21082709. [PMID: 32295146 PMCID: PMC7215307 DOI: 10.3390/ijms21082709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a complex and potentially deadly disease. Neurosurgical clipping or endovascular coiling can successfully obliterate ruptured aneurysms in almost every case. However, despite successful interventions, the clinical outcomes of aSAH patients are often poor. The reasons for poor outcomes are numerous, including cerebral vasospasm (CVS), post-hemorrhagic hydrocephalus, systemic infections and delayed cerebral ischemia. Although CVS with subsequent cerebral ischemia is one of the main contributors to brain damage after aSAH, little is known about the underlying molecular mechanisms of brain damage. This review emphasizes the importance of pharmacological interventions targeting high mobility group box 1 (HMGB1)-mediated brain damage after subarachnoid hemorrhage (SAH) and CVS. We searched Pubmed, Ovid medline and Scopus for "subarachnoid hemorrhage" in combination with "HMGB1". Based on these criteria, a total of 31 articles were retrieved. After excluding duplicates and selecting the relevant references from the retrieved articles, eight publications were selected for the review of the pharmacological interventions targeting HMGB1 in SAH. Damaged central nervous system cells release damage-associated molecular pattern molecules (DAMPs) that are important for initiating, driving and sustaining the inflammatory response following an aSAH. The discussed evidence suggested that HMGB1, an important DAMP, contributes to brain damage during early brain injury and also to the development of CVS during the late phase. Different pharmacological interventions employing natural compounds with HMGB1-antagonizing activity, antibody targeting of HMGB1 or scavenging HMGB1 by soluble receptors for advanced glycation end products (sRAGE), have been shown to dampen the inflammation mediated brain damage and protect against CVS. The experimental data suggest that HMGB1 inhibition is a promising strategy to reduce aSAH-related brain damage and CVS. Clinical studies are needed to validate these findings that may lead to the development of potential treatment options that are much needed in aSAH.
Collapse
Affiliation(s)
- Sajjad Muhammad
- Department of Neurosurgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany; (U.D.K.); (D.H.)
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; (M.L.); (M.K.); (M.N.)
- Correspondence: ; Tel.: +49-151-6846-0755
| | - Shafqat Rasul Chaudhry
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Ulf Dietrich Kahlert
- Department of Neurosurgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany; (U.D.K.); (D.H.)
| | - Martin Lehecka
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; (M.L.); (M.K.); (M.N.)
| | - Miikka Korja
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; (M.L.); (M.K.); (M.N.)
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; (M.L.); (M.K.); (M.N.)
| | - Daniel Hänggi
- Department of Neurosurgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany; (U.D.K.); (D.H.)
| |
Collapse
|
25
|
Fumoto T, Naraoka M, Katagai T, Li Y, Shimamura N, Ohkuma H. The Role of Oxidative Stress in Microvascular Disturbances after Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2019; 10:684-694. [PMID: 30628008 DOI: 10.1007/s12975-018-0685-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023]
Abstract
Oxidative stress was shown to play a crucial role in the diverse pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Microcirculatory dysfunction is thought to be an important and fundamental pathological change in EBI. However, other than blood-brain barrier (BBB) disruption, the influence of oxidative stress on microvessels remains to be elucidated. The aim of this study was to investigate the role of oxidative stress on microcirculatory integrity in EBI. SAH was induced in male Sprague-Dawley rats using an endovascular perforation technique. A free radical scavenger, edaravone, was administered prophylactically by intraperitoneal injection. SAH grade, neurological score, brain water content, and BBB permeability were measured at 24 h after SAH induction. In addition, cortical samples taken at 24 h after SAH were analyzed to explore oxidative stress, microvascular mural cell apoptosis, microspasm, and microthrombosis. Edaravone treatment significantly ameliorated neurological deficits, brain edema, and BBB disruption. In addition, oxidative stress-induced modifications and subsequent apoptosis of microvascular endothelial cells and pericytes increased after SAH induction, while the administration of edaravone suppressed this. Consistent with apoptotic cell inhibition, microthromboses were also inhibited by edaravone administration. Oxidative stress plays a pivotal role in the induction of multiple pathological changes in microvessels in EBI. Antioxidants are potential candidates for the treatment of microvascular disturbances after SAH.
Collapse
Affiliation(s)
- Toshio Fumoto
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Masato Naraoka
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Takeshi Katagai
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Yuchen Li
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Norihito Shimamura
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan.
| |
Collapse
|
26
|
Anti-vasospastic Effects of Epidermal Growth Factor Receptor Inhibitors After Subarachnoid Hemorrhage in Mice. Mol Neurobiol 2018; 56:4730-4740. [PMID: 30382533 DOI: 10.1007/s12035-018-1400-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/17/2018] [Indexed: 01/10/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating disease. Cerebral vasospasm is still an important cause of post-SAH poor outcomes, but its mechanisms remain unveiled. Activation of epidermal growth factor receptor (EGFR) is suggested to cause vasoconstriction in vitro, but no report has demonstrated the involvement of EGFR in vasospasm development after SAH in vivo. Cross-talk of EGFR and vascular endothelial growth factor (VEGF) receptor, which may affect post-SAH vasospasm, was also reported in cancer cells, but has not been demonstrated in post-SAH vasospasm. The aim of this study was to investigate whether EGFR as well as EGFR-VEGF receptor cross-talk engage in the development of cerebral vasospasm in a mouse SAH model. C57BL6 mice underwent endovascular perforation SAH or sham modeling. At 30 min post-modeling, mice were randomly administrated vehicle or 2 doses of selective EGFR inhibitors intracerebroventricularly. A higher dose of the inhibitor significantly prevented post-SAH neurological impairments at 72 h and vasospasm at 24 h associated with suppression of post-SAH activation of EGFR and extracellular signal-regulated kinase (ERK) 1/2 in the cerebral artery wall, especially in the smooth muscle cell layers. Anti-EGFR neutralizing antibody also showed similar effects. However, neither expression levels of VEGF nor activation levels of a major receptor of VEGF, VEGF receptor-2, were affected by SAH and two kinds of EGFR inactivation. Thus, this study first showed that EGFR-ERK1/2 pathways may be involved in post-SAH vasospasm development, and that EGFR-VEGF receptor cross-talk may not play a significant role in the development of vasospasm in mice.
Collapse
|