1
|
Calandrelli R, Motolese F, Mallio CA, Di Lazzaro V, Pilato F. A pictorial neuroradiological review of brain vascular abnormalities in patients with kidney disease. Behav Brain Res 2024:115394. [PMID: 39667648 DOI: 10.1016/j.bbr.2024.115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A well-known link exists between cerebrovascular disease and chronic kidney disease. Cerebrovascular pathology in patients with kidney disease may be asymptomatic and occasionally discovered through neuroradiological examinations or it may present with neurological symptoms. Covert cerebrovascular lesions represent the earliest injuries associated with chronic kidney disease and primarily result from small vessel damage. These conditions often manifest incidentally, appearing as structural changes (such as lacunes, white matter lesions, enlarged perivascular spaces, cerebral microbleeds, and atrophy) as well as microstructural and hemodynamic alterations, detectable through routine and advanced functional MRIs. These alterations may be associated with a higher risk of stroke, cognitive decline, and dementia. Patients with end-stage renal disease or chronic kidney disease undergoing dialysis may be at increased risk of large-artery atherosclerosis, cardio-embolism, or small-vessel occlusion, and they may experience symptomatic acute ischemic strokes as rare complications. Currently, there are no established guidelines or standardized diagnostic protocols for preventing cerebrovascular disease in patients with kidney disease. Clinical and radiological studies are warranted to evaluate the usefulness of incorporating neuroimaging into the diagnostic work-up of these patients in order to improve prognosis and reduce diagnostic delays.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 1, Rome 00168, Italy.
| | - Francesco Motolese
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico of Rome, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico of Rome, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabio Pilato
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico of Rome, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
2
|
Kelly DM, Pinheiro AA, Koini M, Anderson CD, Aparicio H, Hofer E, Kern D, Blacker D, DeCarli C, Hwang SJ, Viswanathan A, Gonzales MM, Beiser AS, Seshadri S, Schmidt R, Demissie S, Romero JR. Impaired kidney function, cerebral small vessel disease and cognitive disorders: the Framingham Heart Study. Nephrol Dial Transplant 2024; 39:1911-1922. [PMID: 38565317 PMCID: PMC11522878 DOI: 10.1093/ndt/gfae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND AND HYPOTHESIS It remains unclear whether the relation of chronic kidney disease (CKD) with cognitive dysfunction is independent of blood pressure (BP). We evaluated kidney function in relation to premorbid BP measurements, cerebral small vessel disease (CSVD), and incident mild cognitive impairment (MCI) and dementia in Framingham Offspring Cohort participants. METHODS We included Framingham Offspring participants free of dementia, attending an examination during midlife (exam cycle 6, baseline) for ascertainment of kidney function status, with brain magnetic resonance imaging late in life (exam cycles 7-9), cognitive outcome data, and available interim hypertension and BP assessments. We related CKD (estimated glomerular filtration rate <60 ml/min/1.73 m2) and albuminuria (urine albumin-to-creatinine ratio ≥30 mg/g) to CSVD markers and cognitive outcomes using multivariable regression analyses. RESULTS Among 2604 participants (mean age 67.4 ± 9.2, 64% women, 7% had CKD, and 9% albuminuria), albuminuria was independently associated with covert infarcts [adjusted OR, 1.55 (1.00-2.38); P = 0.049] and incident MCI and dementia [adjusted hazard ratio (HR), 1.68 (1.18-2.41); P = 0.005 and 1.71, (1.11-2.64); P = 0.015, respectively]. CKD was not associated with CSVD markers but was associated with a higher risk of incident dementia [HR, 1.53 (1.02-2.29); P = 0.041]. While albuminuria was predictive of the Alzheimer's disease subtype [adjusted HR = 1.68, (1.03-2.74); P = 0.04), CKD was predictive of vascular dementia [adjusted HR, 2.78 (1.16-6.68); P = 0.023]. CONCLUSIONS Kidney disease was associated with CSVD and cognitive disorders in asymptomatic community dwelling participants. The relation was independent of premorbid BP, suggesting that the link between kidney and brain disease may involve additional mechanisms beyond BP-related injury.
Collapse
Affiliation(s)
- Dearbhla M Kelly
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adlin A Pinheiro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA, USA
| | - Marisa Koini
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Christopher D Anderson
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hugo Aparicio
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Edith Hofer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Daniela Kern
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Deborah Blacker
- Department of Epidemiology, Harvard T. H. Chan School of Public Health and Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Shih-Jen Hwang
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA, USA
| | - Anand Viswanathan
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mitzi M Gonzales
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA, USA
| | - Sudha Seshadri
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA, USA
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA, USA
| | - Jose R Romero
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Xiao F, Zhou L, Li Y, Zhang C, Liu Y, Yu H, Li X, Wang C, Yin X, Gao X. Comparison of brain gray matter volume changes in peritoneal dialysis and hemodialysis patients with chronic kidney disease: a VBM study. Front Neurosci 2024; 18:1394169. [PMID: 38737098 PMCID: PMC11082365 DOI: 10.3389/fnins.2024.1394169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Objective This study aims to compare gray matter volume changes in patients with chronic kidney disease (CKD) undergoing peritoneal dialysis (PD) and hemodialysis (HD) using voxel-based morphometry (VBM). Methods A total of 27 PD patients, 25 HD patients, and 42 healthy controls were included. VBM analysis was performed, and cognitive function was assessed using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment Scale (MoCA). The correlation between cognitive function and changes in brain gray matter volume was analyzed. Results Both peritoneal dialysis and hemodialysis patients had partial gray matter volume reduction compared to the controls, but the affected brain regions were not uniform. The hemodialysis patients had greater volume reduction in certain brain regions than the PD patients. The MMSE and MoCA scores were positively correlated with gray matter volume changes. Conclusion Different dialysis modalities cause damage to specific areas of the brain, which can be detected using VBM. VBM, combined with cognitive function assessment, can help detect structural brain changes and cognitive impairment in patients with different dialysis modalities. The comprehensive application of VBM in the field of neurological function deserves further exploration.
Collapse
Affiliation(s)
- Fenglin Xiao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Lili Zhou
- 7th Department of Health Cadre, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Radiology, The 941th Hospital of the PLA Joint Logistic Support Force, Xining, China
| | - Chaoyang Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ying Liu
- Department of Nephrology, Liangxiang Hospital, Beijing, China
| | - Huan Yu
- Department of Nephrology, Liangxiang Hospital, Beijing, China
| | - Xiaoping Li
- Department of Nephrology, Liangxiang Hospital, Beijing, China
| | - Chunyu Wang
- Department of Nephrology, Liangxiang Hospital, Beijing, China
| | - Xinxin Yin
- Department of Nephrology, Liangxiang Hospital, Beijing, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| |
Collapse
|
4
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
5
|
Li X, Tan X, Zhou Q, Xie Z, Meng W, Pang Y, Huang L, Ding Z, Hu Y, Li R, Huang G, Li H. Limb Remote Ischemic Postconditioning Improves Glymphatic Dysfunction After Cerebral Ischemia-Reperfusion Injury. Neuroscience 2023; 521:20-30. [PMID: 37121383 DOI: 10.1016/j.neuroscience.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/29/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Delayed neuronal damage can be caused or aggravated after cerebral ischemia-reperfusion (I/R) injury. Recent studies have shown that glymphatic system dysfunction after cerebral ischemia-reperfusion injury is involved in ischemic brain edema and neuroinflammation, thereby regulating cerebral ischemia-reperfusion injury. The aim of this study is to investigate the changes of glymphatic system after cerebral ischemia-reperfusion injury and whether limb remote ischemic postconditioning (LRIP) can improve the function of glymphatic system to protect the brain. METHODS To establish a focal brain I/R injury mouse model, this study utilized the middle cerebral artery occlusion/reperfusion (MCAO/R) method. The present study classified eight-week-old C57BL/6 male mice into three groups. The changes in glymphatic function in different periods of ischemia and reperfusion were analyzed through immunofluorescence, transmission electron microscopy (TEM), and Western-Blot (WB) assays. The contents of the evaluation included cerebrospinal fluid flow, swelling degree of brain tissue, aquaporin-4 (AQP4) expression and polarization, and amyloid-β (Aβ) excretion. RESULTS In the early stages of cerebral ischemia, cerebrospinal fluid (CSF) flow is disturbed, accompanied by a decrease in AQP4 polarization. The polarity of AQP4 decreased from 12 h to 72 h of reperfusion, the Aβ deposition. LRIP can increase the expression of β-DG and AQP4 polarization, reduce the deposition of Aβ, improve the function of the glymphatic system, and reduce the expression of AQP4 to play A protective role in brain. CONCLUSION Glymphatic system impaired after cerebral ischemia-reperfusion injury in mice. LRIP may play a neuroprotective role by improving glymphatic function after I/R.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Xiaoli Tan
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Qian Zhou
- Department of Neurology, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhuoxi Xie
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Weiting Meng
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Yeyu Pang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Lizhen Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Zhihao Ding
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Yuanhong Hu
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Ruhua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Guilan Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
6
|
Sharrief A. Diagnosis and Management of Cerebral Small Vessel Disease. Continuum (Minneap Minn) 2023; 29:501-518. [PMID: 37039407 DOI: 10.1212/con.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVE Cerebral small vessel disease (CSVD) is a common neurologic condition that contributes to considerable mortality and disability because of its impact on ischemic and hemorrhagic stroke risk and dementia. While attributes of the disease have been recognized for over two centuries, gaps in knowledge remain related to its prevention and management. The purpose of this review is to provide an overview of the current state of knowledge for CSVD. LATEST DEVELOPMENTS CSVD can be recognized by well-defined radiographic criteria, but the pathogenic mechanism behind the disease is unclear. Hypertension control remains the best-known strategy for stroke prevention in patients with CSVD, and recent guidelines provide a long-term blood pressure target of less than 130/80 mm Hg for patients with ischemic and hemorrhagic stroke, including those with stroke related to CSVD. Cerebral amyloid angiopathy is the second leading cause of intracerebral hemorrhage and may be increasingly recognized because of newer, more sensitive imaging modalities. Transient focal neurologic episodes is a relatively new term used to describe "amyloid spells." Guidance on distinguishing these events from seizures and transient ischemic attacks has been published. ESSENTIAL POINTS CSVD is prevalent and will likely be encountered by all neurologists in clinical practice. It is important for neurologists to be able to recognize CSVD, both radiographically and clinically, and to counsel patients on the prevention of disease progression. Blood pressure control is especially relevant, and strategies are needed to improve blood pressure control for primary and secondary stroke prevention in patients with CSVD.
Collapse
Affiliation(s)
- Anjail Sharrief
- Associate Professor of Neurology, Department of Neurology, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas
| |
Collapse
|
7
|
Zhang C, Yu H, Cai Y, Wu N, Liang S, Zhang C, Duan Z, Zhang Z, Cai G. Diffusion tensor imaging of the brain white matter microstructure in patients with chronic kidney disease and its correlation with cognition. Front Neurol 2022; 13:1086772. [PMID: 36588888 PMCID: PMC9798235 DOI: 10.3389/fneur.2022.1086772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose In individuals with chronic kidney disease (CKD), neurological damage is commonly observed. This neurodegeneration is closely linked to microstructural damage to the brain white matter due to the high incidence of cognitive dysfunction. However, the specific pathogenesis of CKD nephropathy caused by cognitive system developmental disorders remains unclear. This study aimed to examine the correlation between cognitive impairment and diffusion parameters obtained on diffusion tensor imaging (DTI) of abnormal white matter tracts in CKD patients. Methods Sixty-four patients with CKD were divided into the non-dialysis-dependent CKD (NDD-CKD) group (N = 26) and dialysis-dependent CKD (DD-CKD) group (N = 38) according to the estimated glomerular filtration rate, whereas 43 healthy control subjects (normal control [NC]) were included and underwent cranial magnetic resonance imaging during the same period. Differences in the abnormal white matter microstructure and correlations between them and cognitive scores were assessed using several parameters between the groups. Results There were more extensive peri-lesions and distant white matter microstructural changes in the DD-CKD and NDD-CKD groups than in the NC group. DTI diffusion parameters in abnormal white matter regions were associated with impaired cognitive function in CKD patients. The DD-CKD group had worse cognitive function and more severe microstructural damage in the cerebral white matter than the NDD-CKD group. Conclusion CKD patients showed cognitive impairment and changes in the brain white matter microstructure; CKD can lead to extensive white matter tract damage. Additionally, diffusion parameters can be used as a complement to describe structural brain damage in CKD patients.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Nephrology, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Huan Yu
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Yan Cai
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Ning Wu
- Department of Medical Imaging, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Shuang Liang
- Department of Nephrology, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Chun Zhang
- Department of Nephrology, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Zhiyu Duan
- Department of Nephrology, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Zhou Zhang
- Department of Nephrology, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, General Hospital of the Chinese People's Liberation Army, Beijing, China,*Correspondence: Guangyan Cai
| |
Collapse
|
8
|
Li C, Lin L, Sun C, Hao X, Yin L, Zhang X, Tian J, Yao Z, Feng X, Yang Y. Glymphatic system in the thalamus, secondary degeneration area was severely impaired at 2nd week after transient occlusion of the middle cerebral artery in rats. Front Neurosci 2022; 16:997743. [PMID: 36278004 PMCID: PMC9582259 DOI: 10.3389/fnins.2022.997743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background and objectives The glymphatic system is a recently discovered cerebrospinal fluid transport system and little is known about its dynamic changes after stroke. This study aimed to dynamically observe the structural and functional changes of the impaired glymphatic system in the thalamus after ischemic stroke by pathology and MRI. Materials and methods Ischemic stroke was induced by the middle cerebral artery occlusion (MCAO) model. A total of 20 Sprague-Dawley rats were randomly assigned into four groups: sham, MCAO 1 week, MCAO 2 week, and MCAO 2 month. All rats successively underwent neurological examination, dynamic contrast-enhanced MRI (DCE-MRI), and immunofluorescence staining. Immunofluorescence staining of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), ionized calcium-binding adaptor molecule 1 (Iba1), and beta-amyloid precursor protein (APP) were done in thalamus ventroposterior nucleus. Results The astrocyte and microglial activation and the APP deposition in the MCAO 2 week group were the highest (P < 0.05 for all). The AQP4 polarization rates of the MCAO 2 week and 2 month groups were the lowest (P < 0.05 for all). Although there was no correlation between histological changes and MRI metrics in all four groups (P > 0.05 for all), the tendency of the APP deposition was nearly consistent with the one of the contrast agent retention in DCE-MRI. Conclusion The glymphatic system in the thalamus was severely impaired at 2nd week after MCAO, and may be revealed by DCE-MRI. This study may provide a relevant theoretical basis for making a thorough inquiry of the mechanism of brain injury after stroke and clinical treatment of ischemic stroke and help readers appreciate the importance of DCE-MRI.
Collapse
Affiliation(s)
- Chanchan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Luyi Lin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chengfeng Sun
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaozhu Hao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lekang Yin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoxue Zhang
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jiaqi Tian
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanmei Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yanmei Yang,
| |
Collapse
|
9
|
Miwa K, Toyoda K. Covert vascular brain injury in chronic kidney disease. Front Neurol 2022; 13:824503. [PMID: 35959397 PMCID: PMC9358355 DOI: 10.3389/fneur.2022.824503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) contributes to the increased risk of stroke and dementia. Accumulating evidence indicates that structural brain abnormalities, such as cerebral small vessel disease, including white matter hyperintensities, lacunes, perivascular spaces, and cerebral microbleeds, as well as brain atrophy, are common in patients with CKD. All of these imaging findings have been implicated in the development of stroke and dementia. The brain and kidney exhibit similar impairments and promote structural brain abnormalities due to shared vascular risk factors and similar anatomical and physiological susceptibility to vascular injury in patients with CKD. This indicates that kidney function has a significant effect on brain aging. However, as most results are derived from cross-sectional observational studies, the exact pathophysiology of structural brain abnormalities in CKD remains unclear. The early detection of structural brain abnormalities in CKD in the asymptomatic or subclinical phase (covert) should enable stroke risk prediction and guide clinicians on more targeted interventions to prevent stroke in patients with CKD. This article summarizes the currently available clinical evidence linking covert vascular brain injuries with CKD.
Collapse
|
10
|
Yim Y, Moon WJ. An Enlarged Perivascular Space: Clinical Relevance and the Role of Imaging in Aging and Neurologic Disorders. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:538-558. [PMID: 36238506 PMCID: PMC9514531 DOI: 10.3348/jksr.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Younghee Yim
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|