1
|
Breveglieri R, Brandolani R, Diomedi S, Lappe M, Galletti C, Fattori P. Modulation of reaching by spatial attention. Front Integr Neurosci 2024; 18:1393690. [PMID: 38817775 PMCID: PMC11138159 DOI: 10.3389/fnint.2024.1393690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Attention is needed to perform goal-directed vision-guided movements. We investigated whether the direction of covert attention modulates movement outcomes and dynamics. Right-handed and left-handed volunteers attended to a spatial location while planning a reach toward the same hemifield, the opposite one, or planned a reach without constraining attention. We measured behavioral variables as outcomes of ipsilateral and contralateral reaching and the tangling of behavioral trajectories obtained through principal component analysis as a measure of the dynamics of motor control. We found that the direction of covert attention had significant effects on the dynamics of motor control, specifically during contralateral reaching. Data suggest that motor control was more feedback-driven when attention was directed leftward than when attention was directed rightward or when it was not constrained, irrespectively of handedness. These results may help to better understand the neural bases of asymmetrical neurological diseases like hemispatial neglect.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Riccardo Brandolani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Department of Psychology, Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Bosco A, Sanz Diez P, Filippini M, De Vitis M, Fattori P. A focus on the multiple interfaces between action and perception and their neural correlates. Neuropsychologia 2023; 191:108722. [PMID: 37931747 DOI: 10.1016/j.neuropsychologia.2023.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Successful behaviour relies on the appropriate interplay between action and perception. The well-established dorsal and ventral stream theories depicted two distinct functional pathways for the processes of action and perception, respectively. In physiological conditions, the two pathways closely cooperate in order to produce successful adaptive behaviour. As the coupling between perception and action exists, this requires an interface that is responsible for a common reading of the two functions. Several studies have proposed different types of perception and action interfaces, suggesting their role in the creation of the shared interaction channel. In the present review, we describe three possible perception and action interfaces: i) the motor code, including common coding approaches, ii) attention, and iii) object affordance; we highlight their potential neural correlates. From this overview, a recurrent neural substrate that underlies all these interface functions appears to be crucial: the parieto-frontal circuit. This network is involved in the mirror mechanism which underlies the perception and action interfaces identified as common coding and motor code theories. The same network is also involved in the spotlight of attention and in the encoding of potential action towards objects; these are manifested in the perception and action interfaces for common attention and object affordance, respectively. Within this framework, most studies were dedicated to the description of the role of the inferior parietal lobule; growing evidence, however, suggests that the superior parietal lobule also plays a crucial role in the interplay between action and perception. The present review proposes a novel model that is inclusive of the superior parietal regions and their relative contribution to the different action and perception interfaces.
Collapse
Affiliation(s)
- A Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy; Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Via Galliera 3 Bologna, 40121, Bologna, Italy.
| | - P Sanz Diez
- Carl Zeiss Vision International GmbH, Turnstrasse 27, 73430, Aalen, Germany; Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Straße 7, 72076, Tuebingen, Germany
| | - M Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy; Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Via Galliera 3 Bologna, 40121, Bologna, Italy
| | - M De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - P Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy; Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Via Galliera 3 Bologna, 40121, Bologna, Italy
| |
Collapse
|
3
|
Sulpizio V, Fattori P, Pitzalis S, Galletti C. Functional organization of the caudal part of the human superior parietal lobule. Neurosci Biobehav Rev 2023; 153:105357. [PMID: 37572972 DOI: 10.1016/j.neubiorev.2023.105357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Like in macaque, the caudal portion of the human superior parietal lobule (SPL) plays a key role in a series of perceptive, visuomotor and somatosensory processes. Here, we review the functional properties of three separate portions of the caudal SPL, i.e., the posterior parieto-occipital sulcus (POs), the anterior POs, and the anterior part of the caudal SPL. We propose that the posterior POs is mainly dedicated to the analysis of visual motion cues useful for object motion detection during self-motion and for spatial navigation, while the more anterior parts are implicated in visuomotor control of limb actions. The anterior POs is mainly involved in using the spotlight of attention to guide reach-to-grasp hand movements, especially in dynamic environments. The anterior part of the caudal SPL plays a central role in visually guided locomotion, being implicated in controlling leg-related movements as well as the four limbs interaction with the environment, and in encoding egomotion-compatible optic flow. Together, these functions reveal how the caudal SPL is strongly implicated in skilled visually-guided behaviors.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Breveglieri R, Borgomaneri S, Diomedi S, Tessari A, Galletti C, Fattori P. A Short Route for Reach Planning between Human V6A and the Motor Cortex. J Neurosci 2023; 43:2116-2125. [PMID: 36788027 PMCID: PMC10039742 DOI: 10.1523/jneurosci.1609-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/16/2023] Open
Abstract
In the macaque monkey, area V6A, located in the medial posterior parietal cortex, contains cells that encode the spatial position of a reaching target. It has been suggested that during reach planning this information is sent to the frontal cortex along a parieto-frontal pathway that connects V6A-premotor cortex-M1. A similar parieto-frontal network may also exist in the human brain, and we aimed here to study the timing of this functional connection during planning of a reaching movement toward different spatial positions. We probed the functional connectivity between human area V6A (hV6A) and the primary motor cortex (M1) using dual-site, paired-pulse transcranial magnetic stimulation with a short (4 ms) and a longer (10 ms) interstimulus interval while healthy participants (18 men and 18 women) planned a visually-guided or a memory-guided reaching movement toward positions located at different depths and directions. We found that, when the stimulation over hV6A is sent 4 ms before the stimulation over M1, hV6A inhibits motor-evoked potentials during planning of either rightward or leftward reaching movements. No modulations were found when the stimulation over hV6A was sent 10 ms before the stimulation over M1, suggesting that only short medial parieto-frontal routes are active during reach planning. Moreover, the short route of hV6A-premotor cortex-M1 is active during reach planning irrespectively of the nature (visual or memory) of the reaching target. These results agree with previous neuroimaging studies and provide the first demonstration of the flow of inhibitory signals between hV6A and M1.SIGNIFICANCE STATEMENT All our dexterous movements depend on the correct functioning of the network of brain areas. Knowing the functional timing of these networks is useful to gain a deeper understanding of how the brain works to enable accurate arm movements. In this article, we probed the parieto-frontal network and demonstrated that it takes 4 ms for the medial posterior parietal cortex to send inhibitory signals to the frontal cortex during reach planning. This fast flow of information seems not to be dependent on the availability of visual information regarding the reaching target. This study opens the way for future studies to test how this timing could be impaired in different neurological disorders.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessia Tessari
- Department of Psychology "Renzo Canestrari", University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Bellana B, Ladyka-Wojcik N, Lahan S, Moscovitch M, Grady CL. Recollection and prior knowledge recruit the left angular gyrus during recognition. Brain Struct Funct 2023; 228:197-217. [PMID: 36441240 DOI: 10.1007/s00429-022-02597-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/09/2022] [Indexed: 11/29/2022]
Abstract
The human angular gyrus (AG) is implicated in recollection, or the ability to retrieve detailed memory content from a specific episode. A separate line of research examining the neural bases of more general mnemonic representations, extracted over multiple episodes, also highlights the AG as a core region of interest. To reconcile these separate views of AG function, the present fMRI experiment used a Remember-Know paradigm with famous (prior knowledge) and non-famous (no prior knowledge) faces to test whether AG activity could be modulated by both task-specific recollection and general prior knowledge within the same individuals. Increased BOLD activity in the left AG was observed during both recollection in the absence of prior knowledge (recollected > non-recollected or correctly rejected non-famous faces) and when prior knowledge was accessed in the absence of experiment-specific recollection (famous > non-famous correct rejections). This pattern was most prominent for the left AG as compared to the broader inferior parietal lobe. Recollection-related responses in the left AG increased with encoding duration and prior knowledge, despite prior knowledge being incidental to the recognition decision. Overall, the left AG appears sensitive to both task-specific recollection and the incidental access of general prior knowledge, thus broadening our notions of the kinds of mnemonic representations that drive activity in this region.
Collapse
Affiliation(s)
- Buddhika Bellana
- Department of Psychology, York University, Glendon Campus, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | | | - Shany Lahan
- Department of Human Biology, University of Toronto, Toronto, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | - Cheryl L Grady
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Breveglieri R, Borgomaneri S, Filippini M, Tessari A, Galletti C, Davare M, Fattori P. Complementary contribution of the medial and lateral human parietal cortex to grasping: a repetitive TMS study. Cereb Cortex 2022; 33:5122-5134. [PMID: 36245221 PMCID: PMC10152058 DOI: 10.1093/cercor/bhac404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dexterous control of our grasping actions relies on the cooperative activation of many brain areas. In the parietal lobe, 2 grasp-related areas collaborate to orchestrate an accurate grasping action: dorsolateral area AIP and dorsomedial area V6A. Single-cell recordings in monkeys and fMRI studies in humans have suggested that both these areas specify grip aperture and wrist orientation, but encode these grasping parameters differently, depending on the context. To elucidate the causal role of phAIP and hV6A, we stimulated these areas, while participants were performing grasping actions (unperturbed grasping). rTMS over phAIP impaired the wrist orientation process, whereas stimulation over hV6A impaired grip aperture encoding. In a small percentage of trials, an unexpected reprogramming of grip aperture or wrist orientation was required (perturbed grasping). In these cases, rTMS over hV6A or over phAIP impaired reprogramming of both grip aperture and wrist orientation. These results represent the first direct demonstration of a different encoding of grasping parameters by 2 grasp-related parietal areas.
Collapse
Affiliation(s)
- Rossella Breveglieri
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Sara Borgomaneri
- University of Bologna Center for studies and research in Cognitive Neuroscience, , 47521 Cesena , Italy
- IRCCS Santa Lucia Foundation , 00179 Rome , Italy
| | - Matteo Filippini
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Alessia Tessari
- University of Bologna Department of Psychology, , 40127 Bologna , Italy
| | - Claudio Galletti
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College London, SE1 1UL London, United Kingdom
| | - Patrizia Fattori
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
- University of Bologna Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), , Bologna , Italy
| |
Collapse
|
7
|
The posterior parietal area V6A: an attentionally-modulated visuomotor region involved in the control of reach-toF-grasp action. Neurosci Biobehav Rev 2022; 141:104823. [PMID: 35961383 DOI: 10.1016/j.neubiorev.2022.104823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
In the macaque, the posterior parietal area V6A is involved in the control of all phases of reach-to-grasp actions: the transport phase, given that reaching neurons are sensitive to the direction and amplitude of arm movement, and the grasping phase, since reaching neurons are also sensitive to wrist orientation and hand shaping. Reaching and grasping activity are corollary discharges which, together with the somatosensory and visual signals related to the same movement, allow V6A to act as a state estimator that signals discrepancies during the motor act in order to maintain consistency between the ongoing movement and the desired one. Area V6A is also able to encode the target of an action because of gaze-dependent visual neurons and real-position cells. Here, we advance the hypothesis that V6A also uses the spotlight of attention to guide goal-directed movements of the hand, and hosts a priority map that is specific for the guidance of reaching arm movement, combining bottom-up inputs such as visual responses with top-down signals such as reaching plans.
Collapse
|
8
|
Breveglieri R, Borgomaneri S, Filippini M, De Vitis M, Tessari A, Fattori P. Functional Connectivity at Rest between the Human Medial Posterior Parietal Cortex and the Primary Motor Cortex Detected by Paired-Pulse Transcranial Magnetic Stimulation. Brain Sci 2021; 11:brainsci11101357. [PMID: 34679421 PMCID: PMC8534070 DOI: 10.3390/brainsci11101357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The medial posterior parietal cortex (PPC) is involved in the complex processes of visuomotor integration. Its connections to the dorsal premotor cortex, which in turn is connected to the primary motor cortex (M1), complete the fronto-parietal network that supports important cognitive functions in the planning and execution of goal-oriented movements. In this study, we wanted to investigate the time-course of the functional connectivity at rest between the medial PPC and the M1 using dual-site transcranial magnetic stimulation in healthy humans. We stimulated the left M1 using a suprathreshold test stimulus to elicit motor-evoked potentials in the hand, and a subthreshold conditioning stimulus was applied over the left medial PPC at different inter-stimulus intervals (ISIs). The conditioning stimulus affected the M1 excitability depending on the ISI, with inhibition at longer ISIs (12 and 15 ms). We suggest that these modulations may reflect the activation of different parieto-frontal pathways, with long latency inhibitions likely recruiting polisynaptic pathways, presumably through anterolateral PPC.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
- Correspondence: ; Tel.: +39-05-1209-1890; Fax: +39-05-1209-1737
| | - Sara Borgomaneri
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy;
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
| | - Alessia Tessari
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy;
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
- Alma Mater Research Institute for Human—Centered Artificial Intelligence (Alma Human AI), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Vision for action: thalamic and cortical inputs to the macaque superior parietal lobule. Brain Struct Funct 2021; 226:2951-2966. [PMID: 34524542 PMCID: PMC8541979 DOI: 10.1007/s00429-021-02377-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
The dorsal visual stream, the cortical circuit that in the primate brain is mainly dedicated to the visual control of actions, is split into two routes, a lateral and a medial one, both involved in coding different aspects of sensorimotor control of actions. The lateral route, named "lateral grasping network", is mainly involved in the control of the distal part of prehension, namely grasping and manipulation. The medial route, named "reach-to-grasp network", is involved in the control of the full deployment of prehension act, from the direction of arm movement to the shaping of the hand according to the object to be grasped. In macaque monkeys, the reach-to-grasp network (the target of this review) includes areas of the superior parietal lobule (SPL) that hosts visual and somatosensory neurons well suited to control goal-directed limb movements toward stationary as well as moving objects. After a brief summary of the neuronal functional properties of these areas, we will analyze their cortical and thalamic inputs thanks to retrograde neuronal tracers separately injected into the SPL areas V6, V6A, PEc, and PE. These areas receive visual and somatosensory information distributed in a caudorostral, visuosomatic trend, and some of them are directly connected with the dorsal premotor cortex. This review is particularly focused on the origin and type of visual information reaching the SPL, and on the functional role this information can play in guiding limb interaction with objects in structured and dynamic environments.
Collapse
|
10
|
Maltempo T, Pitzalis S, Bellagamba M, Di Marco S, Fattori P, Galati G, Galletti C, Sulpizio V. Lower visual field preference for the visuomotor control of limb movements in the human dorsomedial parietal cortex. Brain Struct Funct 2021; 226:2989-3005. [PMID: 33738579 PMCID: PMC8541995 DOI: 10.1007/s00429-021-02254-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Visual cues coming from the lower visual field (VF) play an important role in the visual guidance of upper and lower limb movements. A recently described region situated in the dorsomedial parietal cortex, area hPEc (Pitzalis et al. in NeuroImage 202:116092, 2019), might have a role in integrating visually derived information with somatomotor signals to guide limb interaction with the environment. In macaque, it has been demonstrated that PEc receives visual information mostly from the lower visual field but, to date, there has been no systematic investigation of VF preference in the newly defined human homologue of macaque area PEc (hPEc). Here we examined the VF preferences of hPEc while participants performed a visuomotor task implying spatially directed delayed eye-, hand- and foot-movements towards different spatial locations within the VF. By analyzing data as a function of the different target locations towards which upcoming movements were planned (and then executed), we observed the presence of asymmetry in the vertical dimension of VF in area hPEc, being this area more strongly activated by limb movements directed towards visual targets located in the lower compared to the upper VF. This result confirms the view, first advanced in macaque monkey, that PEc is involved in processing visual information to guide body interaction with the external environment, including locomotion. We also observed a contralateral dominance for the lower VF preference in the foot selective somatomotor cortex anterior to hPEc. This result might reflect the role of this cortex (which includes areas PE and S-I) in providing highly topographically organized signals, likely useful to achieve an appropriate foot posture during locomotion.
Collapse
Affiliation(s)
- Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Martina Bellagamba
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy. .,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. .,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| |
Collapse
|
11
|
Breveglieri R, Bosco A, Borgomaneri S, Tessari A, Galletti C, Avenanti A, Fattori P. Transcranial Magnetic Stimulation Over the Human Medial Posterior Parietal Cortex Disrupts Depth Encoding During Reach Planning. Cereb Cortex 2021; 31:267-280. [PMID: 32995831 DOI: 10.1093/cercor/bhaa224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A-hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,IRCCS, Santa Lucia Foundation, 00179 Rome, Italy
| | - Alessia Tessari
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000 Talca, Chile
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
12
|
Kurtzer IL, Muraoka T, Singh T, Prasad M, Chauhan R, Adhami E. Reaching movements are automatically redirected to nearby options during target split. J Neurophysiol 2020; 124:1013-1028. [PMID: 32783570 DOI: 10.1152/jn.00336.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor behavior often occurs in environments with multiple goal options that can vary during the ongoing action. We explored this situation by requiring subjects to select between different target options during an ongoing reach. During split trials the original target was replaced with a left and a right flanking target, and participants had to select between them. This contrasted with the standard jump trials, where the original target would be replaced with a single flanking target, left or right. When participants were instructed to follow their natural tendency, they all tended to select the split target nearest the original. The near-target preference was more prominent with increased spatial disparity between the options and when participants could preview the potential options. Moreover, explicit instruction to obtain the "far" target during split trials resulted many errors compared with a "near" instruction, ~50% vs. ~15%. Online reaction times to target change were delayed in split trials compared with jump trials, ~200 ms vs. ~150 ms, but also highly automatic. Trials in which the instructed far target was correctly obtained were delayed by a further ~50 ms, unlike those in which the near target was incorrectly obtained. We also observed nonspecific responses from arm muscles at the jump trial latency during split trials. Taken together, our results indicate that online selection of reach targets is automatically linked to the spatial distribution of the options, though at greater delays than redirecting to a single target.NEW & NOTEWORTHY This work demonstrates that target selection during an ongoing reach is automatically linked to the option nearest a voided target. Online reaction times for two options are longer than redirection to a single option. Attempts to override the near-target tendency result in a high number of errors at the normal delay and further delays when the attempt is successful.
Collapse
Affiliation(s)
- Isaac L Kurtzer
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Tetsuro Muraoka
- College of Economics, Nihon University, Chiyoda City, Tokyo, Japan
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Mark Prasad
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Riddhi Chauhan
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Elan Adhami
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
13
|
Diomedi S, Vaccari FE, Filippini M, Fattori P, Galletti C. Mixed Selectivity in Macaque Medial Parietal Cortex during Eye-Hand Reaching. iScience 2020; 23:101616. [PMID: 33089104 PMCID: PMC7559278 DOI: 10.1016/j.isci.2020.101616] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023] Open
Abstract
The activity of neurons of the medial posterior parietal area V6A in macaque monkeys is modulated by many aspects of reach task. In the past, research was mostly focused on modulating the effect of single parameters upon the activity of V6A cells. Here, we used Generalized Linear Models (GLMs) to simultaneously test the contribution of several factors upon V6A cells during a fix-to-reach task. This approach resulted in the definition of a representative “functional fingerprint” for each neuron. We first studied how the features are distributed in the population. Our analysis highlighted the virtual absence of units strictly selective for only one factor and revealed that most cells are characterized by “mixed selectivity.” Then, exploiting our GLM framework, we investigated the dynamics of spatial parameters encoded within V6A. We found that the tuning is not static, but changed along the trial, indicating the sequential occurrence of visuospatial transformations helpful to guide arm movement. The parietal cortex integrates a variety of sensorimotor inputs to guide reaching GLM disentangled the effect of various reaching parameters upon cell activity V6A neurons were not functionally clustered, but characterized by mixed selectivity Spatial selectivity was dynamic and reached its peak during the movement phase
Collapse
Affiliation(s)
- Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesco E. Vaccari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Breining BL, Sebastian R. Neuromodulation in post-stroke aphasia treatment. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:44-56. [PMID: 33344066 PMCID: PMC7748105 DOI: 10.1007/s40141-020-00257-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW This paper aims to review non-invasive brain stimulation (NIBS) methods to augment speech and language therapy (SLT) for patients with post-stroke aphasia. RECENT FINDINGS In the past five years there have been more than 30 published studies assessing the effect of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) for improving aphasia in people who have had a stroke. Different approaches to NIBS treatment have been used in post-stroke aphasia treatment including different stimulation locations, stimulation intensity, number of treatment sessions, outcome measures, type of aphasia treatment, and time post-stroke. SUMMARY This review of NIBS for post-stroke aphasia shows that both tDCS and TMS can be beneficial for improving speech and language outcomes for patients with stroke. Prior to translating NIBS to clinical practice, further studies are needed to determine optimal tDCS and TMS parameters as well as the mechanisms underlying tDCS and TMS treatment outcomes.
Collapse
Affiliation(s)
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine
| |
Collapse
|
15
|
Beynel L, Appelbaum LG, Luber B, Crowell CA, Hilbig SA, Lim W, Nguyen D, Chrapliwy NA, Davis SW, Cabeza R, Lisanby SH, Deng ZD. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies. Neurosci Biobehav Rev 2019; 107:47-58. [PMID: 31473301 PMCID: PMC7654714 DOI: 10.1016/j.neubiorev.2019.08.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 01/03/2023]
Abstract
Online repetitive transcranial magnetic stimulation (rTMS), applied while subjects are performing a task, is widely used to disrupt brain regions underlying cognition. However, online rTMS has also induced "paradoxical enhancement". Given the rapid proliferation of this approach, it is crucial to develop a better understanding of how online stimulation influences cognition, and the optimal parameters to achieve desired effects. To accomplish this goal, a quantitative meta-analysis was performed with random-effects models fitted to reaction time (RT) and accuracy data. The final dataset included 126 studies published between 1998 and 2016, with 244 total effects for reaction times, and 202 for accuracy. Meta-analytically, rTMS at 10 Hz and 20 Hz disrupted accuracy for attention, executive, language, memory, motor, and perception domains, while no effects were found with 1 Hz or 5 Hz. Stimulation applied at and 10 and 20 Hz slowed down RTs in attention and perception tasks. No performance enhancement was found. Meta-regression analysis showed that fMRI-guided targeting and short inter-trial intervals are associated with increased disruptive effects with rTMS.
Collapse
Affiliation(s)
- Lysianne Beynel
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Lawrence G Appelbaum
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Courtney A Crowell
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Susan A Hilbig
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Wesley Lim
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Duy Nguyen
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Nicolas A Chrapliwy
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
| | - Sarah H Lisanby
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zhi-De Deng
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
16
|
Caspari N, Arsenault JT, Vandenberghe R, Vanduffel W. Functional Similarity of Medial Superior Parietal Areas for Shift-Selective Attention Signals in Humans and Monkeys. Cereb Cortex 2019; 28:2085-2099. [PMID: 28472289 DOI: 10.1093/cercor/bhx114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 11/14/2022] Open
Abstract
We continually shift our attention between items in the visual environment. These attention shifts are usually based on task relevance (top-down) or the saliency of a sudden, unexpected stimulus (bottom-up), and are typically followed by goal-directed actions. It could be argued that any species that can covertly shift its focus of attention will rely on similar, evolutionarily conserved neural substrates for processing such shift-signals. To address this possibility, we performed comparative fMRI experiments in humans and monkeys, combining traditional, and novel, data-driven analytical approaches. Specifically, we examined correspondences between monkey and human brain areas activated during covert attention shifts. When "shift" events were compared with "stay" events, the medial (superior) parietal lobe (mSPL) and inferior parietal lobes showed similar shift sensitivities across species, whereas frontal activations were stronger in monkeys. To identify, in a data-driven manner, monkey regions that corresponded with human shift-selective SPL, we used a novel interspecies beta-correlation strategy whereby task-related beta-values were correlated across voxels or regions-of-interest in the 2 species. Monkey medial parietal areas V6/V6A most consistently correlated with shift-selective human mSPL. Our results indicate that both species recruit corresponding, evolutionarily conserved regions within the medial superior parietal lobe for shifting spatial attention.
Collapse
Affiliation(s)
- Natalie Caspari
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - John T Arsenault
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA.,Harvard Medical School, Department of Radiology, Boston, MA 02115, USA
| |
Collapse
|
17
|
Santandrea E, Breveglieri R, Bosco A, Galletti C, Fattori P. Preparatory activity for purposeful arm movements in the dorsomedial parietal area V6A: Beyond the online guidance of movement. Sci Rep 2018; 8:6926. [PMID: 29720690 PMCID: PMC5931970 DOI: 10.1038/s41598-018-25117-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
Over the years, electrophysiological recordings in macaque monkeys performing visuomotor tasks brought about accumulating evidence for the expression of neuronal properties (e.g., selectivity in the visuospatial and somatosensory domains, encoding of visual affordances and motor cues) in the posterior parietal area V6A that characterize it as an ideal neural substrate for online control of prehension. Interestingly, neuroimaging studies suggested a role of putative human V6A also in action preparation; moreover, pre-movement population activity in monkey V6A has been recently shown to convey grip-related information for upcoming grasping. Here we directly test whether macaque V6A neurons encode preparatory signals that effectively differentiate between dissimilar actions before movement. We recorded the activity of single V6A neurons during execution of two visuomotor tasks requiring either reach-to-press or reach-to-grasp movements in different background conditions, and described the nature and temporal dynamics of V6A activity preceding movement execution. We found striking consistency in neural discharges measured during pre-movement and movement epochs, suggesting that the former is a preparatory activity exquisitely linked to the subsequent execution of particular motor actions. These findings strongly support a role of V6A beyond the online guidance of movement, with preparatory activity implementing suitable motor programs that subsequently support action execution.
Collapse
Affiliation(s)
- Elisa Santandrea
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
18
|
Fattori P, Breveglieri R, Bosco A, Gamberini M, Galletti C. Vision for Prehension in the Medial Parietal Cortex. Cereb Cortex 2018; 27:1149-1163. [PMID: 26656999 DOI: 10.1093/cercor/bhv302] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the last 2 decades, the medial posterior parietal area V6A has been extensively studied in awake macaque monkeys for visual and somatosensory properties and for its involvement in encoding of spatial parameters for reaching, including arm movement direction and amplitude. This area also contains populations of neurons sensitive to grasping movements, such as wrist orientation and grip formation. Recent work has shown that V6A neurons also encode the shape of graspable objects and their affordance. In other words, V6A seems to encode object visual properties specifically for the purpose of action, in a dynamic sequence of visuomotor transformations that evolve in the course of reach-to-grasp action.We propose a model of cortical circuitry controlling reach-to-grasp actions, in which V6A acts as a comparator that monitors differences between current and desired hand positions and configurations. This error signal could be used to continuously update the motor output, and to correct reach direction, hand orientation, and/or grip aperture as required during the act of prehension.In contrast to the generally accepted view that the dorsomedial component of the dorsal visual stream encodes reaching, but not grasping, the functional properties of V6A neurons strongly suggest the view that this area is involved in encoding all phases of prehension, including grasping.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
19
|
Rossit S, Harvey M, Butler SH, Szymanek L, Morand S, Monaco S, McIntosh RD. Impaired peripheral reaching and on-line corrections in patient DF: Optic ataxia with visual form agnosia. Cortex 2018; 98:84-101. [DOI: 10.1016/j.cortex.2017.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/15/2017] [Accepted: 04/07/2017] [Indexed: 11/16/2022]
|
20
|
Abstract
In 1992, Goodale and Milner proposed a division of labor in the visual pathways of the primate cerebral cortex. According to their account, the ventral pathway, which projects to occipitotemporal cortex, constructs our visual percepts, while the dorsal pathway, which projects to posterior parietal cortex, mediates the visual control of action. Although the framing of the two-visual-system hypothesis has not been without controversy, it is clear that vision for action and vision for perception have distinct computational requirements, and significant support for the proposed neuroanatomic division has continued to emerge over the last two decades from human neuropsychology, neuroimaging, behavioral psychophysics, and monkey neurophysiology. In this chapter, we review much of this evidence, with a particular focus on recent findings from human neuroimaging and monkey neurophysiology, demonstrating a specialized role for parietal cortex in visually guided behavior. But even though the available evidence suggests that dedicated circuits mediate action and perception, in order to produce adaptive goal-directed behavior there must be a close coupling and seamless integration of information processing across these two systems. We discuss such ventral-dorsal-stream interactions and argue that the two pathways play different, yet complementary, roles in the production of skilled behavior.
Collapse
Affiliation(s)
- Jason P Gallivan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Melvyn A Goodale
- Department of Psychology, University of Western Ontario, London, Ontario, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
21
|
Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions. Cortex 2017; 92:175-186. [DOI: 10.1016/j.cortex.2017.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/11/2016] [Accepted: 04/07/2017] [Indexed: 11/19/2022]
|
22
|
Breveglieri R, De Vitis M, Bosco A, Galletti C, Fattori P. Interplay Between Grip and Vision in the Monkey Medial Parietal Lobe. Cereb Cortex 2017; 28:2028-2042. [DOI: 10.1093/cercor/bhx109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rossella Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Marina De Vitis
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| |
Collapse
|
23
|
Causal role of the posterior parietal cortex for two-digit mental subtraction and addition: A repetitive TMS study. Neuroimage 2017; 155:72-81. [PMID: 28454819 DOI: 10.1016/j.neuroimage.2017.04.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/21/2022] Open
Abstract
Although parietal areas of the left hemisphere are known to be involved in simple mental calculation, the possible role of the homologue areas of the right hemisphere in mental complex calculation remains debated. In the present study, we tested the causal role of the posterior parietal cortex of both hemispheres in two-digit mental addition and subtraction by means of neuronavigated repetitive TMS (rTMS), investigating possible hemispheric asymmetries in specific parietal areas. In particular, we performed two rTMS experiments, which differed only for the target sites stimulated, on independent samples of participants. rTMS was delivered over the horizontal and ventral portions of the intraparietal sulcus (HIPS and VIPS, respectively) of each hemisphere in Experiment 1, and over the angular and supramarginal gyri (ANG and SMG, respectively) of each hemisphere in Experiment 2. First, we found that each cerebral area of the posterior parietal cortex is involved to some degree in the two-digit addition and subtraction. Second, in Experiment 1, we found a stronger pattern of hemispheric asymmetry for the involvement of HIPS in addition compared to subtraction. In particular, results showed a greater involvement of the right HIPS than the left one for addition. Moreover, we found less asymmetry for the VIPS. Taken together, these results suggest that two-digit mental addition is more strongly associated with the use of a spatial mapping compared to subtraction. In support of this view, in Experiment 2, a greater role of left and right ANG was found for addition needed in verbal processing of numbers and in visuospatial attention processes, respectively. We also revealed a greater involvement of the bilateral SMG in two-digit mental subtraction, in response to greater working memory load required to solve this latter operation compared to addition.
Collapse
|
24
|
Zhang H, Lee A, Qiu A. A posterior-to-anterior shift of brain functional dynamics in aging. Brain Struct Funct 2017; 222:3665-3676. [PMID: 28417233 DOI: 10.1007/s00429-017-1425-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Convergent evidence from task-based functional magnetic resonance imaging (fMRI) studies suggests a posterior-to-anterior shift as an adaptive compensatory scaffolding mechanism for aging. This study aimed to investigate whether brain functional dynamics at rest follow the same scaffolding mechanism for aging using a large Chinese sample aged from 22 to 79 years (n = 277). We defined a probability of brain regions being hubs over a period of time to characterize functional hub dynamic, and defined variability of the functional connectivity to characterize dynamic functional connectivity using resting-state fMRI. Our results revealed that both functional hub dynamics and dynamic functional connectivity posited an age-related posterior-to-anterior shift. Specifically, the posterior brain region showed attenuated dynamics, while the anterior brain regions showed augmented dynamics in aging. Interestingly, our analysis further indicated that the age-related episodic memory decline was associated with the age-related decrease in the brain functional dynamics of the posterior regions. Hence, these findings provided a new dimension to view the scaffolding mechanism for aging based on the brain functional dynamics.
Collapse
Affiliation(s)
- Han Zhang
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Annie Lee
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore. .,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore. .,Singapore Institute for Clinical Sciences, The Agency for Science, Technology and Research, Singapore, 117609, Singapore.
| |
Collapse
|
25
|
Asscheman SJ, Thakkar KN, Neggers SF. Changes in Effective Connectivity of the Superior Parietal Lobe during Inhibition and Redirection of Eye Movements. J Exp Neurosci 2016; 9:27-40. [PMID: 27147827 PMCID: PMC4849422 DOI: 10.4137/jen.s32736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/02/2022] Open
Abstract
Executive control is the ability to flexibly control behavior and is frequently studied with saccadic eye movements. Contrary to frontal oculomotor areas, the role of the superior parietal lobe (SPL) in the executive control of saccades remains unknown. To explore the role of SPL networks in saccade control, we performed a saccadic search-step task while acquiring functional magnetic resonance imaging data for 41 participants. Psychophysiological interaction analyses assessed task-related differences in the effective connectivity of SPL with other brain regions during the inhibition and redirection of saccades. Results indicate an increased coupling of SPL with frontal, posterior, and striatal oculomotor areas for redirected saccades versus visually guided saccades. Saccade inhibition versus unsuccessful inhibition revealed an increased coupling of SPL with dorsolateral prefrontal cortex and anterior cingulate cortex. We discuss how these findings relate to ongoing debates about the implementation of executive control and conclude that early attentional control and rapid updating of saccade goals are important signals for executive control.
Collapse
Affiliation(s)
- Susanne J. Asscheman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharine N. Thakkar
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Sebastiaan F.W. Neggers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Abstract
In the awake state, shifts of spatial attention alternate with periods of sustained attention at a fixed location or object. Human fMRI experiments revealed the critical role of the superior parietal lobule (SPL) in shifting spatial attention, a finding not predicted by human lesion studies and monkey electrophysiology. To investigate whether a potential homolog of the human SPL shifting region exists in monkeys (Macaca mulatta), we adopted an event-related fMRI paradigm that closely resembled a human experiment (Molenberghs et al., 2007). In this paradigm, a pair of relevant and irrelevant shapes was continuously present on the horizontal meridian. Subjects had to covertly detect a dimming of the relevant shape while ignoring the irrelevant dimmings. The events of interest consisted of the replacement of one stimulus pair by the next. During shift but not stay events, the relevant shape of the new pair appeared at the contralateral position relative to the previous one. Spatial shifting events activated parietal areas V6/V6A and medial intraparietal area, caudo-dorsal visual areas, the most posterior portion of the superior temporal sulcus, and several smaller frontal areas. These areas were not activated during passive stimulation with the same sensory stimuli. During stay events, strong direction-sensitive attention signals were observed in a distributed set of contralateral visual, temporal, parietal, and lateral prefrontal areas, the vast majority overlapping with the sensory stimulus representation. We suggest medial intraparietal area and V6/V6A as functional counterparts of human SPL because they contained the most widespread shift signals in the absence of contralateral stay activity, resembling the functional characteristics of the human SPL shifting area.
Collapse
|
27
|
Breveglieri R, Galletti C, Bosco A, Gamberini M, Fattori P. Object Affordance Modulates Visual Responses in the Macaque Medial Posterior Parietal Cortex. J Cogn Neurosci 2015; 27:1447-55. [DOI: 10.1162/jocn_a_00793] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Area V6A is a visuomotor area of the dorsomedial visual stream that contains cells modulated by object observation and by grip formation. As different objects have different shapes but also evoke different grips, the response selectivity during object presentation could reflect either the coding of object geometry or object affordances. To clarify this point, we here investigate neural responses of V6A cells when monkeys observed two objects with similar visual features but different contextual information, such as the evoked grip type. We demonstrate that many V6A cells respond to the visual presentation of objects and about 30% of them by the object affordance. Given that area V6A is an early stage in the visuomotor processes underlying grasping, these data suggest that V6A may participate in the computation of object affordances. These results add some elements in the recent literature about the role of the dorsal visual stream areas in object representation and contribute in elucidating the neural correlates of the extraction of action-relevant information from general object properties, in agreement with recent neuroimaging studies on humans showing that vision of graspable objects activates action coding in the dorsomedial visual steam.
Collapse
|
28
|
Hutchison RM, Culham JC, Flanagan JR, Everling S, Gallivan JP. Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI. Neuroimage 2015; 116:10-29. [PMID: 25970649 DOI: 10.1016/j.neuroimage.2015.04.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/31/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022] Open
Abstract
Based on its diverse and wide-spread patterns of connectivity, primate posteromedial cortex (PMC) is well positioned to support roles in several aspects of sensory-, cognitive- and motor-related processing. Previous work in both humans and non-human primates (NHPs) using resting-state functional MRI (rs-fMRI) suggests that a subregion of PMC, the medial parieto-occipital cortex (mPOC), by virtue of its intrinsic functional connectivity (FC) with visual cortex, may only play a role in higher-order visual processing. Recent neuroanatomical tracer studies in NHPs, however, demonstrate that mPOC also has prominent cortico-cortical connections with several frontoparietal structures involved in movement planning and control, a finding consistent with increasing observations of reach- and grasp-related activity in the mPOC of both NHPs and humans. To reconcile these observations, here we used rs-fMRI data collected from both awake humans and anesthetized macaque monkeys to more closely examine and compare parcellations of mPOC across species and explore the FC patterns associated with these subdivisions. Seed-based and voxel-wise hierarchical cluster analyses revealed four broad spatially separated functional boundaries that correspond with graded differences in whole-brain FC patterns in each species. The patterns of FC observed are consistent with mPOC forming a critical hub of networks involved in action planning and control, spatial navigation, and working memory. In addition, our comparison between species indicates that while there are several similarities, there may be some species-specific differences in functional neural organization. These findings and the associated theoretical implications are discussed.
Collapse
Affiliation(s)
- R Matthew Hutchison
- Department of Psychology, Harvard University, Cambridge, MA, USA; Center for Brain Science, Harvard University, Cambridge, MA, USA; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| | - Jody C Culham
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
29
|
Davare M, Zénon A, Desmurget M, Olivier E. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude. Front Hum Neurosci 2015; 9:241. [PMID: 25999837 PMCID: PMC4422032 DOI: 10.3389/fnhum.2015.00241] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/14/2015] [Indexed: 11/13/2022] Open
Abstract
To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the “reaching circuit” remains unknown. Here we used transcranial magnetic stimulation (TMS) in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS) or dorsal premotor cortex (PMd), in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; targets were either visible for the whole trial (Target-ON) or flashed for 200 ms (Target-OFF). Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks—two parameters typically used to probe the planned movement amplitude—irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160–100 ms before movement onset for mIPS and 100–40 ms for left PMd. TMS applied over right PMd had no significant effect. These results demonstrate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric organization.
Collapse
Affiliation(s)
- Marco Davare
- Institute of Neuroscience (IoNS), School of Medicine, University of Louvain Brussels, Belgium ; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London London, UK ; Department of Kinesiology, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, KU Leuven Leuven, Belgium
| | - Alexandre Zénon
- Institute of Neuroscience (IoNS), School of Medicine, University of Louvain Brussels, Belgium
| | | | - Etienne Olivier
- Institute of Neuroscience (IoNS), School of Medicine, University of Louvain Brussels, Belgium
| |
Collapse
|
30
|
Thalamic projections to visual and visuomotor areas (V6 and V6A) in the Rostral Bank of the parieto-occipital sulcus of the Macaque. Brain Struct Funct 2015; 221:1573-89. [DOI: 10.1007/s00429-015-0990-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/09/2015] [Indexed: 01/03/2023]
|
31
|
Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2014; 14:1327-39. [DOI: 10.3758/s13415-014-0266-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Event-related alpha suppression in response to facial motion. PLoS One 2014; 9:e89382. [PMID: 24586735 PMCID: PMC3929715 DOI: 10.1371/journal.pone.0089382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/20/2014] [Indexed: 11/23/2022] Open
Abstract
While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors.
Collapse
|
33
|
Gaveau V, Pisella L, Priot AE, Fukui T, Rossetti Y, Pélisson D, Prablanc C. Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia 2013; 55:25-40. [PMID: 24334110 DOI: 10.1016/j.neuropsychologia.2013.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/16/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
Abstract
Following the princeps investigations of Marc Jeannerod on action-perception, specifically, goal-directed movement, this review article addresses visual and non-visual processes involved in guiding the hand in reaching or grasping tasks. The contributions of different sources of correction of ongoing movements are considered; these include visual feedback of the hand, as well as the often-neglected but important spatial updating and sharpening of goal localization following gaze-saccade orientation. The existence of an automatic online process guiding limb trajectory toward its goal is highlighted by a series of princeps experiments of goal-directed pointing movements. We then review psychophysical, electrophysiological, neuroimaging and clinical studies that have explored the properties of these automatic corrective mechanisms and their neural bases, and established their generality. Finally, the functional significance of automatic corrective mechanisms-referred to as motor flexibility-and their potential use in rehabilitation are discussed.
Collapse
Affiliation(s)
- Valérie Gaveau
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Laure Pisella
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Anne-Emmanuelle Priot
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Institut de recherche biomédicale des armées (IRBA), BP 73, 91223 Brétigny-sur-Orge cedex, France
| | - Takao Fukui
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France
| | - Yves Rossetti
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Denis Pélisson
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Claude Prablanc
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France.
| |
Collapse
|
34
|
Breveglieri R, Galletti C, Dal Bò G, Hadjidimitrakis K, Fattori P. Multiple aspects of neural activity during reaching preparation in the medial posterior parietal area V6A. J Cogn Neurosci 2013; 26:878-95. [PMID: 24168224 DOI: 10.1162/jocn_a_00510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The posterior parietal cortex is involved in the visuomotor transformations occurring during arm-reaching movements. The medial posterior parietal area V6A has been shown to be implicated in reaching execution, but its role in reaching preparation has not been sufficiently investigated. Here, we addressed this issue exploring the neural correlates of reaching preparation in V6A. Neural activity of single cells during the instructed delay period of a foveated Reaching task was compared with the activity in the same delay period during a Detection task. In this latter task, animals fixated the target but, instead of performing an arm reaching movement, they responded with a button release to the go signal. Targets were allocated in different positions in 3-D space. We found three types of neurons: cells where delay activity was equally spatially tuned in the two tasks (Gaze cells), cells spatially tuned only during reaching preparation (Set cells), and cells influenced by both gaze and reaching preparation signals (Gaze/Set cells). In cells influenced by reaching preparation, the delay activity in the Reaching task could be higher or lower compared with the Detection task. All the Set cells and a minority of Gaze/Set cells were more active during reaching preparation. Most cells modulated by movement preparation were also modulated with a congruent spatial tuning during movement execution. Present results highlight the convergence of visuospatial information, reach planning and reach execution signals on V6A, and indicate that visuospatial processing and movement execution have a larger influence on V6A activity than the encoding of reach plans.
Collapse
|