1
|
Chaleckas E, Putnynaite V, Lapinskiene I, Preiksaitis A, Serpytis M, Rocka S, Bartusis L, Petkus V, Ragauskas A. Impaired cerebral autoregulation detected in early prevasospasm period is associated with unfavorable outcome after spontaneous subarachnoid hemorrhage: an observational prospective pilot study. Ultrasound J 2024; 16:24. [PMID: 38619783 PMCID: PMC11018731 DOI: 10.1186/s13089-024-00371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) patients with cerebral autoregulation (CA) impairment at an early post-SAH period are at high risk of unfavorable outcomes due to delayed cerebral ischemia (DCI) or other complications. Limited evidence exists for an association between early-stage CA impairments and SAH patient outcomes. The objective of this prospective study was to explore associations between CA impairments detected in early post-SAH snapshot examinations and patient outcomes. METHODS The pilot observational study included 29 SAH patients whose CA status was estimated 2-3 days after spontaneous aneurysm rupture and a control group of 15 healthy volunteers for comparison. Inflatable leg recovery boots (reboots.com, Germany) were used for the safe controlled generation of arterial blood pressure (ABP) changes necessary for reliable CA examination. At least 5 inflation‒deflation cycles of leg recovery boots with a 2-3 min period were used during examinations. CA status was assessed according to the delay time (∆TCBFV) measured between ABP(t) and cerebral blood flow velocity (CBFV(t)) signals during artificially induced ABP changes at boot deflation cycle. CBFV was measured in middle cerebral artery by using transcranial Doppler device. RESULTS Statistically significant differences in ∆TCBFV were found between SAH patients with unfavorable outcomes (∆TCBFV = 1.37 ± 1.23 s) and those with favorable outcomes (∆TCBFV = 2.86 ± 0.99 s) (p < 0.001). Early assessment of baroreflex sensitivity (BRS) during the deflation cycle showed statistically significant differences between the DCI and non-DCI patient groups (p = 0.039). CONCLUSIONS A relatively small delay of ∆TCBFV <1.6 s between CBFV(t) and ABP(t) waves could be an early warning sign associated with unfavorable outcomes in SAH patients. The BRS during boot deflation can be used as a biomarker for the prediction of DCI. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06028906. Registered 31 August 2023 - Retrospectively registered, https://www. CLINICALTRIALS gov/study/NCT06028906 .
Collapse
Affiliation(s)
- Edvinas Chaleckas
- Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko str. 59, Kaunas, LT-51423, Lithuania
| | - Vilma Putnynaite
- Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko str. 59, Kaunas, LT-51423, Lithuania
| | - Indre Lapinskiene
- Clinic of Anesthesiology and Intensive Care, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Aidanas Preiksaitis
- Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Mindaugas Serpytis
- Clinic of Anesthesiology and Intensive Care, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Saulius Rocka
- Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Laimonas Bartusis
- Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko str. 59, Kaunas, LT-51423, Lithuania
| | - Vytautas Petkus
- Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko str. 59, Kaunas, LT-51423, Lithuania.
| | - Arminas Ragauskas
- Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko str. 59, Kaunas, LT-51423, Lithuania
| |
Collapse
|
2
|
Agrawal S, Nijs K, Subramaniam S, Englesakis M, Venkatraghavan L, Chowdhury T. Predictor role of heart rate variability in subarachnoid hemorrhage: A systematic review. J Clin Monit Comput 2024; 38:177-185. [PMID: 37335412 DOI: 10.1007/s10877-023-01043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Background- Subarachnoid hemorrhage (SAH) is one of the most devastating diseases with a high rate of morbidity and mortality. The heart rate variability (HRV) is a non-invasive method of monitoring various components of the autonomic nervous system activity that can be utilized to delineate autonomic dysfunctions associated with various physiological and pathological conditions. The reliability of HRV as a predictor of clinical outcome in aneurysmal subarachnoid hemorrhage (aSAH) is not yet well investigated in literature. Methods- A systematic review and in depth analysis of 10 articles on early HRV changes in SAH patients was performed. Results- This systematic review demonstrates a correlation between early changes in HRV indices (time and frequency domain) and the development of neuro-cardiogenic complications and poor neurologic outcome in patients with SAH. Conclusions- A correlation between absolute values or changes of the LF/HF ratio and neurologic and cardiovascular complications was found in multiple studies. Because of significant limitations of included studies, a large prospective study with proper handling of confounders is needed to generate high-quality recommendations regarding HRV as a predictor of post SAH complications and poor neurologic outcome.
Collapse
Affiliation(s)
- Sanket Agrawal
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Canada
| | - Kristof Nijs
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Canada
| | - Sudhakar Subramaniam
- Department of Anesthesia, Thunder Bay Regional Health Sciences Center, Thunder Bay, ON, Canada
| | - Marina Englesakis
- Library and Information Services, University Health Network, Toronto, ON, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Canada
| | - Tumul Chowdhury
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Canada.
- Department of Anaesthesiology and Pain Medicine, University Health Network - Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
3
|
Appavu B, Dunning E, Hildebrandt K, Hanalioglu D, Abruzzo T. Changes in autonomic function and cerebral and somatic oxygenation with arterial flow pulsatility for children requiring veno-arterial extracorporeal membrane oxygenation. BRAIN & SPINE 2023; 4:102731. [PMID: 38510614 PMCID: PMC10951706 DOI: 10.1016/j.bas.2023.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 03/22/2024]
Abstract
Background Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) carries variability in arterial flow pulsatility (AFP). Research question What changes in cerebral and somatic oxygenation, hemodynamics, and autonomic function are associated with AFP during VA-ECMO? Methods This is a prospective study of children on VA-ECMO undergoing neuromonitoring. AFP was quantified by arterial blood pressure pulse amplitude and subcategorized: no pulsatility (<1 mmHg), minimal pulsatility (1 to <5 mmHg), moderate pulsatility (5 to <15 mmHg) and high pulsatility (≥15 mmHg). CVPR was assessed using the cerebral oximetry index (COx). Cerebral and somatic oxygenation was assessed using cerebral regional oximetry (rSO2) or peripheral oxygen saturation (SpO2). Autonomic function was assessed using baroreflex sensitivity (BRs), low-frequency high-frequency (LF/HF) ratio and standard deviation of heart rate R-R intervals (HRsd). Differences were assessed across AFP categories using linear mixed effects models with Tukey pairwise comparisons. Univariate logistic regression was used to explore risk of AFP with brain injuries. Results Among fifty-three children, comparisons of moderate to high pulsatility were associated with reductions in rSO2 (p < 0.001), SpO 2 (p = 0.005), LF/HF ratio (p = 0.028) and an increase in HRsd (p < 0.001). Reductions in BRs were observed across comparisons of none to minimal (P < 0.001) and minimal to moderate pulsatility (p = 0.004). Comparisons of no to low pulsatility were associated with reductions in BRs (p < 0.001) and ABP (p < 0.001) with increases in SpO2 (p < 0.001) and HR (p < 0.001). Arterial ischemic stroke was associated with higher pulsatility (p = 0.0384). Conclusion During VA-ECMO support, changes toward high AFP are associated with autonomic dysregulation and compromised cerebral and somatic tissue oxygenation.
Collapse
Affiliation(s)
- Brian Appavu
- Barrow Neurological Institute at Phoenix Children's Hospital, Department of Neurosciences, 1919 E. Thomas Road, Ambulatory Building B, 4th Floor, Phoenix, AZ, 85016, USA
| | - Elise Dunning
- Creighton University Health Sciences Campus – Phoenix, 3100 N Central Avenue, Phoenix, AZ, 85012, USA
| | - Kara Hildebrandt
- Barrow Neurological Institute at Phoenix Children's Hospital, Department of Neurosciences, 1919 E. Thomas Road, Ambulatory Building B, 4th Floor, Phoenix, AZ, 85016, USA
| | - Damla Hanalioglu
- Barrow Neurological Institute at Phoenix Children's Hospital, Department of Neurosciences, 1919 E. Thomas Road, Ambulatory Building B, 4th Floor, Phoenix, AZ, 85016, USA
| | - Todd Abruzzo
- Phoenix Children's Hospital, Department of Radiology, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA
| |
Collapse
|
4
|
Calviello LA, Cardim D, Czosnyka M, Preller J, Smielewski P, Siyal A, Damian MS. Feasibility of non-invasive neuromonitoring in general intensive care patients using a multi-parameter transcranial Doppler approach. J Clin Monit Comput 2022; 36:1805-1815. [PMID: 35230559 DOI: 10.1007/s10877-022-00829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE To assess the feasibility of Transcranial Doppler ultrasonography (TCD) neuromonitoring in a general intensive care environment, in the prognosis and outcome prediction of patients who are in coma due to a variety of critical conditions. METHODS The prospective trial was performed between March 2017 and March 2019 Addenbrooke's Hospital, Cambridge, UK. Forty adult patients who failed to awake appropriately after resuscitation from cardiac arrest or were in coma due to conditions such as meningitis, seizures, sepsis, metabolic encephalopathies, overdose, multiorgan failure or transplant were eligible for inclusion. Gathered data included admission diagnosis, duration of ventilation, length of stay in the ICU, length of stay in hospital, discharge status using Cerebral Performance Categories (CPC). All patients received intermittent extended TCD monitoring following inclusion in the study. Parameters of interest included TCD-based indices of cerebral autoregulation, non-invasive intracranial pressure, autonomic system parameters (based on heart rate variability), critical closing pressure, the cerebrovascular time constant and indices describing the shape of the TCD pulse waveform. RESULTS Thirty-seven patients were included in the final analysis, with 21 patients classified as good outcome (CPC 1-2) and 16 as poor neurological outcomes (CPC 3-5). Three patients were excluded due to inadequacies identified in the TCD acquisition. The results indicated that irrespective of the primary diagnosis, non-survivors had significantly disturbed cerebral autoregulation, a shorter cerebrovascular time constant and a more distorted TCD pulse waveform (all p<0.05). CONCLUSIONS Preliminary results from the trial indicate that multi-parameter TCD neuromonitoring increases outcome-predictive power and TCD-based indices can be applied to general intensive care monitoring.
Collapse
Affiliation(s)
- Leanne A Calviello
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Danilo Cardim
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom. .,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA. .,Department of Neurology and the Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Texas Health Presbyterian Hospital, 7232 Greenville Avenue, 75231, Dallas, Texas, USA.
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Jacobus Preller
- John Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Cambridge, United Kingdom
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anisha Siyal
- John Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Cambridge, United Kingdom
| | - Maxwell S Damian
- Department of Neurology and Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Cambridge, United Kingdom
| |
Collapse
|
5
|
Roe T, Welbourne J, Nikitas N. Endocrine dysregulation in aneurysmal subarachnoid haemorrhage. Br J Neurosurg 2022; 36:358-367. [PMID: 35170377 DOI: 10.1080/02688697.2022.2039378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Aneurysmal Subarachnoid haemorrhage (aSAH) is one of the most common causes of neurocritical care admission. Consistent evidence has been suggestive of endocrine dysregulation in aSAH. This review aims to provide an up-to-date presentation of the available evidence regarding endocrine dysregulation in aneurysmal subarachnoid haemorrhage. METHODS A comprehensive literature search was performed using PubMed database. All available evidence related to endocrine dysregulation in hypothalamic-pituitary hormones, adrenal hormones and natriuretic peptides after aSAH, published since 2010, were reviewed. RESULTS There have been reports of varying prevalence of dysregulation in hypothalamic-pituitary and adrenal hormones in aSAH. The cause of this dysregulation and its pattern remain unclear. Hypothalamic-pituitary and adrenal dysregulation have been associated with higher incidence of poor neurological outcome and increased mortality. Whilst there is evidence that long-term dysregulation of these axes may also develop, it appears to be less frequent than the acute-phase dysregulation and transient in pattern. Increased levels of catecholamines have been reported in the hyper-acute phase of aSAH with reported inconsistent correlation with the outcomes and the complications of the disease. There is growing evidence that of a causal link between the endocrine dysregulation and the development of hyponatraemia and delayed cerebral ischaemia, in the acute phase of aSAH. However, the pathophysiological mechanism and pattern of endocrine dysregulation which could be causally associated with these complications still remain debatable. CONCLUSION The evidence, mainly from small observational and heterogeneous in methodology studies, is suggestive of adverse effects of the endocrine dysregulation on the outcome and the incidence of complications of the disease. However, the cause of this dysregulation and a pathophysiological mechanism that could link its presence with the development of acute complications and the outcome of the aSAH remain unclear. Further research is warranted to elucidate the clinical significance of endocrine dysregulation in subarachnoid haemorrhage.
Collapse
Affiliation(s)
- Thomas Roe
- Department of Intensive Care Medicine, Derriford Hospital, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Jessie Welbourne
- Department of Intensive Care Medicine, Derriford Hospital, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Nikitas Nikitas
- Department of Intensive Care Medicine, Derriford Hospital, University Hospitals Plymouth NHS Trust, Plymouth, UK
| |
Collapse
|
6
|
Uryga A, Nasr N, Kasprowicz M, Woźniak J, Goździk W, Burzyńska M. Changes in autonomic nervous system during cerebral desaturation episodes in aneurysmal subarachnoid hemorrhage. Auton Neurosci 2022; 239:102968. [DOI: 10.1016/j.autneu.2022.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
|
7
|
Uryga A, Nasr N, Kasprowicz M, Budohoski K, Sykora M, Smielewski P, Burzyńska M, Czosnyka M. Relationship Between Baroreflex and Cerebral Autoregulation in Patients With Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2022; 12:740338. [PMID: 35095711 PMCID: PMC8790510 DOI: 10.3389/fneur.2021.740338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Common consequences following aneurysmal subarachnoid hemorrhage (aSAH) are cerebral vasospasm (CV), impaired cerebral autoregulation (CA), and disturbance in the autonomic nervous system, as indicated by lower baroreflex sensitivity (BRS). The compensatory interaction between BRS and CA has been shown in healthy volunteers and stable pathological conditions such as carotid atherosclerosis. The aim of this study was to investigate whether the inverse correlation between BRS and CA would be lost in patients after aSAH during vasospasm. A secondary objective was to analyze the time-trend of BRS after aSAH. Materials and Methods: Retrospective analysis of prospectively collected data was performed at the Neuro-Critical Care Unit of Addenbrooke's Hospital (Cambridge, UK) between June 2010 and January 2012. The cerebral blood flow velocity (CBFV) was measured in the middle cerebral artery using transcranial Doppler ultrasonography (TCD). The arterial blood pressure (ABP) was monitored invasively through an arterial line. CA was quantified by the correlation coefficient (Mxa) between slow oscillations in ABP and CBFV. BRS was calculated using the sequential cross-correlation method using the ABP signal. Results: A total of 73 patients with aSAH were included. The age [median (lower-upper quartile)] was 58 (50–67). WFNS scale was 2 (1–4) and the modified Fisher scale was 3 (1–3). In the total group, 31 patients (42%) had a CV and 42 (58%) had no CV. ABP and CBFV were higher in patients with CV during vasospasm compared to patients without CV (p = 0.001 and p < 0.001). There was no significant correlation between Mxa and BRS in patients with CV, neither during nor before vasospasm. In patients without CV, a significant, although moderate correlation was found between BRS and Mxa (rS = 0.31; p = 0.040), with higher BRS being associated with worse CA. Multiple linear regression analysis showed a significant worsening of BRS after aSAH in patients with CV (Rp = −0.42; p < 0.001). Conclusions: Inverse compensatory correlation between BRS and CA was lost in patients who developed CV after aSAH, both before and during vasospasm. The impact of these findings on the prognosis of aSAH should be investigated in larger studies.
Collapse
Affiliation(s)
- Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Nathalie Nasr
- INSERM UMR 1297, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse, France.,Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Karol Budohoski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marek Sykora
- Department of Neurology, St. John's Hospital, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Małgorzata Burzyńska
- Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, Wrocław, Poland
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
8
|
Lee YK, Mazzucco S, Rothwell PM, Payne SJ, Webb AJS. Blood Pressure Complexity Discriminates Pathological Beat-to-Beat Variability as a Marker of Vascular Aging. J Am Heart Assoc 2022; 11:e022865. [PMID: 35043657 PMCID: PMC9238484 DOI: 10.1161/jaha.121.022865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Beat‐to‐beat blood pressure variability (BPV) is associated with an increased risk of stroke but can be driven by both healthy physiological processes and failure of compensatory mechanisms. Blood pressure (BP) complexity measures structured, organized variations in BP, as opposed to random fluctuations, and its reduction may therefore identify pathological beat‐to‐beat BPV. Methods and Results In the prospective, population‐based OXVASC (Oxford Vascular Study) Phenotyped Cohort with transient ischemic attack or minor stroke, patients underwent at least 5 minutes of noninvasive beat‐to‐beat monitoring of BP (Finometer) and ECG to derive the following: BPV (coefficient of variation) and complexity (modified multiscale entropy) of systolic BP and diastolic BP, heart rate variability (SD of R‐R intervals), and baroreflex sensitivity (BRS; Welch's method), in low‐ (0.04–0.15 Hz) and high‐frequency (0.15–0.4 Hz) bands. Associations between BPV or BP complexity with autonomic indexes and arterial stiffness were determined (linear regression), unadjusted, and adjusted for age, sex, and cardiovascular risk factors. In 908 consecutive, consenting patients, BP complexity was inversely correlated with BPV coefficient of variation (P<0.001) and was similarly reduced in patients with hypertension or diabetes (P<0.001). However, although BPV coefficient of variation had a U‐shaped relationship with age, BP complexity fell systematically across age quintiles (quintile 1: 15.1 [14.0–16.1] versus quintile 5: 13.8 [12.4–15.1]) and was correlated with markers of autonomic dysfunction (heart rate variability SD of R‐R intervals: r = 0.20; BRS low frequency: 0.19; BRS high frequency: 0.26) and arterial stiffness (pulse wave velocity: −0.21; all P<0.001), even after adjustment for clinical variables (heart rate variability SD of R‐R intervals: 0.12; BRS low frequency and BRS high frequency: 0.13 and 0.17; and pulse wave velocity: −0.07; all P<0.05). Conclusions Loss of BP complexity discriminates BPV because of pathological failure of compensatory mechanisms and may represent a less confounded and potentially modifiable risk factor for stroke.
Collapse
Affiliation(s)
- Yun-Kai Lee
- Institute of Biomedical Engineering Department of Engineering Science University of Oxford UK
| | - Sara Mazzucco
- Wolfson Centre for Prevention of Stroke and DementiaNuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of Oxford UK
| | - Peter M Rothwell
- Wolfson Centre for Prevention of Stroke and DementiaNuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of Oxford UK
| | - Stephen J Payne
- Institute of Biomedical Engineering Department of Engineering Science University of Oxford UK
| | - Alastair J S Webb
- Wolfson Centre for Prevention of Stroke and DementiaNuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of Oxford UK
| |
Collapse
|
9
|
Fedriga M, Czigler A, Nasr N, Zeiler FA, Park S, Donnelly J, Papaioannou V, Frisvold SK, Wolf S, Rasulo F, Sykora M, Smielewski P, Czosnyka M. Autonomic Nervous System Activity during Refractory Rise in Intracranial Pressure. J Neurotrauma 2021; 38:1662-1669. [PMID: 33280491 PMCID: PMC8336253 DOI: 10.1089/neu.2020.7091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Refractory intracranial hypertension (RIH) is a dramatic increase in intracranial pressure (ICP) that cannot be controlled by treatment. Recent reports suggest that the autonomic nervous system (ANS) activity may be altered during changes in ICP. Our study aimed to assess ANS activity during RIH and the causal relationship between rising in ICP and autonomic activity. We reviewed retrospectively 24 multicenter (Cambridge, Tromso, Berlin) patients in whom RIH developed as a pre-terminal event after acute brain injury (ABI). They were monitored with ICP, arterial blood pressure (ABP), and electrocardiography (ECG) using ICM+ software. Parameters reflecting autonomic activity were computed in time and frequency domain through the measurement of heart rate variability (HRV) and baroreflex sensitivity (BRS). Our results demonstrated that a rise in ICP was associated to a significant rise in HRV and BRS with a higher significance level in the high-frequency HRV (p < 0.001). This increase was followed by a significant decrease in HRV and BRS above the upper-breakpoint of ICP where ICP pulse-amplitude starts to decrease whereas the mean ICP continues to rise. Temporality measured with a Granger test suggests a causal relationship from ICP to ANS. The above results suggest that a rise in ICP interacts with ANS activity, mainly interfacing with the parasympathetic-system. The ANS seems to react to the rise in ICP with a response possibly focused on maintaining the cerebrovascular homeostasis. This happens until the critical threshold of ICP is reached above which the ANS variables collapse, probably because of low perfusion of the brain and the central autonomic network.
Collapse
Affiliation(s)
- Marta Fedriga
- Brain Division of Neurosurgery, Department of Clinical Neurosciences, Physics Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Anaesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Andras Czigler
- Brain Division of Neurosurgery, Department of Clinical Neurosciences, Physics Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Nathalie Nasr
- Unitè de Neurologie Vasculaire, CHU de Toulouse, Universitè de Toulouse, Toulouse, France
| | - Frederick. A. Zeiler
- Department of Surgery, Faculty of Engineering, University of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Faculty of Engineering, University of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Soojin Park
- Department of Neurology, Division of Hospitalist and Critical Care Neurology, Columbia University, New York, New York, USA
| | - Joseph Donnelly
- Department of Anaesthesiology, University of Auckland, Aukland, New Zealand
| | - Vasilios Papaioannou
- University Hospital of Alexandroupolis, Intensive Care Unit, Democritus University of Thrace, Alexandroupolis, Greece
| | - Shirin K Frisvold
- Department of Intensive Care, University Hospital of North Norway, UiT The Arctic University of Norway, Tromso, Norway
| | - Stephan Wolf
- Department of Neurosurgery, Charite Hospital, Berlin, Germany
| | - Frank Rasulo
- Department of Anaesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Marek Sykora
- Department of Neurology, St. John's Hospital Vienna, Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Peter Smielewski
- Brain Division of Neurosurgery, Department of Clinical Neurosciences, Physics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Division of Neurosurgery, Department of Clinical Neurosciences, Physics Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Methodological Consideration on Monitoring Refractory Intracranial Hypertension and Autonomic Nervous System Activity. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 131:211-215. [PMID: 33839847 DOI: 10.1007/978-3-030-59436-7_41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Refractory intracranial hypertension (RIH) refers to a dramatic increase in intracranial pressure (ICP) that cannot be controlled by treatment and leads to patient death. Detrimental sequelae of raised ICP in acute brain injury (ABI) are unclear because the underlying physiopathological mechanisms of raised ICP have not been sufficiently investigated. Recent reports have shown that autonomic activity is altered during changes in ICP. The aim of our study was to evaluate the feasibility of assessing autonomic activity during RIH with our adopted methodology. We selected 24 ABI patients for retrospective review who developed RIH. They were monitored based on ICP, arterial blood pressure, and electrocardiogram using ICM+ software. Secondary parameters reflecting autonomic activity were computed in time and frequency domains through the continuous measurement of heart rate variability and baroreflex sensitivity. The results of the analysis will be presented later in a full paper. This preliminary analysis shows the feasibility of the adopted methodology.
Collapse
|
11
|
Appavu B, Foldes S, Burrows BT, Jacobson A, Abruzzo T, Boerwinkle V, Willyerd A, Mangum T, Gunnala V, Marku I, Adelson PD. Multimodal Assessment of Cerebral Autoregulation and Autonomic Function After Pediatric Cerebral Arteriovenous Malformation Rupture. Neurocrit Care 2021; 34:537-546. [PMID: 32748209 DOI: 10.1007/s12028-020-01058-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Management after cerebral arteriovenous malformation (AVM) rupture aims toward preventing hemorrhagic expansion while maintaining cerebral perfusion to avoid secondary injury. We investigated associations of model-based indices of cerebral autoregulation (CA) and autonomic function (AF) with outcomes after pediatric cerebral AVM rupture. METHODS Multimodal neurologic monitoring data from the initial 3 days after cerebral AVM rupture were retrospectively analyzed in children (< 18 years). AF indices included standard deviation of heart rate (HRsd), root-mean-square of successive differences in heart rate (HRrmssd), low-high frequency ratio (LHF), and baroreflex sensitivity (BRS). CA indices include pressure reactivity index (PRx), wavelet pressure reactivity indices (wPRx and wPRx-thr), pulse amplitude index (PAx), and correlation coefficient between intracranial pressure pulse amplitude and cerebral perfusion pressure (RAC). Percent time of cerebral perfusion pressure (CPP) below lower limits of autoregulation (LLA) was also computed for each CA index. Primary outcomes were determined using Pediatric Glasgow Outcome Score Extended-Pediatrics (GOSE-PEDs) at 12 months and acquired epilepsy. Association of biomarkers with outcomes was investigated using linear regression, Wilcoxon signed-rank, or Chi-square. RESULTS Fourteen children were analyzed. Lower AF indices were associated with poor outcomes (BRS [p = 0.04], HRsd [p = 0.04], and HRrmssd [p = 0.00]; and acquired epilepsy (LHF [p = 0.027]). Higher CA indices were associated with poor outcomes (PRx [p = 0.00], wPRx [p = 0.00], and wPRx-thr [p = 0.01]), and acquired epilepsy (PRx [p = 0.02] and wPRx [p = 0.00]). Increased time below LLA was associated with poor outcome (percent time below LLA based on PRx [p = 0.00], PAx [p = 0.04], wPRx-thr [p = 0.03], and RAC [p = 0.01]; and acquired epilepsy (PRx [p = 0.00], PAx [p = 0.00], wPRx-thr [p = 0.03], and RAC [p = 0.01]). CONCLUSIONS After pediatric cerebral AVM rupture, poor outcomes are associated with AF and CA when applying various neurophysiologic model-based indices. Prospective work is needed to assess these indices of CA and AF in clinical decision support.
Collapse
Affiliation(s)
- Brian Appavu
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA.
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA.
| | - Stephen Foldes
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Brian T Burrows
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
| | - Austin Jacobson
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
| | - Todd Abruzzo
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Varina Boerwinkle
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Anthony Willyerd
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Tara Mangum
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Vishal Gunnala
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Iris Marku
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - P D Adelson
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| |
Collapse
|
12
|
Saand AR, Yu F, Chen J, Chou SHY. Systemic inflammation in hemorrhagic strokes - A novel neurological sign and therapeutic target? J Cereb Blood Flow Metab 2019; 39:959-988. [PMID: 30961425 PMCID: PMC6547186 DOI: 10.1177/0271678x19841443] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidences suggest that stroke is a systemic disease affecting many organ systems beyond the brain. Stroke-related systemic inflammatory response and immune dysregulations may play an important role in brain injury, recovery, and stroke outcome. The two main phenomena in stroke-related peripheral immune dysregulations are systemic inflammation and post-stroke immunosuppression. There is emerging evidence suggesting that the spleen contracts following ischemic stroke, activates peripheral immune response and this may further potentiate brain injury. Whether similar brain-immune crosstalk occurs in hemorrhagic strokes such as intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) is not established. In this review, we systematically examined animal and human evidence to date on peripheral immune responses associated with hemorrhagic strokes. Specifically, we reviewed the impact of clinical systemic inflammatory response syndrome (SIRS), inflammation- and immune-associated biomarkers, the brain-spleen interaction, and cellular mediators of peripheral immune responses to ICH and SAH including regulatory T cells (Tregs). While there is growing data suggesting that peripheral immune dysregulation following hemorrhagic strokes may be important in brain injury pathogenesis and outcome, details of this brain-immune system cross-talk remain insufficiently understood. This is an important unmet scientific need that may lead to novel therapeutic strategies in this highly morbid condition.
Collapse
Affiliation(s)
- Aisha R Saand
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Yu
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sherry H-Y Chou
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Neurosurgery, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|