1
|
Russell MW, Maatouk CM, Kim S, Liu B, Muste JC, Talcott KE, Singh RP. Lack of association between Lp(a) and retinal vein occlusion in a single institution and US national database. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:e590-e595. [PMID: 37935381 DOI: 10.1016/j.jcjo.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE This study examines associations between lipoprotein(a) (Lp[a]), a low-density-like lipoprotein, and renal vein occlusion (RVO) in US cohorts to characterize its prognostic role in the setting of RVO. DESIGN A two-phase retrospective cohort study. METHODS In the first phase, patients with RVO and a Lp(a) quantitative laboratory value at a single tertiary centre were reviewed. Lp(a) status was assessed in association with age of RVO diagnosis, visual acuity, time to development of RVO, and central subfield thickness. In the second phase, the TriNetX US Collaborative Network, a large national database, also was queried for the presence of high or low Lp(a) values and diagnoses of RVO. RESULTS The single tertiary care centre identified 45 patients with RVO and a laboratory value of Lp(a), finding no significant associations with respect to Lp(a) status and age of RVO onset, time from the laboratory draw to the development of RVO, visual acuity, and central subfield thickness (p > 0.05 for all). The TriNetX national database identified 35,687 patients with a high Lp(a) value (>30 mg/dL or 61 nmol/L) and 51,692 with a low Lp(a) value. An elevated Lp(a) value was not associated with higher odds of central (odds ratio [OR] = 1.15; 95% CI, 0.88-1.50) or branch RVO (OR = 1.01; 95% CI, 0.76-1.36). CONCLUSION Taken together, this analysis suggests a lack of association between Lp(a) value and risk of RVO. This study highlights the benefit of large national databases in the validation of laboratory value predictors identified through small-cohort observational studies.
Collapse
Affiliation(s)
- Matthew W Russell
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Christopher M Maatouk
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH; Case Western Reserve University School of Medicine, Cleveland, OH
| | - Suzie Kim
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Brian Liu
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH; Case Western Reserve University School of Medicine, Cleveland, OH
| | | | | | - Rishi P Singh
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Cole Eye Institute, Cleveland, OH; Martin North Hospital, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
2
|
Moore MK, Jones GT, McCormick S, Williams MJA, Coffey S. Association between lipoprotein(a), LPA genetic risk score, aortic valve disease, and subsequent major adverse cardiovascular events. Eur J Prev Cardiol 2024; 31:1303-1311. [PMID: 38593219 DOI: 10.1093/eurjpc/zwae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
AIMS Cohort studies have demonstrated associations between calcific aortic valve disease (CAVD) and Lp(a). As Lp(a) is almost entirely genetically determined, in this study, we aim to determine whether Lp(a), when predicted from genetic data, is associated with CAVD and major adverse cardiovascular events (MACEs). METHODS AND RESULTS Patients undergoing coronary angiography between January 2012 and May 2013 were invited to participate in the study. Of 752 analysable participants, 446 had their Lp(a) measured and 703 had a calculable LPA genetic risk score (GRS). The primary outcomes were the presence of CAVD at baseline and MACE over a 7-year follow-up. The GRS explained 45% of variation in Lp(a). After adjustment for cardiac risk factors and coronary artery disease (CAD), the odds of CAVD increased with increasing Lp(a) [odds ratio (OR) 1.039 per 10-unit increase, 95% confidence interval (CI) 1.022-1.057, P < 0.001] and GRS (OR 1.054 per 10-unit increase, 95% CI 1.024-1.086; P < 0.001). Lipoprotein(a) and the GRS as continuous variables were not associated with subsequent MACEs. A dichotomized GRS (>54) was associated with MACE, but this relationship became non-significant when CAD classification was added into the model (OR 1.333, 95% CI 0.927-1.912; P = 0.12). CONCLUSION An LPA GRS can explain 45% of variation in Lp(a) levels, and both Lp(a) and the GRS are associated with CAVD. An elevated GRS is associated with future cardiac events in a secondary risk setting, but, if the CAD status is known, it does not provide additional prognostic information.
Collapse
Affiliation(s)
- Matthew K Moore
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, 201 Great King Street, Dunedin 9016, New Zealand
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, 201 Great King Street, Dunedin 9016, New Zealand
| | - Sally McCormick
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Michael J A Williams
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, 201 Great King Street, Dunedin 9016, New Zealand
- Department of Cardiology, Dunedin Hospital, Te Whatu Ora/Health New Zealand, 201 Great King Street, Dunedin 9016, New Zealand
| | - Sean Coffey
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, 201 Great King Street, Dunedin 9016, New Zealand
- Department of Cardiology, Dunedin Hospital, Te Whatu Ora/Health New Zealand, 201 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Dzobo KE, Cupido AJ, Mol BM, Stiekema LC, Versloot M, Winkelmeijer M, Peter J, Pennekamp AM, Havik SR, Vaz FM, van Weeghel M, Prange KH, Levels JH, de Winther MP, Tsimikas S, Groen AK, Stroes ES, de Kleijn DP, Kroon J. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arterioscler Thromb Vasc Biol 2024; 44:720-740. [PMID: 38269588 PMCID: PMC10880937 DOI: 10.1161/atvbaha.123.319937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Oxidized phospholipids play a key role in the atherogenic potential of lipoprotein(a) (Lp[a]); however, Lp(a) is a complex particle that warrants research into additional proinflammatory mediators. We hypothesized that additional Lp(a)-associated lipids contribute to the atherogenicity of Lp(a). METHODS Untargeted lipidomics was performed on plasma and isolated lipoprotein fractions. The atherogenicity of the observed Lp(a)-associated lipids was tested ex vivo in primary human monocytes by RNA sequencing, ELISA, Western blot, and transendothelial migratory assays. Using immunofluorescence staining and single-cell RNA sequencing, the phenotype of macrophages was investigated in human atherosclerotic lesions. RESULTS Compared with healthy individuals with low/normal Lp(a) levels (median, 7 mg/dL [18 nmol/L]; n=13), individuals with elevated Lp(a) levels (median, 87 mg/dL [218 nmol/L]; n=12) demonstrated an increase in lipid species, particularly diacylglycerols (DGs) and lysophosphatidic acid (LPA). DG and the LPA precursor lysophosphatidylcholine were enriched in the Lp(a) fraction. Ex vivo stimulation with DG(40:6) demonstrated a significant upregulation in proinflammatory pathways related to leukocyte migration, chemotaxis, NF-κB (nuclear factor kappa B) signaling, and cytokine production. Functional assessment showed a dose-dependent increase in the secretion of IL (interleukin)-6, IL-8, and IL-1β after DG(40:6) and DG(38:4) stimulation, which was, in part, mediated via the NLRP3 (NOD [nucleotide-binding oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome. Conversely, LPA-stimulated monocytes did not exhibit an inflammatory phenotype. Furthermore, activation of monocytes by DGs and LPA increased their transendothelial migratory capacity. Human atherosclerotic plaques from patients with high Lp(a) levels demonstrated colocalization of Lp(a) with M1 macrophages, and an enrichment of CD68+IL-18+TLR4+ (toll-like receptor) TREM2+ (triggering receptor expressed on myeloid cells) resident macrophages and CD68+CASP1+ (caspase) IL-1B+SELL+ (selectin L) inflammatory macrophages compared with patients with low Lp(a). Finally, potent Lp(a)-lowering treatment (pelacarsen) resulted in a reduction in specific circulating DG lipid subspecies in patients with cardiovascular disease with elevated Lp(a) levels (median, 82 mg/dL [205 nmol/L]). CONCLUSIONS Lp(a)-associated DGs and LPA have a potential role in Lp(a)-induced monocyte inflammation by increasing cytokine secretion and monocyte transendothelial migration. This DG-induced inflammation is, in part, NLRP3 inflammasome dependent.
Collapse
Affiliation(s)
- Kim E. Dzobo
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
| | - Arjen J. Cupido
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Barend M. Mol
- Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands (B.M.M., D.P.V.d.K.)
| | - Lotte C.A. Stiekema
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Miranda Versloot
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
| | - Maaike Winkelmeijer
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Jorge Peter
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Anne-Marije Pennekamp
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Stefan R. Havik
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Frédéric M. Vaz
- Core Facility Metabolomics (F.M.V., M.v.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Michel van Weeghel
- Core Facility Metabolomics (F.M.V., M.v.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Koen H.M. Prange
- Department of Medical Biochemistry, Amsterdam Infection and Immunity (K.H.M.P., M.P.J.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Johannes H.M. Levels
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam Infection and Immunity (K.H.M.P., M.P.J.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla (S.T.)
| | - Albert K. Groen
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Erik S.G. Stroes
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Dominique P.V. de Kleijn
- Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands (B.M.M., D.P.V.d.K.)
| | - Jeffrey Kroon
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
- Laboratory of Angiogenesis and Vascular Metabolism, Flanders Institute for Biotechnology (VIB)-KU Leuven Center for Cancer Biology, VIB, Belgium (J.K.)
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute, Belgium (J.K.)
| |
Collapse
|
4
|
Orfanos P, Fonseca AF, Hu X, Gautam R, Montgomery G, Studer R, Kaur J, Saxena N, Kaushik N. Burden of elevated lipoprotein(a) among patients with atherosclerotic cardiovascular disease: Evidence from a systematic literature review and feasibility assessment of meta-analysis. PLoS One 2023; 18:e0294250. [PMID: 37983217 PMCID: PMC10659166 DOI: 10.1371/journal.pone.0294250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Elevated lipoprotein(a) [Lp(a)] level is an independent genetic risk factor that increases the risk of atherosclerotic cardiovascular disease (ASCVD) by 2-4 fold. We aimed to report the burden of clinically relevant elevated Lp(a) in secondary prevention ASCVD population as the evaluation of such evidence is lacking. METHODS A systematic literature review (SLR) was conducted using Embase®, MEDLINE®, and MEDLINE® In-Process databases to identify studies reporting burden of elevated Lp(a) levels from January 1, 2010, to March 28, 2022. Full-text, English-language studies including ≥500 participants with ≥1 Lp(a) assessment were included. RESULTS Sixty-one studies reported clinical burden of elevated Lp(a). Of these, 25 observational studies and one clinical trial reported clinical burden of clinically relevant elevated Lp(a) levels. Major clinical outcomes included major adverse cardiovascular event (MACE; n = 20), myocardial infarction (MI; n = 11), revascularization (n = 10), stroke (n = 10), cardiovascular (CV) mortality (n = 9), and all-cause mortality (n = 10). Elevated Lp(a) levels significantly increased the risk of MACE (n = 15) and revascularization (n = 8), while they demonstrated a trend for positive association with remaining CV outcomes. Meta-analysis was not feasible for included studies due to heterogeneity in Lp(a) thresholds, outcome definitions, and patient characteristics. Three studies reported humanistic burden. Patients with elevated Lp(a) levels had higher odds of manifesting cognitive impairment (odds ratio [OR] [95% confidence interval; CI]: 1.62 [1.11-2.37]) and disability related to stroke (OR [95% CI]:1.46 [1.23-1.72)]) (n = 2). Elevated Lp(a) levels negatively correlated with health-related quality of life (R = -0.166, p = 0.014) (n = 1). A single study reported no association between elevated Lp(a) levels and economic burden. CONCLUSIONS This SLR demonstrated a significant association of elevated Lp(a) levels with major CV outcomes and increased humanistic burden in secondary prevention ASCVD population. These results reinforce the need to quantify and manage Lp(a) for CV risk reduction and to perform further studies to characterize the economic burden.
Collapse
Affiliation(s)
| | | | - Xingdi Hu
- Value and Access, Novartis Pharmaceutical Corporation, East Hanover, New Jersey, United States of America
| | - Raju Gautam
- Value and Access, Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | | | - Rachel Studer
- Value and Access, Novartis Pharma AG, Basel, Switzerland
| | - Japinder Kaur
- Value and Access, Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Nehul Saxena
- Value and Access, Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Nitin Kaushik
- Value and Access, Novartis Healthcare Pvt. Ltd., Hyderabad, India
| |
Collapse
|
5
|
Khan H, Shaikh F, Syed MH, Mamdani M, Saposnik G, Qadura M. Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature. Metabolites 2023; 13:919. [PMID: 37623863 PMCID: PMC10456624 DOI: 10.3390/metabo13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Carotid artery stenosis (CAS), an atherosclerotic disease of the carotid artery, is one of the leading causes of transient ischemic attacks (TIA) and cerebrovascular attacks (CVA). The atherogenic process of CAS affects a wide range of physiological processes, such as inflammation, endothelial cell function, smooth muscle cell migration and many more. The current gold-standard test for CAS is Doppler ultrasound; however, there is yet to be determined a strong, clinically validated biomarker in the blood that can diagnose patients with CAS and/or predict adverse outcomes in such patients. In this comprehensive literature review, we evaluated all of the current research on plasma and serum proteins that are current contenders for biomarkers for CAS. In this literature review, 36 proteins found as potential biomarkers for CAS were categorized in to the following nine categories based on protein function: (1) Inflammation and Immunity, (2) Lipid Metabolism, (3) Haemostasis, (4) Cardiovascular Markers, (5) Markers of Kidney Function, (6) Bone Health, (7) Cellular Structure, (8) Growth Factors, and (9) Hormones. This literature review is the most up-to-date and current comprehensive review of research on biomarkers of CAS, and the only review that demonstrated the several pathways that contribute to the initiation and progression of the disease. With this review, future studies can determine if any new markers, or a panel of the proteins explored in this study, may be contenders as diagnostic or prognostic markers for CAS.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muzammil H. Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
6
|
Entsie P, Kang Y, Amoafo EB, Schöneberg T, Liverani E. The Signaling Pathway of the ADP Receptor P2Y 12 in the Immune System: Recent Discoveries and New Challenges. Int J Mol Sci 2023; 24:6709. [PMID: 37047682 PMCID: PMC10095349 DOI: 10.3390/ijms24076709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.
Collapse
Affiliation(s)
- Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Torsten Schöneberg
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
7
|
Bartoli-Leonard F, Turner ME, Zimmer J, Chapurlat R, Pham T, Aikawa M, Pradhan AD, Szulc P, Aikawa E. Elevated lipoprotein(a) as a predictor for coronary events in older men. J Lipid Res 2022; 63:100242. [PMID: 35724702 PMCID: PMC9304778 DOI: 10.1016/j.jlr.2022.100242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 02/09/2023] Open
Abstract
Elevated circulating lipoprotein (a) [Lp(a)] is associated with an increased risk of first and recurrent cardiovascular events; however, the effect of baseline Lp(a) levels on long-term outcomes in an elderly population is not well understood. The current single-center prospective study evaluated the association of Lp(a) levels with incident acute coronary syndrome to identify populations at risk of future events. Lp(a) concentration was assessed in 755 individuals (mean age of 71.9 years) within the community and followed for up to 8 years (median time to event, 4.5 years; interquartile range, 2.5–6.5 years). Participants with clinically relevant high levels of Lp(a) (>50 mg/dl) had an increased absolute incidence rate of ASC of 2.00 (95% CI, 1.0041) over 8 years (P = 0.04). Moreover, Kaplan-Meier cumulative event analyses demonstrated the risk of ASC increased when compared with patients with low (<30 mg/dl) and elevated (30–50 mg/dl) levels of Lp(a) over 8 years (Gray’s test; P = 0.16). Within analyses adjusted for age and BMI, the hazard ratio was 2.04 (95% CI, 1.0–4.2; P = 0.05) in the high versus low Lp(a) groups. Overall, this study adds support for recent guidelines recommending a one-time measurement of Lp(a) levels in cardiovascular risk assessment to identify subpopulations at risk and underscores the potential utility of this marker even among older individuals at a time when potent Lp(a)-lowering agents are undergoing evaluation for clinical use.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mandy E Turner
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonas Zimmer
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Chapurlat
- INSERM UMR 1033, University of Lyon, Hospices Civils de Lyon, 69437 Lyon, France
| | - Tan Pham
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aruna D Pradhan
- Division of Preventive Medicine, Brigham and Woman's Hospital Harvard Medical School, Boston, MA, USA; Division of Cardiovascular Medicine, VA Boston Medical Centre, Boston, MA, USA
| | - Pawel Szulc
- INSERM UMR 1033, University of Lyon, Hospices Civils de Lyon, 69437 Lyon, France.
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Kamtchum-Tatuene J, Jickling GC. Is stenting equivalent to endarterectomy for asymptomatic carotid stenosis? Lancet 2022; 399:1114-1115. [PMID: 35305736 DOI: 10.1016/s0140-6736(21)02498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/06/2021] [Indexed: 10/18/2022]
Affiliation(s)
- Joseph Kamtchum-Tatuene
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Glen C Jickling
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
9
|
Elevated lipoprotein(a) and genetic polymorphisms in the LPA gene may predict cardiovascular events. Sci Rep 2022; 12:3588. [PMID: 35246583 PMCID: PMC8897417 DOI: 10.1038/s41598-022-07596-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Elevated lipoprotein(a) [Lp(a)] is a risk factor for coronary heart disease (CHD), but there are few studies on the prediction of future cardiovascular events by Lp(a) and its LPA single nucleotide polymorphisms (SNPs). The aim of this study was to investigate whether elevated Lp(a) and its SNPs can predict cardiovascular events. We evaluated whether Lp(a) and LPA SNPs rs6415084 and rs12194138 were associated with the incidence rate and severity of CHD. All participants were followed up for 5 years. Elevated Lp(a) is an independent risk factor for the risk and severity of CHD (CHD group vs. control group: OR = 1.793, 95% CI: 1.053–2.882, p = 0.043; multiple-vessel disease group vs. single-vessel disease group: OR = 1.941, 95% CI: 1.113–3.242, p = 0.027; high GS group vs. low GS group: OR = 2.641, 95% CI: 1.102–7.436, p = 0.040). Both LPA SNPs were risk factors for CHD, and were positively associated with the severity of CHD (LPA SNPs rs6415084: CHD group vs. control group: OR = 1.577, 95% CI: 1.105–1.989, p = 0.004; multiple-vessel disease group vs. single-vessel disease group: OR = 1.613, 95% CI: 1.076–2.641, p = 0.030; high GS group vs. low GS group: OR = 1.580, 95% CI: 1.088–2.429, p = 0.024; LPA SNPs rs12194138: CHD group vs. control group: OR = 1.475, 95% CI: 1.040–3.002, p = 0.035; multiple-vessel disease group vs. single-vessel disease group: OR = 2.274, 95% CI: 1.060–5.148, p = 0.038; high GS group vs. low GS group: OR = 2.067, 95% CI: 1.101–4.647, p = 0.021). After 5 years of follow-up, elevated Lp(a) and LPA SNPs rs6415084 and rs12194138 can independently predict cardiovascular events. The increase of serum Lp(a) and LPA SNPs rs6415084 and rs12194138 are associated with increased prevalence and severity of CHD, and can independently predict cardiovascular events.
Collapse
|
10
|
Verwer MC, Waissi F, Mekke JM, Dekker M, Stroes ESG, de Borst GJ, Kroon J, Hazenberg CEVB, de Kleijn DPV. High lipoprotein(a) is associated with major adverse limb events after femoral artery endarterectomy. Atherosclerosis 2021; 349:196-203. [PMID: 34857353 DOI: 10.1016/j.atherosclerosis.2021.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS AND AIMS Elevated lipoprotein(a) (Lp[a]) has been identified as a causal risk factor for cardiovascular disease including peripheral arterial disease (PAD). Although Lp(a) is associated with the diagnosis of PAD, it remains elusive whether there is an association of Lp(a) with cardiovascular and limb events in patients with severe PAD. METHODS Preoperative plasma Lp(a) levels were measured in 384 consecutive patients that underwent iliofemoral endarterectomy and were included in the Athero-Express biobank. Our primary objective was to assess the association of Lp(a) levels with Major Adverse Limb Events (MALE). Our secondary objective was to relate Lp(a) levels to Major Adverse Cardiovascular Events (MACE) and femoral plaque composition that was acquired from baseline surgery. RESULTS During a median follow-up time of 5.6 years, a total of 225 MALE were recorded in 132 patients. Multivariable analysis, including history of peripheral intervention, age, diabetes mellitus, end stage renal disease and PAD disease stages, showed that Lp(a) was independently associated with first (HR of 1.36 (95% CI 1.02-1.82) p = .036) and recurrent MALE (HR 1.36 (95% CI 1.10-1.67) p = .004). A total of 99 MACE were recorded but Lp(a) levels were not associated with MACE.sLp(a) levels were significantly associated with a higher presence of smooth muscle cells in the femoral plaque, although this was not associated with MALE or MACE. CONCLUSIONS Plasma Lp(a) is independently associated with first and consecutive MALE after iliofemoral endarterectomy. Hence, in patients who undergo iliofemoral endarterectomy, Lp(a) could be considered as a biomarker to enhance risk stratification for future MALE.
Collapse
Affiliation(s)
- Maarten C Verwer
- Department of Vascular Surgery, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands.
| | - Farahnaz Waissi
- Department of Vascular Surgery, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands; Netherlands Heart Institute, Moreelsepark 1, 3511, EP, Utrecht, the Netherlands; Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Joost M Mekke
- Department of Vascular Surgery, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Mirthe Dekker
- Department of Vascular Surgery, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands; Netherlands Heart Institute, Moreelsepark 1, 3511, EP, Utrecht, the Netherlands; Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Constantijn E V B Hazenberg
- Department of Vascular Surgery, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands; Laboratory of Experimental Cardiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands; Netherlands Heart Institute, Moreelsepark 1, 3511, EP, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Parthymos I, Kostapanos MS, Mikhailidis DP, Florentin M. Lipoprotein (a) as a treatment target for cardiovascular disease prevention and related therapeutic strategies: a critical overview. Eur J Prev Cardiol 2021; 29:739-755. [PMID: 34389859 DOI: 10.1093/eurjpc/zwab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/30/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
Abstract
Advances in several fields of cardiovascular (CV) medicine have produced new treatments (e.g. to treat dyslipidaemia) that have proven efficacy in terms of reducing deaths and providing a better quality of life. However, the burden of CV disease (CVD) remains high. Thus, there is a need to search for new treatment targets. Lipoprotein (a) [Lp(a)] has emerged as a potential novel target since there is evidence that it contributes to CVD events. In this narrative review, we present the current evidence of the potential causal relationship between Lp(a) and CVD and discuss the likely magnitude of Lp(a) lowering required to produce a clinical benefit. We also consider current and investigational treatments targeting Lp(a), along with the potential cost of these interventions.
Collapse
Affiliation(s)
- Ioannis Parthymos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Michael S Kostapanos
- Department of General Medicine, Lipid Clinic, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London NW3 2QG, UK
| | - Matilda Florentin
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
12
|
Iannuzzi A, Rubba P, Gentile M, Mallardo V, Calcaterra I, Bresciani A, Covetti G, Cuomo G, Merone P, Di Lorenzo A, Alfieri R, Aliberti E, Giallauria F, Di Minno MND, Iannuzzo G. Carotid Atherosclerosis, Ultrasound and Lipoproteins. Biomedicines 2021; 9:biomedicines9050521. [PMID: 34066616 PMCID: PMC8148516 DOI: 10.3390/biomedicines9050521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Carotid artery plaques are considered a measure of atherosclerosis and are associated with an increased risk of atherosclerotic cardiovascular disease, particularly ischemic strokes. Monitoring of patients with an elevated risk of stroke is critical in developing better prevention strategies. Non-invasive imaging allows us to directly see atherosclerosis in vessels and many features that are related to plaque vulnerability. A large body of evidence has demonstrated a strong correlation between some lipid parameters and carotid atherosclerosis. In this article, we review the relationship between lipids and atherosclerosis with a focus on carotid ultrasound, the most common method to estimate atherosclerotic load.
Collapse
Affiliation(s)
- Arcangelo Iannuzzi
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy; (A.B.); (G.C.)
- Correspondence:
| | - Paolo Rubba
- Department of Clinical Medicine, Surgery Federico II University, 80131 Naples, Italy; (P.R.); (M.G.); (V.M.); (I.C.); (M.N.D.D.M.); (G.I.)
| | - Marco Gentile
- Department of Clinical Medicine, Surgery Federico II University, 80131 Naples, Italy; (P.R.); (M.G.); (V.M.); (I.C.); (M.N.D.D.M.); (G.I.)
| | - Vania Mallardo
- Department of Clinical Medicine, Surgery Federico II University, 80131 Naples, Italy; (P.R.); (M.G.); (V.M.); (I.C.); (M.N.D.D.M.); (G.I.)
| | - Ilenia Calcaterra
- Department of Clinical Medicine, Surgery Federico II University, 80131 Naples, Italy; (P.R.); (M.G.); (V.M.); (I.C.); (M.N.D.D.M.); (G.I.)
| | - Alessandro Bresciani
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy; (A.B.); (G.C.)
| | - Giuseppe Covetti
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy; (A.B.); (G.C.)
| | - Gianluigi Cuomo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (G.C.); (P.M.); (A.D.L.); (R.A.); (F.G.)
| | - Pasquale Merone
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (G.C.); (P.M.); (A.D.L.); (R.A.); (F.G.)
| | - Anna Di Lorenzo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (G.C.); (P.M.); (A.D.L.); (R.A.); (F.G.)
| | - Roberta Alfieri
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (G.C.); (P.M.); (A.D.L.); (R.A.); (F.G.)
| | - Emilio Aliberti
- North Tees University Hospital, Stockton-on Tees TS19 8PE, UK;
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (G.C.); (P.M.); (A.D.L.); (R.A.); (F.G.)
| | - Matteo Nicola Dario Di Minno
- Department of Clinical Medicine, Surgery Federico II University, 80131 Naples, Italy; (P.R.); (M.G.); (V.M.); (I.C.); (M.N.D.D.M.); (G.I.)
| | - Gabriella Iannuzzo
- Department of Clinical Medicine, Surgery Federico II University, 80131 Naples, Italy; (P.R.); (M.G.); (V.M.); (I.C.); (M.N.D.D.M.); (G.I.)
| |
Collapse
|
13
|
Waissi F, de Kleijn DPV, Kroon J. Response by Waissi et al Regarding Article, "Elevated Lp(a) (Lipoprotein[a]) Levels Increase Risk of 30-Day Major Adverse Cardiovascular Events in Patients Following Carotid Endarterectomy". Stroke 2021; 52:e66-e67. [PMID: 33493038 DOI: 10.1161/strokeaha.120.033240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Farahnaz Waissi
- Division of Surgical Specialties, Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, the Netherlands (F.W., D.P.V.d.K.).,Netherlands Heart Institute, Utrecht (F.W., D.P.V.d.K.).,Department of Cardiology (F.W.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Dominique P V de Kleijn
- Division of Surgical Specialties, Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, the Netherlands (F.W., D.P.V.d.K.).,Netherlands Heart Institute, Utrecht (F.W., D.P.V.d.K.)
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine (J.K.), Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| |
Collapse
|
14
|
Kamtchum-Tatuene J, Jickling GC. Letter by Kamtchum-Tatuene and Jickling Regarding Article, "Elevated Lp(a) (Lipoprotein[a]) Levels Increase Risk of 30-Day Major Adverse Cardiovascular Events in Patients Following Carotid Endarterectomy". Stroke 2021; 52:e64-e65. [PMID: 33493050 DOI: 10.1161/strokeaha.120.032698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joseph Kamtchum-Tatuene
- Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Glen C Jickling
- Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
15
|
Bigazzi F, Minichilli F, Sbrana F, Pino BD, Corsini A, Watts GF, Sirtori CR, Ruscica M, Sampietro T. Gender difference in lipoprotein(a) concentration as a predictor of coronary revascularization in patients with known coronary artery disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158869. [PMID: 33333178 DOI: 10.1016/j.bbalip.2020.158869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Whether there is a gender difference in the impact of elevated plasma Lp(a) levels on recurrent coronary events remains unclear. We, therefore, evaluated the association between Lp(a) levels and the occurrence of major adverse coronary events in a large series of coronary patients (32% women). METHODS This single-center prospective cohort study investigated 3034 consecutive patients admitted to the Coronary Care Unit with a diagnosis of coronary ischemia. According to the inclusion criteria, 2374 patients completed the follow-up (mean of 2 years). The end-points were non-fatal myocardial infarction (MI), revascularization and coronary deaths. RESULTS Elevated Lp(a) levels were significantly associated with rate of revascularization, but not with non-fatal MI and cardiac death. According to Lp(a) stratification (≤30 mg/dl, >30-50 mg/dl and ≥50 mg/dl), there was a significant rise of revascularization events in the whole sample of participants, with a trend in hazard ratio (HR) of 1.23 (95% CI 1.04-1.46) and a 6% rise for every 10 mg/dl increment in Lp(a) levels. This effect was mainly driven by women (HR 2.04, 95%CI 1.33-3.12) who showed a 14% incremental risk for every 10 mg/dl rise in Lp(a) levels. CONCLUSIONS In patients with coronary artery disease, elevated plasma Lp(a) levels were found to be a potentially useful predictor of the need for coronary revascularizations, especially in women.
Collapse
Affiliation(s)
- Federico Bigazzi
- U.O. Lipoapheresis and Center for Inherited Dyslipidaemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Fabrizio Minichilli
- Unit of Environmental Epidemiology and Disease Registries, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Francesco Sbrana
- U.O. Lipoapheresis and Center for Inherited Dyslipidaemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Beatrice Dal Pino
- U.O. Lipoapheresis and Center for Inherited Dyslipidaemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; Multimedica IRCCS, Milano, Italy
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Australia
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.
| | - Tiziana Sampietro
- U.O. Lipoapheresis and Center for Inherited Dyslipidaemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| |
Collapse
|