1
|
Beber S, Capasso R, Maffei C, Tettamanti M, Miceli G. Distinct neural correlates of morphosyntactic and thematic comprehension processes in aphasia. Brain Commun 2025; 7:fcaf093. [PMID: 40129862 PMCID: PMC11930358 DOI: 10.1093/braincomms/fcaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Functional neuroimaging studies in neurotypical subjects correlate sentence comprehension to a left fronto-temporo-parietal network. Recent voxel-based lesion-symptom mapping (VLSM) studies of aphasia confirm the link between sentence comprehension and a left posterior region including the angular gyrus, the supra-marginal gyrus and the postero-superior division of the temporal lobe but support left pre-frontal involvement inconsistently. However, these studies focus on thematic role assignment without considering morphosyntactic processes. Hence, available VLSM evidence could provide a partial view of the neurofunctional substrate of sentence comprehension. In the present VLSM study, both morphosyntactic and thematic processes were evaluated systematically and in the same sentence types in each participant, to provide a more detailed picture of the sentence comprehension network. Participants (33 patients with post-stroke aphasia and 90 healthy controls) completed a sentence-picture matching task in which active and passive, declarative reversible sentences were paired with morphosyntactic, thematic and lexical-semantic alternatives. Phonological short-term memory tasks were also administered. Aphasic participants were selected from an initial pool of 70 because they scored below norm on thematic foils (n = 18) or on thematic and morphological foils (n = 15), but within the norm on lexical-semantic foils. The neurofunctional correlates of morphosyntactic and thematic processes were starkly distinguishable. Pre-frontal areas including the inferior and middle frontal gyrus were involved directly in processing local morphosyntactic features and only indirectly in thematic processes. When these areas were damaged, morphosyntactic errors always co-occurred with thematic errors, probably because morphosyntactic damage disrupts the assignment of grammatical roles and ultimately that of thematic roles. Morphosyntactic errors were not influenced by word order canonicity. In contrast, selective thematic role reversals were linked to temporal and parietal damage and were significantly influenced by word order, occurring on passive more than on active sentences. An area including the angular and supra-marginal gyrus was critical for processing non-canonical word order. In sentence comprehension, pre-frontal regions are critical for processing local morphosyntactic features (at least in simple declarative sentences). Temporal and parietal regions are critical for thematic processes. Postero-superior temporal areas are involved in retrieving verb argument structure. Parietal areas are critical for assigning morphosyntactically analysed constituents to the appropriate thematic role, thus serving a crucial function in thematic re-analysis. Each area plays a prevailing but not exclusive role in these processes, interacting with other areas in the network and possibly providing both the language-specific and the domain-general resources needed at various stages of sentence comprehension.
Collapse
Affiliation(s)
- Sabrina Beber
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
| | | | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston 02129, MA, USA
| | - Marco Tettamanti
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
- Brain Associates, Roma 00195, Italy
| |
Collapse
|
2
|
Gong H, Jia L, Peng Q, Xiao R, Fan J, Lei J, Chen L. The role of the phonological loop and the visual sketchpad in speechreading of students with hearing loss in China. CLINICAL LINGUISTICS & PHONETICS 2025:1-15. [PMID: 39957559 DOI: 10.1080/02699206.2025.2464539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
The study examined the role of two slave systems of working memory (WM), the phonological loop and the visuospatial sketchpad, in the speechreading performance of Chinese students with hearing loss (HL). It was motivated by the question whether the visual speech information is processed in the phonological loop as linguistic information or as visuospatial information in visuospatial sketchpad. Seventy-three young adults with HL completed Chinese speech-reading tests (targeting monosyllabic words, disyllabic words, and sentences), the WM test batteries, and a cognitive processing speed test. The hierarchical regression analyses showed that the articulatory rehearsal process and phonological store were the most important predictors of all of the components of WM for speechreading. By contrast, performance on visual spatial working memory tasks was not significantly correlated with speechreading performance. These results demonstrated that speechreading in Chinese students with HL relies more on the efficiency of high-level phonological storing and articulatory rehearsal in the phonological loop, rather than the shallow processing of pure visual features in the visuospatial sketchpad.
Collapse
Affiliation(s)
- Huina Gong
- Department of Special Education, Central China Normal University, Wuhan, China
| | - Ling Jia
- College of Educational Science, Xinjiang Normal University, Urumqi, China
| | - Qin Peng
- Shenzhen Second Special Education School, Shenzhen, China
| | - Ran Xiao
- School of Education, Hefei University, Hefei, China
| | - Jialu Fan
- School of Special Education, Nanjing Normal University of Special Education, Nanjing, China
| | - Jianghua Lei
- Department of Special Education, Central China Normal University, Wuhan, China
| | - Liang Chen
- Communication Sciences and Special Education, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Gao C, Wu J, Cheng Y, Ke Y, Qu X, Yang M, Hartwigsen G, Chen L. Continuous theta-burst stimulation demonstrates language-network-specific causal effects on syntactic processing. Neuroimage 2025; 306:121014. [PMID: 39793638 DOI: 10.1016/j.neuroimage.2025.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Hierarchical syntactic structure processing is proposed to be at the core of the human language faculty. Syntactic processing is supported by the left fronto-temporal language network, including a core area in the inferior frontal gyrus as well as its interaction with the posterior temporal lobe (i.e., "IFG + pTL"). Moreover, during complex syntactic processes, left IFG also interacts with executive control regions, such as the superior parietal lobule (SPL). However, the functional relevance of these network interactions is largely unclear. In particular, it remains to be demonstrated whether the language network plays a specific causal role in comparatively challenging syntactic processes, separable from the interaction between IFG and other general cognitive regions (i.e., "IFG + SPL" in the present study). The present study was designed to address this question. Thirty healthy adult Chinese native speakers underwent four continuous theta-burst stimulation (cTBS) sessions: stimulation over IFG, stimulation over IFG + pTL, stimulation over IFG + SPL, and sham stimulation over IFG + irrelevant region in a pseudo-randomized order. In each session, participants were required to label the syntactic categories of jabberwocky sequences retaining real Chinese function words (e.g., "ムウ" is labeled as a verb phrase (VP): "[VP [V]N]", similar to "ziff-ed a wug", where "ziff" and "wug" are nonsense pseudowords, and the whole phrase is a VP). Contrasted with sham cTBS, change percentage of accuracy rates (ΔACCR%), reaction times (ΔRT%), and coefficient of variation (ΔCV%) were calculated and compared across conditions. First-order behavioral results showed a significantly higher ΔCV% after stimulating IFG + pTL compared to stimulating the IFG + SPL, indicating that syntactic processing became more unstable. Second-order representational similarity analysis (RSA) results revealed that cTBS effects on IFG + pTL selectively depended on the hierarchical embedding depth, a key measure of syntactic hierarchical complexity, whereas the effects on IFG + SPL were sensitive to the dependency length, a crucial index reflecting the working memory load. Collectively, these findings reveal the specific causal relevance of the language areas for hierarchical syntactic processing, separable from other general cognitive (such as working memory) capacities. These results shed light on the uniqueness and the specific causal role of the language network for the human language faculty, further supporting the causally separable view of the functional dissociation between the language network and the domain-general/multiple-demand network.
Collapse
Affiliation(s)
- Chenyang Gao
- School of Global Education and Development, University of Chinese Academy of Social Sciences, Beijing, China
| | - Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yuming Ke
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Mingchuan Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
4
|
Matchin W, Almeida D, Hickok G, Sprouse J. A Functional Magnetic Resonance Imaging Study of Phrase Structure and Subject Island Violations. J Cogn Neurosci 2025; 37:414-442. [PMID: 39509099 PMCID: PMC11753796 DOI: 10.1162/jocn_a_02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
In principle, functional neuroimaging provides uniquely informative data in addressing linguistic questions, because it can indicate distinct processes that are not apparent from behavioral data alone. This could involve adjudicating the source of unacceptability via the different patterns of elicited brain responses to different ungrammatical sentence types. However, it is difficult to interpret brain activations to syntactic violations. Such responses could reflect processes that have nothing intrinsically related to linguistic representations, such as domain-general executive function abilities. To facilitate the potential use of functional neuroimaging methods to identify the source of different syntactic violations, we conducted a functional magnetic resonance imaging experiment to identify the brain activation maps associated with two distinct syntactic violation types: phrase structure (created by inverting the order of two adjacent words within a sentence) and subject islands (created by extracting a wh-phrase out of an embedded subject). The comparison of these violations to control sentences surprisingly showed no indication of a generalized violation response, with almost completely divergent activation patterns. Phrase structure violations seemingly activated regions previously implicated in verbal working memory and structural complexity in sentence processing, whereas the subject islands appeared to activate regions previously implicated in conceptual-semantic processing, broadly defined. We review our findings in the context of previous research on syntactic and semantic violations using ERPs. Although our results suggest potentially distinct underlying mechanisms underlying phrase structure and subject island violations, our results are tentative and suggest important methodological considerations for future research in this area.
Collapse
|
5
|
Matchin W, Mollasaraei ZK, Bonilha L, Rorden C, Hickok G, den Ouden D, Fridriksson J. Verbal working memory and syntactic comprehension segregate into the dorsal and ventral streams, respectively. Brain Commun 2024; 6:fcae449. [PMID: 39713237 PMCID: PMC11660927 DOI: 10.1093/braincomms/fcae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
Syntactic processing and verbal working memory are both essential components to sentence comprehension. Nonetheless, the separability of these systems in the brain remains unclear. To address this issue, we performed causal-inference analyses based on lesion and connectome network mapping using MRI and behavioural testing in two groups of individuals with chronic post-stroke aphasia. We employed a rhyme judgement task with heavy working memory load without articulatory confounds, controlling for the overall ability to match auditory words to pictures and to perform a metalinguistic rhyme judgement, isolating the effect of working memory load (103 individuals). We assessed non-canonical sentence comprehension, isolating syntactic processing by incorporating residual rhyme judgement performance as a covariate for working memory load (78 individuals). Voxel-based lesion analyses and structural connectome-based lesion symptom mapping controlling for total lesion volume were performed, with permutation testing to correct for multiple comparisons (4000 permutations). We observed that effects of working memory load localized to dorsal stream damage: posterior temporal-parietal lesions and frontal-parietal white matter disconnections. These effects were differentiated from syntactic comprehension deficits, which were primarily associated with ventral stream damage: lesions to temporal lobe and temporal-parietal white matter disconnections, particularly when incorporating the residual measure of working memory load as a covariate. Our results support the conclusion that working memory and syntactic processing are associated with distinct brain networks, largely loading onto dorsal and ventral streams, respectively.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Zeinab K Mollasaraei
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA 92697, USA
- Department of Language Science, University of California Irvine, Irvine, CA 92697, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Mondal P. A Critical Perspective on the (Neuro)biological Foundations of Language and Linguistic Cognition. Integr Psychol Behav Sci 2024; 58:1501-1525. [PMID: 36562960 DOI: 10.1007/s12124-022-09741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
The biological foundations of language reflect assumptions about the way language and biology relate to one another, and with the rise of biological studies of language, we appear to have come closer to a deep understanding of linguistic cognition-the part of cognition constituted by language. This article argues that relations of neurobiological and genetic instantiation between linguistic cognition and the underlying biological substrate are ultimately irrelevant to understanding the higher-level structure and form of language. Linguistic patterns and those that make up the character of cognition constituted by language do not simply arise from the biological substrate because higher-level structures typically assume forms based on constraints that only emerge once these new levels are constructed. The goal is not to show how the mapping problem between linguistic cognition and neurobiology can be solved. Rather, the goal is to show the mapping problem ceases to exist once a different understanding of language-(neuro)biology relations is embraced. With this goal, this article first uncovers a number of logical and conceptual fallacies in strategies deployed in understanding language-(neuro)biology relations. After having shown these flaws, the article offers an alternative view of language-biology relations that shows how biological constraints shape language (nature and form), making it what it is.
Collapse
Affiliation(s)
- Prakash Mondal
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
7
|
Riccardi N, Zhao X, den Ouden DB, Fridriksson J, Desai RH, Wang Y. Network-based statistics distinguish anomic and Broca's aphasia. Brain Struct Funct 2024; 229:2237-2253. [PMID: 38160205 DOI: 10.1007/s00429-023-02738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Aphasia is a speech-language impairment commonly caused by damage to the left hemisphere. The neural mechanisms that underpin different types of aphasia and their symptoms are still not fully understood. This study aims to identify differences in resting-state functional connectivity between anomic and Broca's aphasia measured through resting-state functional magnetic resonance imaging (rs-fMRI). METHODS We used the network-based statistic (NBS) method, as well as voxel- and connectome-based lesion symptom mapping (V-, CLSM), to identify distinct neural correlates of the anomic and Broca's groups. To control for lesion effect, we included lesion volume as a covariate in both the NBS method and LSM. RESULTS NBS identified a subnetwork located in the dorsal language stream bilaterally, including supramarginal gyrus, primary sensory, motor, and auditory cortices, and insula. The connections in the subnetwork were weaker in the Broca's group than the anomic group. The properties of the subnetwork were examined through complex network measures, which indicated that regions in right inferior frontal sulcus, right paracentral lobule, and bilateral superior temporal gyrus exhibit intensive interaction. Left superior temporal gyrus, right postcentral gyrus, and left supramarginal gyrus play an important role in information flow and overall communication efficiency. Disruption of this network underlies the constellation of symptoms associated with Broca's aphasia. Whole-brain CLSM did not detect any significant connections, suggesting an advantage of NBS when thousands of connections are considered. However, CLSM identified connections that differentiated Broca's from anomic aphasia when analysis was restricted to a hypothesized network of interest. DISCUSSION We identified novel signatures of resting-state brain network differences between groups of individuals with anomic and Broca's aphasia. We identified a subnetwork of connections that statistically differentiated the resting-state brain networks of the two groups, in comparison with standard CLSM results that yielded isolated connections. Network-level analyses are useful tools for the investigation of the neural correlates of language deficits post-stroke.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Xingpei Zhao
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Yuan Wang
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
8
|
Farrar R, Ashjaei S, Arjmandi MK. Speech-evoked cortical activities and speech recognition in adult cochlear implant listeners: a review of functional near-infrared spectroscopy studies. Exp Brain Res 2024; 242:2509-2530. [PMID: 39305309 PMCID: PMC11527908 DOI: 10.1007/s00221-024-06921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024]
Abstract
Cochlear implants (CIs) are the most successful neural prostheses, enabling individuals with severe to profound hearing loss to access sounds and understand speech. While CI has demonstrated success, speech perception outcomes vary largely among CI listeners, with significantly reduced performance in noise. This review paper summarizes prior findings on speech-evoked cortical activities in adult CI listeners using functional near-infrared spectroscopy (fNIRS) to understand (a) speech-evoked cortical processing in CI listeners compared to normal-hearing (NH) individuals, (b) the relationship between these activities and behavioral speech recognition scores, (c) the extent to which current fNIRS-measured speech-evoked cortical activities in CI listeners account for their differences in speech perception, and (d) challenges in using fNIRS for CI research. Compared to NH listeners, CI listeners had diminished speech-evoked activation in the middle temporal gyrus (MTG) and in the superior temporal gyrus (STG), except one study reporting an opposite pattern for STG. NH listeners exhibited higher inferior frontal gyrus (IFG) activity when listening to CI-simulated speech compared to natural speech. Among CI listeners, higher speech recognition scores correlated with lower speech-evoked activation in the STG, higher activation in the left IFG and left fusiform gyrus, with mixed findings in the MTG. fNIRS shows promise for enhancing our understanding of cortical processing of speech in CI listeners, though findings are mixed. Challenges include test-retest reliability, managing noise, replicating natural conditions, optimizing montage design, and standardizing methods to establish a strong predictive relationship between fNIRS-based cortical activities and speech perception in CI listeners.
Collapse
Affiliation(s)
- Reed Farrar
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Samin Ashjaei
- Department of Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, SC, 29208, USA
| | - Meisam K Arjmandi
- Department of Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, SC, 29208, USA.
- Institute for Mind and Brain, University of South Carolina, Barnwell Street, Columbia, SC, 29208, USA.
| |
Collapse
|
9
|
Wu J, Cheng Y, Qu X, Kang T, Cai Y, Wang P, Zaccarella E, Friederici AD, Hartwigsen G, Chen L. Continuous Theta-Burst Stimulation on the Left Posterior Inferior Frontal Gyrus Perturbs Complex Syntactic Processing Stability in Mandarin Chinese. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:608-627. [PMID: 38939729 PMCID: PMC11210936 DOI: 10.1162/nol_a_00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/12/2024] [Indexed: 06/29/2024]
Abstract
The structure of human language is inherently hierarchical. The left posterior inferior frontal gyrus (LpIFG) is proposed to be a core region for constructing syntactic hierarchies. However, it remains unclear whether LpIFG plays a causal role in syntactic processing in Mandarin Chinese and whether its contribution depends on syntactic complexity, working memory, or both. We addressed these questions by applying inhibitory continuous theta-burst stimulation (cTBS) over LpIFG. Thirty-two participants processed sentences containing embedded relative clauses (i.e., complex syntactic processing), syntactically simpler coordinated sentences (i.e., simple syntactic processing), and non-hierarchical word lists (i.e., word list processing) after receiving real or sham cTBS. We found that cTBS significantly increased the coefficient of variation, a representative index of processing stability, in complex syntactic processing (esp., when subject relative clause was embedded) but not in the other two conditions. No significant changes in d' and reaction time were detected in these conditions. The findings suggest that (a) inhibitory effect of cTBS on the LpIFG might be prominent in perturbing the complex syntactic processing stability but subtle in altering the processing quality; and (b) the causal role of the LpIFG seems to be specific for syntactic processing rather than working memory capacity, further evidencing their separability in LpIFG. Collectively, these results support the notion of the LpIFG as a core region for complex syntactic processing across languages.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Tianmin Kang
- Department of Psychology, Skidmore College, Saratoga Springs, NY, USA
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Peng Wang
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
Fahey D, Fridriksson J, Hickok G, Matchin W. Lesion-symptom Mapping of Acceptability Judgments in Chronic Poststroke Aphasia Reveals the Neurobiological Underpinnings of Receptive Syntax. J Cogn Neurosci 2024; 36:1141-1155. [PMID: 38437175 PMCID: PMC11095916 DOI: 10.1162/jocn_a_02134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Disagreements persist regarding the neural basis of syntactic processing, which has been linked both to inferior frontal and posterior temporal regions of the brain. One focal point of the debate concerns the role of inferior frontal areas in receptive syntactic ability, which is mostly assessed using sentence comprehension involving complex syntactic structures, a task that is potentially confounded with working memory. Syntactic acceptability judgments may provide a better measure of receptive syntax by reducing the need to use high working memory load and complex sentences and by enabling assessment of various types of syntactic violations. We therefore tested the perception of grammatical violations by people with poststroke aphasia (n = 25), along with matched controls (n = 16), using English sentences involving errors in word order, agreement, or subcategorization. Lesion data were also collected. Control participants performed near ceiling in accuracy with higher discriminability of agreement and subcategorization violations than word order; aphasia participants were less able to discriminate violations, but, on average, paralleled control participants discriminability of types of violations. Lesion-symptom mapping showed a correlation between discriminability and posterior temporal regions, but not inferior frontal regions. We argue that these results diverge from models holding that frontal areas are amodal core regions in syntactic structure building and favor models that posit a core hierarchical system in posterior temporal regions.
Collapse
|
11
|
Zhang Y, Taft M, Tang J, Li L. Neural correlates of semantic-driven syntactic parsing in sentence comprehension. Neuroimage 2024; 289:120543. [PMID: 38369168 DOI: 10.1016/j.neuroimage.2024.120543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024] Open
Abstract
For sentence comprehension, information carried by semantic relations between constituents must be combined with other information to decode the constituent structure of a sentence, due to atypical and noisy situations of language use. Neural correlates of decoding sentence structure by semantic information have remained largely unexplored. In this functional MRI study, we examine the neural basis of semantic-driven syntactic parsing during sentence reading and compare it with that of other types of syntactic parsing driven by word order and case marking. Chinese transitive sentences of various structures were investigated, differing in word order, case making, and agent-patient semantic relations (i.e., same vs. different in animacy). For the non-canonical unmarked sentences without usable case marking, a semantic-driven effect triggered by agent-patient ambiguity was found in the left inferior frontal gyrus opercularis (IFGoper) and left inferior parietal lobule, with the activity not being modulated by naturalness factors of the sentences. The comparison between each type of non-canonical sentences with canonical sentences revealed that the non-canonicity effect engaged the left posterior frontal and temporal regions, in line with previous studies. No extra neural activity was found responsive to case marking within the non-canonical sentences. A word order effect across all types of sentences was also found in the left IFGoper, suggesting a common neural substrate between different types of parsing. The semantic-driven effect was also observed for the non-canonical marked sentences but not for the canonical sentences, suggesting that semantic information is used in decoding sentence structure in addition to case marking. The current findings illustrate the neural correlates of syntactic parsing with semantics, and provide neural evidence of how semantics facilitates syntax together with other information.
Collapse
Affiliation(s)
- Yun Zhang
- Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China
| | - Marcus Taft
- Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China; School of Psychology, UNSW Sydney, Australia
| | - Jiaman Tang
- Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China
| | - Le Li
- Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China.
| |
Collapse
|
12
|
Barbieri E, Lukic S, Rogalski E, Weintraub S, Mesulam MM, Thompson CK. Neural mechanisms of sentence production: a volumetric study of primary progressive aphasia. Cereb Cortex 2024; 34:bhad470. [PMID: 38100360 PMCID: PMC10793577 DOI: 10.1093/cercor/bhad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Studies on the neural bases of sentence production have yielded mixed results, partly due to differences in tasks and participant types. In this study, 101 individuals with primary progressive aphasia (PPA) were evaluated using a test that required spoken production following an auditory prime (Northwestern Assessment of Verbs and Sentences-Sentence Production Priming Test, NAVS-SPPT), and one that required building a sentence by ordering word cards (Northwestern Anagram Test, NAT). Voxel-Based Morphometry revealed that gray matter (GM) volume in left inferior/middle frontal gyri (L IFG/MFG) was associated with sentence production accuracy on both tasks, more so for complex sentences, whereas, GM volume in left posterior temporal regions was exclusively associated with NAVS-SPPT performance and predicted by performance on a Digit Span Forward (DSF) task. Verb retrieval deficits partly mediated the relationship between L IFG/MFG and performance on the NAVS-SPPT. These findings underscore the importance of L IFG/MFG for sentence production and suggest that this relationship is partly accounted for by verb retrieval deficits, but not phonological loop integrity. In contrast, it is possible that the posterior temporal cortex is associated with auditory short-term memory ability, to the extent that DSF performance is a valid measure of this in aphasia.
Collapse
Affiliation(s)
- Elena Barbieri
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Sladjana Lukic
- Department of Communication Sciences and Disorders, Adelphi University, 158 Cambridge Avenue, Garden City, NY 11530, United States
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Psychiatry and Behavioral Sciences, Northwestern University, 676 N Saint Clair Street, Chicago, IL 60611, United States
| | - Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Cynthia K Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| |
Collapse
|
13
|
Castellucci GA, Kovach CK, Tabasi F, Christianson D, Greenlee JD, Long MA. A frontal cortical network is critical for language planning during spoken interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554639. [PMID: 37693383 PMCID: PMC10491113 DOI: 10.1101/2023.08.26.554639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Many brain areas exhibit activity correlated with language planning, but the impact of these dynamics on spoken interaction remains unclear. Here we use direct electrical stimulation to transiently perturb cortical function in neurosurgical patient-volunteers performing a question-answer task. Stimulating structures involved in speech motor function evoked diverse articulatory deficits, while perturbations of caudal inferior and middle frontal gyri - which exhibit preparatory activity during conversational turn-taking - led to response errors. Perturbation of the same planning-related frontal regions slowed inter-speaker timing, while faster responses could result from stimulation of sites located in other areas. Taken together, these findings further indicate that caudal inferior and middle frontal gyri constitute a critical planning network essential for interactive language use.
Collapse
|
14
|
Matchin W, den Ouden DB, Basilakos A, Stark BC, Fridriksson J, Hickok G. Grammatical Parallelism in Aphasia: A Lesion-Symptom Mapping Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:550-574. [PMID: 37946730 PMCID: PMC10631800 DOI: 10.1162/nol_a_00117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
Sentence structure, or syntax, is potentially a uniquely creative aspect of the human mind. Neuropsychological experiments in the 1970s suggested parallel syntactic production and comprehension deficits in agrammatic Broca's aphasia, thought to result from damage to syntactic mechanisms in Broca's area in the left frontal lobe. This hypothesis was sometimes termed overarching agrammatism, converging with developments in linguistic theory concerning central syntactic mechanisms supporting language production and comprehension. However, the evidence supporting an association among receptive syntactic deficits, expressive agrammatism, and damage to frontal cortex is equivocal. In addition, the relationship among a distinct grammatical production deficit in aphasia, paragrammatism, and receptive syntax has not been assessed. We used lesion-symptom mapping in three partially overlapping groups of left-hemisphere stroke patients to investigate these issues: grammatical production deficits in a primary group of 53 subjects and syntactic comprehension in larger sample sizes (N = 130, 218) that overlapped with the primary group. Paragrammatic production deficits were significantly associated with multiple analyses of syntactic comprehension, particularly when incorporating lesion volume as a covariate, but agrammatic production deficits were not. The lesion correlates of impaired performance of syntactic comprehension were significantly associated with damage to temporal lobe regions, which were also implicated in paragrammatism, but not with the inferior and middle frontal regions implicated in expressive agrammatism. Our results provide strong evidence against the overarching agrammatism hypothesis. By contrast, our results suggest the possibility of an alternative grammatical parallelism hypothesis rooted in paragrammatism and a central syntactic system in the posterior temporal lobe.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Brielle Caserta Stark
- Department of Speech, Language and Hearing Sciences, Program for Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
15
|
Papanicolaou AC. Non-Invasive Mapping of the Neuronal Networks of Language. Brain Sci 2023; 13:1457. [PMID: 37891824 PMCID: PMC10605023 DOI: 10.3390/brainsci13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
This review consists of three main sections. In the first, the Introduction, the main theories of the neuronal mediation of linguistic operations, derived mostly from studies of the effects of focal lesions on linguistic performance, are summarized. These models furnish the conceptual framework on which the design of subsequent functional neuroimaging investigations is based. In the second section, the methods of functional neuroimaging, especially those of functional Magnetic Resonance Imaging (fMRI) and of Magnetoencephalography (MEG), are detailed along with the specific activation tasks employed in presurgical functional mapping. The reliability of these non-invasive methods and their validity, judged against the results of the invasive methods, namely, the "Wada" procedure and Cortical Stimulation Mapping (CSM), is assessed and their use in presurgical mapping is justified. In the third and final section, the applications of fMRI and MEG in basic research are surveyed in the following six sub-sections, each dealing with the assessment of the neuronal networks for (1) the acoustic and phonological, (2) for semantic, (3) for syntactic, (4) for prosodic operations, (5) for sign language and (6) for the operations of reading and the mechanisms of dyslexia.
Collapse
Affiliation(s)
- Andrew C Papanicolaou
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38013, USA
| |
Collapse
|
16
|
Liu Y, Gao C, Wang P, Friederici AD, Zaccarella E, Chen L. Exploring the neurobiology of Merge at a basic level: insights from a novel artificial grammar paradigm. Front Psychol 2023; 14:1151518. [PMID: 37287773 PMCID: PMC10242141 DOI: 10.3389/fpsyg.2023.1151518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Human language allows us to generate an infinite number of linguistic expressions. It's proposed that this competence is based on a binary syntactic operation, Merge, combining two elements to form a new constituent. An increasing number of recent studies have shifted from complex syntactic structures to two-word constructions to investigate the neural representation of this operation at the most basic level. Methods This fMRI study aimed to develop a highly flexible artificial grammar paradigm for testing the neurobiology of human syntax at a basic level. During scanning, participants had to apply abstract syntactic rules to assess whether a given two-word artificial phrase could be further merged with a third word. To control for lower-level template-matching and working memory strategies, an additional non-mergeable word-list task was set up. Results Behavioral data indicated that participants complied with the experiment. Whole brain and region of interest (ROI) analyses were performed under the contrast of "structure > word-list." Whole brain analysis confirmed significant involvement of the posterior inferior frontal gyrus [pIFG, corresponding to Brodmann area (BA) 44]. Furthermore, both the signal intensity in Broca's area and the behavioral performance showed significant correlations with natural language performance in the same participants. ROI analysis within the language atlas and anatomically defined Broca's area revealed that only the pIFG was reliably activated. Discussion Taken together, these results support the notion that Broca's area, particularly BA 44, works as a combinatorial engine where words are merged together according to syntactic information. Furthermore, this study suggests that the present artificial grammar may serve as promising material for investigating the neurobiological basis of syntax, fostering future cross-species studies.
Collapse
Affiliation(s)
- Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Chenyang Gao
- School of Global Education and Development, University of Chinese Academy of Social Sciences, Beijing, China
| | - Peng Wang
- Method and Development Group (MEG and Cortical Networks), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
Vadinova V, Sihvonen AJ, Garden KL, Ziraldo L, Roxbury T, O'Brien K, Copland DA, McMahon KL, Brownsett SLE. Early Subacute White Matter Hyperintensities and Recovery of Language After Stroke. Neurorehabil Neural Repair 2023; 37:218-227. [PMID: 37083133 PMCID: PMC10152219 DOI: 10.1177/15459683231168384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
BACKGROUND White matter hyperintensities (WMH) are considered to contribute to diminished brain reserve, negatively impacting on stroke recovery. While WMH identified in the chronic phase after stroke have been associated with post-stroke aphasia, the contribution of premorbid WMH to the early recovery of language across production and comprehension has not been investigated. OBJECTIVE To investigate the relationship between premorbid WMH severity and longitudinal comprehension and production outcomes in aphasia, after controlling for stroke lesion variables. METHODS Longitudinal behavioral data from individuals with a left-hemisphere stroke were included at the early subacute (n = 37) and chronic (n = 28) stage. Spoken language comprehension and production abilities were assessed at both timepoints using word and sentence-level tasks. Magnetic resonance imaging (MRI) was performed at the early subacute stage to derive stroke lesion variables (volume and proportion damage to critical regions) and WMH severity rating. RESULTS The presence of severe WMH explained an additional 18% and 25% variance in early subacute (t = -3.00, p = .004) and chronic (t = -3.60, P = .001) language comprehension abilities respectively, after controlling for stroke lesion variables. WMH did not predict additional variance of language production scores. CONCLUSIONS Subacute clinical MRI can be used to improve prognoses of recovery of aphasia after stroke. We demonstrate that severe early subacute WMH add to the prediction of impaired longitudinal language recovery in comprehension, but not production. This emphasizes the need to consider different domains of language when investigating novel neurobiological predictors of aphasia recovery.
Collapse
Affiliation(s)
- Veronika Vadinova
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
| | - Aleksi J Sihvonen
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Australia
- Cognitive Brain Research Unit (CBRU), University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki, Finland
| | - Kimberley L Garden
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
| | - Laura Ziraldo
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
| | - Tracy Roxbury
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
| | - Kate O'Brien
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
| | - David A Copland
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Queensland, Australia
| | - Sonia L E Brownsett
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Australia
| |
Collapse
|
18
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
19
|
Kunimi M. Activity patterns in Broca's area during visual short-term memory tasks. Gerontol Geriatr Med 2023; 9:23337214231160860. [PMID: 36908825 PMCID: PMC9998404 DOI: 10.1177/23337214231160860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
In this study, near infrared spectroscopy (NIRS) was used to measure activity in Broca's area during a visual short-term memory task in young and older adults, comparing brain activity during three types of stimuli (numbers, easy-to-name shapes, and hard-to-name shapes) and examining how additive language functions are involved. We hypothesized that the Broca's area would be activated in both age groups when memorizing numbers, but not when memorizing hard-to-name shapes. The results showed that visual memory capacity is reduced in the elderly, but not when easy-to-name stimuli are used. This indicates that adding a verbal function to the input of visual information by the elderly seemingly suppresses the effects of aging on memory capacity. This result indicates that the addition of verbal functions may complement other types of cognitive functions that have declined.
Collapse
|
20
|
Coetzee JP, Johnson MA, Lee Y, Wu AD, Iacoboni M, Monti MM. Dissociating Language and Thought in Human Reasoning. Brain Sci 2022; 13:brainsci13010067. [PMID: 36672048 PMCID: PMC9856203 DOI: 10.3390/brainsci13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
What is the relationship between language and complex thought? In the context of deductive reasoning there are two main views. Under the first, which we label here the language-centric view, language is central to the syntax-like combinatorial operations of complex reasoning. Under the second, which we label here the language-independent view, these operations are dissociable from the mechanisms of natural language. We applied continuous theta burst stimulation (cTBS), a form of noninvasive neuromodulation, to healthy adult participants to transiently inhibit a subregion of Broca's area (left BA44) associated in prior work with parsing the syntactic relations of natural language. We similarly inhibited a subregion of dorsomedial frontal cortex (left medial BA8) which has been associated with core features of logical reasoning. There was a significant interaction between task and stimulation site. Post hoc tests revealed that performance on a linguistic reasoning task, but not deductive reasoning task, was significantly impaired after inhibition of left BA44, and performance on a deductive reasoning task, but not linguistic reasoning task, was decreased after inhibition of left medial BA8 (however not significantly). Subsequent linear contrasts supported this pattern. These novel results suggest that deductive reasoning may be dissociable from linguistic processes in the adult human brain, consistent with the language-independent view.
Collapse
Affiliation(s)
- John P. Coetzee
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Polytrauma Division, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Micah A. Johnson
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Youngzie Lee
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Allan D. Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute (BRI), University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Iacoboni
- Brain Research Institute (BRI), University of California Los Angeles, Los Angeles, CA 90095, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Martin M. Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute (BRI), University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Injury Research Center (BIRC), Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-825-8546
| |
Collapse
|
21
|
Yu M, Song Y, Liu J. The posterior middle temporal gyrus serves as a hub in syntactic comprehension: A model on the syntactic neural network. BRAIN AND LANGUAGE 2022; 232:105162. [PMID: 35908340 DOI: 10.1016/j.bandl.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Neuroimaging studies have revealed a distributed neural network involving multiple fronto-temporal regions that are active during syntactic processing. Here, we investigated how these regions work collaboratively to support syntactic comprehension by examining the behavioral relevance of the global functional integration of the syntax network (SN). We found that individuals with a stronger resting-state within-network integration in the left posterior middle temporal gyrus (lpMTG) were better at syntactic comprehension. Furthermore, the pair-wise functional connectivity between the lpMTG and the Broca's area, the middle frontal gyrus, and the angular and supramarginal gyri was positively correlated with participants' syntactic processing ability. In short, our study reveals the behavioral significance of intrinsic functional integration of the SN in syntactic comprehension, and provides empirical evidence for the hub-like role of the lpMTG. We proposed a neural model for syntactic comprehension highlighting the hub of the SN and its interactions with other regions in the network.
Collapse
Affiliation(s)
- Mengxia Yu
- Bilingual Cognition and Development Lab, Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou 510420, China
| | - Yiying Song
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Jia Liu
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Ross LA, Molholm S, Butler JS, Bene VAD, Foxe JJ. Neural correlates of multisensory enhancement in audiovisual narrative speech perception: a fMRI investigation. Neuroimage 2022; 263:119598. [PMID: 36049699 DOI: 10.1016/j.neuroimage.2022.119598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
This fMRI study investigated the effect of seeing articulatory movements of a speaker while listening to a naturalistic narrative stimulus. It had the goal to identify regions of the language network showing multisensory enhancement under synchronous audiovisual conditions. We expected this enhancement to emerge in regions known to underlie the integration of auditory and visual information such as the posterior superior temporal gyrus as well as parts of the broader language network, including the semantic system. To this end we presented 53 participants with a continuous narration of a story in auditory alone, visual alone, and both synchronous and asynchronous audiovisual speech conditions while recording brain activity using BOLD fMRI. We found multisensory enhancement in an extensive network of regions underlying multisensory integration and parts of the semantic network as well as extralinguistic regions not usually associated with multisensory integration, namely the primary visual cortex and the bilateral amygdala. Analysis also revealed involvement of thalamic brain regions along the visual and auditory pathways more commonly associated with early sensory processing. We conclude that under natural listening conditions, multisensory enhancement not only involves sites of multisensory integration but many regions of the wider semantic network and includes regions associated with extralinguistic sensory, perceptual and cognitive processing.
Collapse
Affiliation(s)
- Lars A Ross
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA; Department of Imaging Sciences, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA; The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA.
| | - Sophie Molholm
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA; The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA
| | - John S Butler
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA; School of Mathematical Sciences, Technological University Dublin, Kevin Street Campus, Dublin, Ireland
| | - Victor A Del Bene
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA; University of Alabama at Birmingham, Heersink School of Medicine, Department of Neurology, Birmingham, Alabama, 35233, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA; The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA.
| |
Collapse
|
23
|
Matchin W, den Ouden DB, Hickok G, Hillis AE, Bonilha L, Fridriksson J. The Wernicke conundrum revisited: evidence from connectome-based lesion-symptom mapping. Brain 2022; 145:3916-3930. [PMID: 35727949 DOI: 10.1093/brain/awac219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Wernicke's area has been assumed since the 1800s to be the primary region supporting word and sentence comprehension. However, in 2015 and 2019, Mesulam and colleagues raised what they termed the 'Wernicke conundrum', noting widespread variability in the anatomical definition of this area and presenting data from primary progressive aphasia that challenged this classical assumption. To resolve the conundrum, they posited a 'double disconnection' hypothesis: that word and sentence comprehension deficits in stroke-based aphasia result from disconnection of anterior temporal and inferior frontal regions from other parts of the brain due to white matter damage, rather than dysfunction of Wernicke's area itself. To test this hypothesis, we performed lesion-deficit correlations, including connectome-based lesion-symptom mapping, in four large, partially overlapping groups of English-speaking chronic left hemisphere stroke survivors. After removing variance due to object recognition and associative semantic processing, the same middle and posterior temporal lobe regions were implicated in both word comprehension deficits and complex noncanonical sentence comprehension deficits. Connectome lesion-symptom mapping revealed similar temporal-occipital white matter disconnections for impaired word and noncanonical sentence comprehension, including the temporal pole. We found an additional significant temporal-parietal disconnection for noncanonical sentence comprehension deficits, which may indicate a role for phonological working memory in processing complex syntax, but no significant frontal disconnections. Moreover, damage to these middle-posterior temporal lobe regions was associated with both word and noncanonical sentence comprehension deficits even when accounting for variance due to the strongest anterior temporal and inferior frontal white matter disconnections, respectively. Our results largely agree with the classical notion that Wernicke's area, defined here as middle superior temporal gyrus and middle-posterior superior temporal sulcus, supports both word and sentence comprehension, suggest a supporting role for temporal pole in both word and sentence comprehension, and speak against the hypothesis that comprehension deficits in Wernicke's aphasia result from double disconnection.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Department of Language Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
24
|
Acunzo DJ, Low DM, Fairhall SL. Deep neural networks reveal topic-level representations of sentences in medial prefrontal cortex, lateral anterior temporal lobe, precuneus, and angular gyrus. Neuroimage 2022; 251:119005. [PMID: 35176493 PMCID: PMC10184870 DOI: 10.1016/j.neuroimage.2022.119005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022] Open
Abstract
When reading a sentence, individual words can be combined to create more complex meaning. In this study, we sought to uncover brain regions that reflect the representation of the meaning of sentences at the topic level, as opposed to the meaning of their individual constituent words when considered irrespective of their context. Using fMRI, we recorded the neural activity of participants while reading sentences. We constructed a topic-level sentence representations using the final layer of a convolutional neural network (CNN) trained to classify Wikipedia sentences into broad semantic categories. This model was contrasted with word-level sentence representations constructed using the average of the word embeddings constituting the sentence. Using representational similarity analysis, we found that the medial prefrontal cortex, lateral anterior temporal lobe, precuneus, and angular gyrus more strongly represent sentence topic-level, compared to word-level, meaning, uncovering the important role of these semantic system regions in the representation of topic-level meaning. Results were comparable when sentence meaning was modelled with a multilayer perceptron that was not sensitive to word order within a sentence, suggesting that the learning objective, in the terms of the topic being modelled, is the critical factor in capturing these neural representational spaces.
Collapse
Affiliation(s)
- David J Acunzo
- CIMeC/University of Trento, Corso Bettini 31, Rovereto 38068, Italy
| | - Daniel M Low
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, United States; Brain and Cognitive Sciences Department, MIT, United States
| | - Scott L Fairhall
- CIMeC/University of Trento, Corso Bettini 31, Rovereto 38068, Italy.
| |
Collapse
|
25
|
Riccardi N, Rorden C, Fridriksson J, Desai RH. Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:318-344. [PMID: 37215558 PMCID: PMC10158581 DOI: 10.1162/nol_a_00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/21/2022] [Indexed: 05/24/2023]
Abstract
The role of left inferior frontal cortex (LIFC) in canonical sentence comprehension is controversial. Many studies have found involvement of LIFC in sentence production or complex sentence comprehension, but negative or mixed results are often found in comprehension of simple or canonical sentences. We used voxel-, region-, and connectivity-based lesion symptom mapping (VLSM, RLSM, CLSM) in left-hemisphere chronic stroke survivors to investigate canonical sentence comprehension while controlling for lexical-semantic, executive, and phonological processes. We investigated how damage and disrupted white matter connectivity of LIFC and two other language-related regions, the left anterior temporal lobe (LATL) and posterior temporal-inferior parietal area (LpT-iP), affected sentence comprehension. VLSM and RLSM revealed that LIFC damage was not associated with canonical sentence comprehension measured by a sensibility judgment task. LIFC damage was associated instead with impairments in a lexical semantic similarity judgment task with high semantic/executive demands. Damage to the LpT-iP, specifically posterior middle temporal gyrus (pMTG), predicted worse sentence comprehension after controlling for visual lexical access, semantic knowledge, and auditory-verbal short-term memory (STM), but not auditory single-word comprehension, suggesting pMTG is vital for auditory language comprehension. CLSM revealed that disruption of left-lateralized white-matter connections from LIFC to LATL and LpT-iP was associated with worse sentence comprehension, controlling for performance in tasks related to lexical access, auditory word comprehension, and auditory-verbal STM. However, the LIFC connections were accounted for by the lexical semantic similarity judgment task, which had high semantic/executive demands. This suggests that LIFC connectivity is relevant to canonical sentence comprehension when task-related semantic/executive demands are high.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| | - Julius Fridriksson
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Rutvik H. Desai
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| |
Collapse
|
26
|
Gnedykh D, Tsvetova D, Mkrtychian N, Blagovechtchenski E, Kostromina S, Shtyrov Y. Broca’s area involvement in abstract and concrete word acquisition: tDCS evidence. Neurobiol Learn Mem 2022; 192:107622. [DOI: 10.1016/j.nlm.2022.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
27
|
Sheppard SM, Meier EL, Kim KT, Breining BL, Keator LM, Tang B, Caffo BS, Hillis AE. Neural correlates of syntactic comprehension: A longitudinal study. BRAIN AND LANGUAGE 2022; 225:105068. [PMID: 34979477 PMCID: PMC9232253 DOI: 10.1016/j.bandl.2021.105068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Broca's area is frequently implicated in sentence comprehension but its specific role is debated. Most lesion studies have investigated deficits at the chronic stage. We aimed (1) to use acute imaging to predict which left hemisphere stroke patients will recover sentence comprehension; and (2) to better understand the role of Broca's area in sentence comprehension by investigating acute deficits prior to functional reorganization. We assessed comprehension of canonical and noncanonical sentences in 15 patients with left hemisphere stroke at acute and chronic stages. LASSO regression was used to conduct lesion symptom mapping analyses. Patients with more severe word-level comprehension deficits and a greater proportion of damage to supramarginal gyrus and superior longitudinal fasciculus were likely to experience acute deficits prior to functional reorganization. Broca's area was only implicated in chronic deficits. We propose that when temporoparietal regions are damaged, intact Broca's area can support syntactic processing after functional reorganization occurs.
Collapse
Affiliation(s)
- Shannon M Sheppard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Communication Sciences & Disorders, Chapman University, Irvine, CA 92618, United States.
| | - Erin L Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Kevin T Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Bonnie L Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Lynsey M Keator
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Bohao Tang
- Department of Biostatics, Johns Hopkins School of Public Health, Baltimore, MD 21287, United States
| | - Brian S Caffo
- Department of Biostatics, Johns Hopkins School of Public Health, Baltimore, MD 21287, United States
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
28
|
Zhang W, Xiang M, Wang S. The role of left angular gyrus in the representation of linguistic composition relations. Hum Brain Mapp 2022; 43:2204-2217. [PMID: 35064707 PMCID: PMC8996362 DOI: 10.1002/hbm.25781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Language comprehension is compositional: individual words are combined structurally to form larger meaning representations. The neural basis for compositionality is at the center of a growing body of recent research. Previous work has largely used univariate analysis to investigate the question, a technique that could potentially lead to the loss of fined‐grained information due to the procedure of averaging over neural responses. In a functional magnetic resonance imaging experiment, the present study examined different types of composition relations in Chinese phrases, using a 1‐back composition relation probe (CRP) task and a 1‐back word probe (WP) task. We first analyzed the data using the multivariate representation similarity analysis, which better captures the fine‐grained representational differences in the stimuli. The results showed that the left angular gyrus (AG) represents different types of composition relations in the CRP task, but no brain areas were identified in the WP task. We also conducted a traditional univariate analysis and found greater activations in the bilateral inferior frontal gyrus in the CRP task relative to the WP task. We discuss the methodological and theoretical implications of our findings in the context of the larger language neural network identified in previous studies. Our findings highlight the role of left AG in representing and distinguishing fine‐grained linguistic composition relations.
Collapse
Affiliation(s)
- Wenjia Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University) Ministry of Education Guangzhou China
- School of Psychology South China Normal University Guangzhou China
| | - Ming Xiang
- Department of Linguistics University of Chicago Chicago Illinois USA
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University) Ministry of Education Guangzhou China
| |
Collapse
|
29
|
Matchin W, İlkbaşaran D, Hatrak M, Roth A, Villwock A, Halgren E, Mayberry RI. The Cortical Organization of Syntactic Processing Is Supramodal: Evidence from American Sign Language. J Cogn Neurosci 2022; 34:224-235. [PMID: 34964898 PMCID: PMC8764739 DOI: 10.1162/jocn_a_01790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Areas within the left-lateralized neural network for language have been found to be sensitive to syntactic complexity in spoken and written language. Previous research has revealed that these areas are active for sign language as well, but whether these areas are specifically responsive to syntactic complexity in sign language independent of lexical processing has yet to be found. To investigate the question, we used fMRI to neuroimage deaf native signers' comprehension of 180 sign strings in American Sign Language (ASL) with a picture-probe recognition task. The ASL strings were all six signs in length but varied at three levels of syntactic complexity: sign lists, two-word sentences, and complex sentences. Syntactic complexity significantly affected comprehension and memory, both behaviorally and neurally, by facilitating accuracy and response time on the picture-probe recognition task and eliciting a left lateralized activation response pattern in anterior and posterior superior temporal sulcus (aSTS and pSTS). Minimal or absent syntactic structure reduced picture-probe recognition and elicited activation in bilateral pSTS and occipital-temporal cortex. These results provide evidence from a sign language, ASL, that the combinatorial processing of anterior STS and pSTS is supramodal in nature. The results further suggest that the neurolinguistic processing of ASL is characterized by overlapping and separable neural systems for syntactic and lexical processing.
Collapse
Affiliation(s)
- William Matchin
- University of California San Diego
- University of South Carolina, Columbia
| | | | | | | | - Agnes Villwock
- University of California San Diego
- Humboldt University of Berlin
| | | | | |
Collapse
|
30
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Wehbe L, Blank IA, Shain C, Futrell R, Levy R, von der Malsburg T, Smith N, Gibson E, Fedorenko E. Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network. Cereb Cortex 2021. [PMID: 33895807 DOI: 10.1101/2020.04.15.043844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
What role do domain-general executive functions play in human language comprehension? To address this question, we examine the relationship between behavioral measures of comprehension and neural activity in the domain-general "multiple demand" (MD) network, which has been linked to constructs like attention, working memory, inhibitory control, and selection, and implicated in diverse goal-directed behaviors. Specifically, functional magnetic resonance imaging data collected during naturalistic story listening are compared with theory-neutral measures of online comprehension difficulty and incremental processing load (reading times and eye-fixation durations). Critically, to ensure that variance in these measures is driven by features of the linguistic stimulus rather than reflecting participant- or trial-level variability, the neuroimaging and behavioral datasets were collected in nonoverlapping samples. We find no behavioral-neural link in functionally localized MD regions; instead, this link is found in the domain-specific, fronto-temporal "core language network," in both left-hemispheric areas and their right hemispheric homotopic areas. These results argue against strong involvement of domain-general executive circuits in language comprehension.
Collapse
Affiliation(s)
- Leila Wehbe
- Carnegie Mellon University, Machine Learning Department PA 15213, USA
| | - Idan Asher Blank
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Los Angeles, Department of Psychology CA 90095, USA
| | - Cory Shain
- Ohio State University, Department of Linguistics OH 43210, USA
| | - Richard Futrell
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Irvine, Department of Linguistics CA 92697, USA
| | - Roger Levy
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Titus von der Malsburg
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of Stuttgart, Institute of Linguistics, 70049 Stuttgart, Germany
| | - Nathaniel Smith
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Edward Gibson
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
| | - Evelina Fedorenko
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- Massachusetts Institute of Technology, McGovern Institute for Brain ResearchMA 02139, USA
| |
Collapse
|
32
|
Wehbe L, Blank IA, Shain C, Futrell R, Levy R, von der Malsburg T, Smith N, Gibson E, Fedorenko E. Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network. Cereb Cortex 2021; 31:4006-4023. [PMID: 33895807 PMCID: PMC8328211 DOI: 10.1093/cercor/bhab065] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 01/15/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022] Open
Abstract
What role do domain-general executive functions play in human language comprehension? To address this question, we examine the relationship between behavioral measures of comprehension and neural activity in the domain-general "multiple demand" (MD) network, which has been linked to constructs like attention, working memory, inhibitory control, and selection, and implicated in diverse goal-directed behaviors. Specifically, functional magnetic resonance imaging data collected during naturalistic story listening are compared with theory-neutral measures of online comprehension difficulty and incremental processing load (reading times and eye-fixation durations). Critically, to ensure that variance in these measures is driven by features of the linguistic stimulus rather than reflecting participant- or trial-level variability, the neuroimaging and behavioral datasets were collected in nonoverlapping samples. We find no behavioral-neural link in functionally localized MD regions; instead, this link is found in the domain-specific, fronto-temporal "core language network," in both left-hemispheric areas and their right hemispheric homotopic areas. These results argue against strong involvement of domain-general executive circuits in language comprehension.
Collapse
Affiliation(s)
- Leila Wehbe
- Carnegie Mellon University, Machine Learning Department PA 15213, USA
| | - Idan Asher Blank
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Los Angeles, Department of Psychology CA 90095, USA
| | - Cory Shain
- Ohio State University, Department of Linguistics OH 43210, USA
| | - Richard Futrell
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Irvine, Department of Linguistics CA 92697, USA
| | - Roger Levy
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Titus von der Malsburg
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of Stuttgart, Institute of Linguistics, 70049 Stuttgart, Germany
| | - Nathaniel Smith
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Edward Gibson
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
| | - Evelina Fedorenko
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- Massachusetts Institute of Technology, McGovern Institute for Brain ResearchMA 02139, USA
| |
Collapse
|
33
|
Zaleznik E, Park J. The neural basis of counting sequences. Neuroimage 2021; 237:118146. [PMID: 33965527 DOI: 10.1016/j.neuroimage.2021.118146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022] Open
Abstract
Sequence processing is critical for complex behavior, and counting sequences hold a unique place underlying human numerical development. Despite this, the neural bases of counting sequences remain unstudied. We hypothesized that counting sequences in adults would involve representations in sensory, order, magnitude, and linguistic codes that implicate regions in auditory, supplementary motor, posterior parietal, and inferior frontal areas, respectively. In an fMRI scanner, participants heard four-number sequences in a 2 × 2 × 2 design. The sequences were adjacent or not (e.g., 5, 6, 7, 8 vs. 5, 6, 7, 9), ordered or not (e.g., 5, 6, 7, 8 vs. 8, 5, 7, 6), and were spoken by a voice of consistent or variable identity. Then, neural substrates of counting sequences were identified by testing for the effect of consecutiveness (ordered nonadjacent versus ordered adjacent, e.g., 5, 6, 7, 9 > 5, 6, 7, 8) in the hypothesized brain regions. Violations to consecutiveness elicited brain activity in the right inferior frontal gyrus (IFG) and the supplementary motor area (SMA). In contrast, no such activation was observed in the auditory cortex, despite violations in voice identity recruiting strong activity in that region. Also, no activation was observed in the inferior parietal lobule, despite a robust effect of orderedness observed in that brain region. These findings indicate that listening to counting sequences do not automatically elicit sensory or magnitude codes but suggest that the precise increments in the sequence are tracked by the mechanism for processing ordered associations in the SMA and by the mechanism for binding individual lexical items into a cohesive whole in the IFG.
Collapse
Affiliation(s)
- Eli Zaleznik
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, United States
| | - Joonkoo Park
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, United States; Commonwealth Honors College, University of Massachusetts Amherst, 135 Hicks Way, Amherst MA 01003, United States.
| |
Collapse
|
34
|
Wu J, Eickhoff SB, Hoffstaedter F, Patil KR, Schwender H, Yeo BTT, Genon S. A Connectivity-Based Psychometric Prediction Framework for Brain-Behavior Relationship Studies. Cereb Cortex 2021; 31:3732-3751. [PMID: 33884421 DOI: 10.1093/cercor/bhab044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023] Open
Abstract
The recent availability of population-based studies with neuroimaging and behavioral measurements opens promising perspectives to investigate the relationships between interindividual variability in brain regions' connectivity and behavioral phenotypes. However, the multivariate nature of connectivity-based prediction model severely limits the insight into brain-behavior patterns for neuroscience. To address this issue, we propose a connectivity-based psychometric prediction framework based on individual regions' connectivity profiles. We first illustrate two main applications: 1) single brain region's predictive power for a range of psychometric variables and 2) single psychometric variable's predictive power variation across brain region. We compare the patterns of brain-behavior provided by these approaches to the brain-behavior relationships from activation approaches. Then, capitalizing on the increased transparency of our approach, we demonstrate how the influence of various data processing and analyses can directly influence the patterns of brain-behavior relationships, as well as the unique insight into brain-behavior relationships offered by this approach.
Collapse
Affiliation(s)
- Jianxiao Wu
- Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, 52428 Jülich, Germany
| | - Simon B Eickhoff
- Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, 52428 Jülich, Germany
| | - Felix Hoffstaedter
- Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, 52428 Jülich, Germany
| | - Kaustubh R Patil
- Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, 52428 Jülich, Germany
| | - Holger Schwender
- Mathematical Institute, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore City 117575, Singapore.,Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore City 117597, Singapore.,N. 1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore City 117597, Singapore.,Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore City 117575, Singapore.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sarah Genon
- Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, 52428 Jülich, Germany
| |
Collapse
|
35
|
Terock J, Frenzel S, Wittfeld K, Klinger-König J, Janowitz D, Bülow R, Hosten N, Völzke H, Grabe HJ. Alexithymia Is Associated with Altered Cortical Thickness Networks in the General Population. Neuropsychobiology 2021; 79:233-244. [PMID: 32146473 DOI: 10.1159/000504983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Alexithymia is a personality trait characterized by difficulties in identifying and describing emotions and associated with various psychiatric disorders. Neuroimaging studies found evidence for morphological and functional brain alterations in alexithymic subjects. However, the neurobiological mechanisms underlying alexithymia remain incompletely understood. METHODS We study the association of alexithymia with cortical correlation networks in a large community-dwelling sample of the Study of Health in Pomerania. Our analysis includes data of n = 2,199 individuals (49.4% females, age = 52.1 ± 13.6 years) which were divided into a low and high alexithymic group by a median split of the Toronto Alexithymia Scale. Cortical correlation networks were constructed based on the mean thicknesses of 68 regions, and differences in centralities were investigated. RESULTS We found a significantly increased centrality of the right paracentral lobule in the high alexithymia network after correction for multiple testing. Several other regions with motoric and sensory functions showed altered centrality on a nominally significant level. CONCLUSIONS Finding increased centrality of the paracentral lobule, a brain area with sensory as well as motoric features and involvement in bowel and bladder voiding, may contribute to explain the association of alexithymia with functional somatic disorders and chronic pain syndromes.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy, Helios Hanseklinikum Stralsund, Stralsund, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany,
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Johanna Klinger-König
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
36
|
Stankova EP, Kruchinina OV, Shepovalnikov AN, Galperina EI. Evolution of the Central Mechanisms
of Oral Speech. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020030011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Matchin W, Wood E. Syntax-Sensitive Regions of the Posterior Inferior Frontal Gyrus and the Posterior Temporal Lobe Are Differentially Recruited by Production and Perception. Cereb Cortex Commun 2020; 1:tgaa029. [PMID: 34296103 PMCID: PMC8152856 DOI: 10.1093/texcom/tgaa029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/27/2023] Open
Abstract
Matchin and Hickok (2020) proposed that the left posterior inferior frontal gyrus (PIFG) and the left posterior temporal lobe (PTL) both play a role in syntactic processing, broadly construed, attributing distinct functions to these regions with respect to production and perception. Consistent with this hypothesis, functional dissociations between these regions have been demonstrated with respect to lesion-symptom mapping in aphasia. However, neuroimaging studies of syntactic comprehension typically show similar activations in these regions. In order to identify whether these regions show distinct activation patterns with respect to syntactic perception and production, we performed an fMRI study contrasting the subvocal articulation and perception of structured jabberwocky phrases (syntactic), sequences of real words (lexical), and sequences of pseudowords (phonological). We defined two sets of language-selective regions of interest (ROIs) in individual subjects for the PIFG and the PTL using the contrasts [syntactic > lexical] and [syntactic > phonological]. We found robust significant interactions of comprehension and production between these 2 regions at the syntactic level, for both sets of language-selective ROIs. This suggests a core difference in the function of these regions with respect to production and perception, consistent with the lesion literature.
Collapse
Affiliation(s)
- William Matchin
- Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Emily Wood
- Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
38
|
Maffei V, Indovina I, Mazzarella E, Giusti MA, Macaluso E, Lacquaniti F, Viviani P. Sensitivity of occipito-temporal cortex, premotor and Broca's areas to visible speech gestures in a familiar language. PLoS One 2020; 15:e0234695. [PMID: 32559213 PMCID: PMC7304574 DOI: 10.1371/journal.pone.0234695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/01/2020] [Indexed: 11/18/2022] Open
Abstract
When looking at a speaking person, the analysis of facial kinematics contributes to language discrimination and to the decoding of the time flow of visual speech. To disentangle these two factors, we investigated behavioural and fMRI responses to familiar and unfamiliar languages when observing speech gestures with natural or reversed kinematics. Twenty Italian volunteers viewed silent video-clips of speech shown as recorded (Forward, biological motion) or reversed in time (Backward, non-biological motion), in Italian (familiar language) or Arabic (non-familiar language). fMRI revealed that language (Italian/Arabic) and time-rendering (Forward/Backward) modulated distinct areas in the ventral occipito-temporal cortex, suggesting that visual speech analysis begins in this region, earlier than previously thought. Left premotor ventral (superior subdivision) and dorsal areas were preferentially activated with the familiar language independently of time-rendering, challenging the view that the role of these regions in speech processing is purely articulatory. The left premotor ventral region in the frontal operculum, thought to include part of the Broca's area, responded to the natural familiar language, consistent with the hypothesis of motor simulation of speech gestures.
Collapse
Affiliation(s)
- Vincenzo Maffei
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Data Lake & BI, DOT - Technology, Poste Italiane, Rome, Italy
| | - Iole Indovina
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | | | - Maria Assunta Giusti
- Centre of Space BioMedicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emiliano Macaluso
- ImpAct Team, Lyon Neuroscience Research Center, Lyon, France
- Laboratory of Neuroimaging, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Viviani
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
39
|
LaCroix AN, Blumenstein N, Tully M, Baxter LC, Rogalsky C. Effects of prosody on the cognitive and neural resources supporting sentence comprehension: A behavioral and lesion-symptom mapping study. BRAIN AND LANGUAGE 2020; 203:104756. [PMID: 32032865 PMCID: PMC7064294 DOI: 10.1016/j.bandl.2020.104756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/03/2019] [Accepted: 01/19/2020] [Indexed: 05/29/2023]
Abstract
Non-canonical sentence comprehension impairments are well-documented in aphasia. Studies of neurotypical controls indicate that prosody can aid comprehension by facilitating attention towards critical pitch inflections and phrase boundaries. However, no studies have examined how prosody may engage specific cognitive and neural resources during non-canonical sentence comprehension in persons with left hemisphere damage. Experiment 1 examines the relationship between comprehension of non-canonical sentences spoken with typical and atypical prosody and several cognitive measures in 25 persons with chronic left hemisphere stroke and 20 matched controls. Experiment 2 explores the neural resources critical for non-canonical sentence comprehension with each prosody type using region-of-interest-based multiple regressions. Lower orienting attention abilities and greater inferior frontal and parietal damage predicted lower comprehension, but only for sentences with typical prosody. Our results suggest that typical sentence prosody may engage attention resources to support non-canonical sentence comprehension, and this relationship may be disrupted following left hemisphere stroke.
Collapse
Affiliation(s)
- Arianna N LaCroix
- College of Health Solutions, Arizona State University, Tempe, AZ, USA; College of Health Sciences, Midwestern University, Glendale, AZ, USA
| | | | - McKayla Tully
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | | | - Corianne Rogalsky
- College of Health Solutions, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
40
|
Fedorenko E, Blank IA. Broca's Area Is Not a Natural Kind. Trends Cogn Sci 2020; 24:270-284. [PMID: 32160565 PMCID: PMC7211504 DOI: 10.1016/j.tics.2020.01.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 01/09/2023]
Abstract
Theories of human cognition prominently feature 'Broca's area', which causally contributes to a myriad of mental functions. However, Broca's area is not a monolithic, multipurpose unit - it is structurally and functionally heterogeneous. Some functions engaging (subsets of) this area share neurocognitive resources, whereas others rely on separable circuits. A decade of converging evidence has now illuminated a fundamental distinction between two subregions of Broca's area that likely play computationally distinct roles in cognition: one belongs to the domain-specific 'language network', the other to the domain-general 'multiple-demand (MD) network'. Claims about Broca's area should be (re)cast in terms of these (and other, as yet undetermined) functional components, to establish a cumulative research enterprise where empirical findings can be replicated and theoretical proposals can be meaningfully compared and falsified.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Brain and Cognitive Sciences Department, and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Idan A Blank
- Department of Psychology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Abstract
Syntax, the structure of sentences, enables humans to express an infinite range of meanings through finite means. The neurobiology of syntax has been intensely studied but with little consensus. Two main candidate regions have been identified: the posterior inferior frontal gyrus (pIFG) and the posterior middle temporal gyrus (pMTG). Integrating research in linguistics, psycholinguistics, and neuroscience, we propose a neuroanatomical framework for syntax that attributes distinct syntactic computations to these regions in a unified model. The key theoretical advances are adopting a modern lexicalized view of syntax in which the lexicon and syntactic rules are intertwined, and recognizing a computational asymmetry in the role of syntax during comprehension and production. Our model postulates a hierarchical lexical-syntactic function to the pMTG, which interconnects previously identified speech perception and conceptual-semantic systems in the temporal and inferior parietal lobes, crucial for both sentence production and comprehension. These relational hierarchies are transformed via the pIFG into morpho-syntactic sequences, primarily tied to production. We show how this architecture provides a better account of the full range of data and is consistent with recent proposals regarding the organization of phonological processes in the brain.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Language Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
42
|
Shain C, Blank IA, van Schijndel M, Schuler W, Fedorenko E. fMRI reveals language-specific predictive coding during naturalistic sentence comprehension. Neuropsychologia 2020; 138:107307. [PMID: 31874149 PMCID: PMC7140726 DOI: 10.1016/j.neuropsychologia.2019.107307] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Much research in cognitive neuroscience supports prediction as a canonical computation of cognition across domains. Is such predictive coding implemented by feedback from higher-order domain-general circuits, or is it locally implemented in domain-specific circuits? What information sources are used to generate these predictions? This study addresses these two questions in the context of language processing. We present fMRI evidence from a naturalistic comprehension paradigm (1) that predictive coding in the brain's response to language is domain-specific, and (2) that these predictions are sensitive both to local word co-occurrence patterns and to hierarchical structure. Using a recently developed continuous-time deconvolutional regression technique that supports data-driven hemodynamic response function discovery from continuous BOLD signal fluctuations in response to naturalistic stimuli, we found effects of prediction measures in the language network but not in the domain-general multiple-demand network, which supports executive control processes and has been previously implicated in language comprehension. Moreover, within the language network, surface-level and structural prediction effects were separable. The predictability effects in the language network were substantial, with the model capturing over 37% of explainable variance on held-out data. These findings indicate that human sentence processing mechanisms generate predictions about upcoming words using cognitive processes that are sensitive to hierarchical structure and specialized for language processing, rather than via feedback from high-level executive control mechanisms.
Collapse
Affiliation(s)
| | - Idan Asher Blank
- University of California Los Angeles, 90024, USA; Massachusetts Institute of Technology, 02139, USA.
| | | | - William Schuler
- The Ohio State University, 43210, USA; Massachusetts General Hospital, Program in Speech and Hearing Bioscience and Technology, 02115, USA.
| | - Evelina Fedorenko
- Massachusetts General Hospital, Program in Speech and Hearing Bioscience and Technology, 02115, USA.
| |
Collapse
|
43
|
Friederici AD. Hierarchy processing in human neurobiology: how specific is it? Philos Trans R Soc Lond B Biol Sci 2020; 375:20180391. [PMID: 31735144 PMCID: PMC6895560 DOI: 10.1098/rstb.2018.0391] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Although human and non-human animals share a number of perceptual and cognitive abilities, they differ in their ability to process hierarchically structured sequences. This becomes most evident in the human capacity to process natural language characterized by structural hierarchies. This capacity is neuroanatomically grounded in the posterior part of left Broca's area (Brodmann area (BA) 44), located in the inferior frontal gyrus, and its dorsal white matter fibre connection to the temporal cortex. Within this neural network, BA 44 itself subserves hierarchy building and the strength of its connection to the temporal cortex correlates with the processing of syntactically complex sentences. Whether these brain structures are also relevant for other human cognitive abilities is a current debate. Here, this question will be evaluated with respect to those human cognitive abilities that are assumed to require hierarchy building, such as music, mathematics and Theory of Mind. Rather than supporting a domain-general view, the data indicate domain-selective neural networks as the neurobiological basis for processing hierarchy in different cognitive domains. Recent cross-species white matter comparisons suggest that particular connections within the networks may make the crucial difference in the brain structure of human and non-human primates, thereby enabling cognitive functions specific to humans. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| |
Collapse
|
44
|
Matchin W, Basilakos A, Stark BC, den Ouden DB, Fridriksson J, Hickok G. Agrammatism and Paragrammatism: A Cortical Double Dissociation Revealed by Lesion-Symptom Mapping. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:208-225. [PMID: 34296193 PMCID: PMC8293792 DOI: 10.1162/nol_a_00010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/27/2020] [Indexed: 05/21/2023]
Abstract
The fundamental distinction of grammatical deficits in aphasia, agrammatism and paragrammatism, was made over a century ago. However, the extent to which the agrammatism/paragrammatism distinction exists independently of differences in speech fluency has not clearly been investigated. Despite much research on agrammatism, the lesion correlates of paragrammatism are essentially unknown. Lesion-symptom mapping was used to investigate the degree to which the lesion correlates of agrammatism and paragrammatism overlap or dissociate. Four expert raters assessed videos of 53 right-handed patients with aphasia following chronic left-hemisphere stroke retelling the Cinderella story. Consensus discussion determined each subject's classification with respect to grammatical deficits as Agrammatic, Paragrammatic, Both, or No Grammatical Deficit. Each subject's lesion was manually drawn on a high-resolution MRI and warped to standard space for group analyses. Lesion-symptom mapping analyses were performed in NiiStat including lesion volume as a covariate. Secondary analyses included speech rate (words per minute) as an additional covariate. Region of interest analyses identified a double dissociation between these syndromes: damage to Broca's area was significantly associated with agrammatism, p = 0.001 (but not paragrammatism, p = 0.930), while damage to the left posterior superior and middle temporal gyri was significantly associated with paragrammatism, p < 0.001 (but not agrammatism, p = 0.873). The same results obtained when regressing out the effect of speech rate, and nonoverlapping lesion distributions between the syndromes were confirmed by uncorrected whole brain analyses. Our results support a fundamental distinction between agrammatism and paragrammatism.
Collapse
Affiliation(s)
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina
| | - Brielle C. Stark
- ISpeech and Hearing Sciences Department and Program in Neuroscience Faculty, Indiana University Bloomington
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Sciences, University of California, Irvine
| |
Collapse
|
45
|
Xu K, Wu DH, Duann JR. Enhanced left inferior frontal to left superior temporal effective connectivity for complex sentence comprehension: fMRI evidence from Chinese relative clause processing. BRAIN AND LANGUAGE 2020; 200:104712. [PMID: 31704517 DOI: 10.1016/j.bandl.2019.104712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/18/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Previous studies investigating the processing of complex sentences have demonstrated the involvement of the left inferior frontal gyrus (LIFG) and left superior temporal gyrus (LSTG), which might subserve ordering and storage of linguistic components, respectively, for sentence comprehension. However, how these brain regions are interconnected, especially during the processing of Chinese sentences, need to be further explored. In this study, the neural network supporting the comprehension of Chinese relative clause was identified. Both the LIFG and LSTG exhibited higher activation in processing subject-extracted relative clauses (SRCs) than object-extracted relative clauses (ORCs). Moreover, a Granger causality analysis revealed that the effective connectivity from the LIFG to LSTG was significant only when participants read Chinese SRCs, which were argued to be more difficult than ORCs. Contrary to the observations of an SRC advantage in most other languages, the present results provide clear neuroimaging evidence for an ORC advantage in Chinese.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan 32001, Taiwan
| | - Denise H Wu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan 32001, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan 32001, Taiwan; Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Drummond C, Coutinho G, Monteiro MC, Assuncao N, Teldeschi A, de Souza AS, Oliveira N, Bramati I, Sudo FK, Vanderboght B, Brandao CO, Fonseca RP, de Oliveira-Souza R, Moll J, Mattos P, Tovar-Moll F. Narrative impairment, white matter damage and CSF biomarkers in the Alzheimer's disease spectrum. Aging (Albany NY) 2019; 11:9188-9208. [PMID: 31682234 PMCID: PMC6834410 DOI: 10.18632/aging.102391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Narrative discourse (ND) refers to one's ability to verbally reproduce a sequence of temporally and logically-linked events. Impairments in ND may occur in subjects with Amnestic Mild Cognitive Impairment (aMCI) and Alzheimer's Disease (AD), but correlates across this function, neuroimaging and cerebrospinal fluid (CSF) AD biomarkers remain understudied. OBJECTIVES We sought to measure correlates among ND, Diffusion Tensor Imaging (DTI) indexes and AD CSF biomarkers in patients within the AD spectrum. RESULTS Groups differed in narrative production (NProd) and comprehension. aMCI and AD presented poorer inference abilities than controls. AD subjects were more impaired than controls and aMCI regarding WB (p<0.01). ROIs DTI assessment distinguished the three groups. Mean Diffusivity (MD) in the uncinate, bilateral parahippocampal cingulate and left inferior occipitofrontal fasciculi negatively correlated with NProd. Changes in specific tracts correlated with T-tau/Aβ1-42 ratio in CSF. CONCLUSIONS AD and aMCI patients presented more ND impairments than controls. Those findings were associated with changes in ventral language-associated and in the inferior parahippocampal pathways. The latest were correlated with biomarkers' levels in the CSF. METHODS AD (N=14), aMCI (N=31) and Control (N=39) groups were compared for whole brain (WB) and regions of interest (ROI) DTI parameters, ND and AD CSF biomarkers.
Collapse
Affiliation(s)
- Claudia Drummond
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Speech and Hearing Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Coutinho
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Psychology, Celso Lisboa University Center, Rio de Janeiro, Brazil
| | - Marina Carneiro Monteiro
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Naima Assuncao
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alina Teldeschi
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Andrea Silveira de Souza
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Natalia Oliveira
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Ivanei Bramati
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Felipe Kenji Sudo
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Bart Vanderboght
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Rochele Paz Fonseca
- Laboratory of Clinical and Experimental Neuropsychology, Department of Psychology, Pontificial Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ricardo de Oliveira-Souza
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jorge Moll
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Paulo Mattos
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Psychiatry and Forensic Medicine, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Bain JS, Filo S, Mezer AA. The robust and independent nature of structural STS asymmetries. Brain Struct Funct 2019; 224:3171-3182. [DOI: 10.1007/s00429-019-01952-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
48
|
Jouravlev O, Zheng D, Balewski Z, Le Arnz Pongos A, Levan Z, Goldin-Meadow S, Fedorenko E. Speech-accompanying gestures are not processed by the language-processing mechanisms. Neuropsychologia 2019; 132:107132. [PMID: 31276684 PMCID: PMC6708375 DOI: 10.1016/j.neuropsychologia.2019.107132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/01/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
Abstract
Speech-accompanying gestures constitute one information channel during communication. Some have argued that processing gestures engages the brain regions that support language comprehension. However, studies that have been used as evidence for shared mechanisms suffer from one or more of the following limitations: they (a) have not directly compared activations for gesture and language processing in the same study and relied on the fallacious reverse inference (Poldrack, 2006) for interpretation, (b) relied on traditional group analyses, which are bound to overestimate overlap (e.g., Nieto-Castañon and Fedorenko, 2012), (c) failed to directly compare the magnitudes of response (e.g., Chen et al., 2017), and (d) focused on gestures that may have activated the corresponding linguistic representations (e.g., "emblems"). To circumvent these limitations, we used fMRI to examine responses to gesture processing in language regions defined functionally in individual participants (e.g., Fedorenko et al., 2010), including directly comparing effect sizes, and covering a broad range of spontaneously generated co-speech gestures. Whenever speech was present, language regions responded robustly (and to a similar degree regardless of whether the video contained gestures or grooming movements). In contrast, and critically, responses in the language regions were low - at or slightly above the fixation baseline - when silent videos were processed (again, regardless of whether they contained gestures or grooming movements). Brain regions outside of the language network, including some in close proximity to its regions, differentiated between gestures and grooming movements, ruling out the possibility that the gesture/grooming manipulation was too subtle. Behavioral studies on the critical video materials further showed robust differentiation between the gesture and grooming conditions. In summary, contra prior claims, language-processing regions do not respond to co-speech gestures in the absence of speech, suggesting that these regions are selectively driven by linguistic input (e.g., Fedorenko et al., 2011). Although co-speech gestures are uncontroversially important in communication, they appear to be processed in brain regions distinct from those that support language comprehension, similar to other extra-linguistic communicative signals, like facial expressions and prosody.
Collapse
Affiliation(s)
- Olessia Jouravlev
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - David Zheng
- Princeton University, Princeton, NJ, 08544, USA
| | - Zuzanna Balewski
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Zena Levan
- University of Chicago, Chicago, IL, 60637, USA
| | | | - Evelina Fedorenko
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; McGovern Institute for Brain Research, Cambridge, MA, 02139, USA; Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
49
|
Klimovich-Gray A, Bozic M. Domain-general and domain-specific computations in single word processing. Neuroimage 2019; 202:116112. [PMID: 31437552 DOI: 10.1016/j.neuroimage.2019.116112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Language comprehension relies on a multitude of domain-general and domain-specific cognitive operations. This study asks whether the domain-specific grammatical computations are obligatorily invoked whenever we process linguistic inputs. Using fMRI and three complementary measures of neural activity, we tested how domain-general and domain-specific demands of single word comprehension engage cortical language networks, and whether the left frontotemporal network (commonly taken to support domain-specific grammatical computations) automatically processes grammatical information present in inflectionally complex words. In a natural listening task, participants were presented with words that manipulated domain-general and domain-specific processing demands in a 2 × 2 manner. The results showed that only domain-general demands of mapping words onto their representations consistently engaged the language processing system during single word comprehension, triggering increased activity and connectivity in bilateral frontotemporal regions, as well as bilateral encoding across multivoxel activity patterns. In contrast, inflectional complexity failed to activate left frontotemporal regions in this task, implying that domain-specific grammatical processing in the left hemisphere is not automatically triggered when the processing context does not specifically require such analysis. This suggests that cortical computations invoked by language processing critically depend on the current communicative goals and demands, underlining the importance of domain-general processes in language comprehension, and arguing against the strong domain-specific view of the LH network function.
Collapse
Affiliation(s)
- Anastasia Klimovich-Gray
- Basque Center on Cognition, Brain and Language, Mikeletegi Pasealekua, 69, 20009, Donostia, Gipuzkoa, Spain.
| | - Mirjana Bozic
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
50
|
Iwabuchi T, Nakajima Y, Makuuchi M. Neural architecture of human language: Hierarchical structure building is independent from working memory. Neuropsychologia 2019; 132:107137. [PMID: 31288026 DOI: 10.1016/j.neuropsychologia.2019.107137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Using functional magnetic resonance imaging (fMRI), we show that the neural substrate of language does not overlap with that for verbal working memory when we carefully define verbal working memory in sentence processing. Object-Subject-Verb (OSV) sentences in Japanese were contrasted with canonical Subject-Object-Verb (SOV) sentences, which had less hierarchy in linguistic structure. This contrast revealed the posterior part of Broca's area and the left posterior middle temporal gyrus (pMTG) as the neural bases for hierarchical structure building. Furthermore, we changed verbal working memory load in OSV sentences by adding modifiers to the subject or object noun phrases; this resulted in the activation in the op9, which is situated in the frontal operculum and is adjacent to, but not situated in, Broca's area. The neuroanatomical segregation of language processing from verbal working memory suggests independence of the faculty of language from the verbal working memory system, providing evidence for the domain-specificity of language in human cognition.
Collapse
Affiliation(s)
- Toshiki Iwabuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa-shi, Saitama-ken, 359-8555, Japan
| | - Yasoichi Nakajima
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa-shi, Saitama-ken, 359-8555, Japan
| | - Michiru Makuuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa-shi, Saitama-ken, 359-8555, Japan.
| |
Collapse
|