1
|
Nagy B, Kojouharova P, Protzner AB, Gaál ZA. Investigating the Effect of Contextual Cueing with Face Stimuli on Electrophysiological Measures in Younger and Older Adults. J Cogn Neurosci 2024; 36:776-799. [PMID: 38437174 DOI: 10.1162/jocn_a_02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Extracting repeated patterns from our surroundings plays a crucial role in contextualizing information, making predictions, and guiding our behavior implicitly. Previous research showed that contextual cueing enhances visual search performance in younger adults. In this study, we investigated whether contextual cueing could also improve older adults' performance and whether age-related differences in the neural processes underlying implicit contextual learning could be detected. Twenty-four younger and 25 older participants performed a visual search task with contextual cueing. Contextual information was generated using repeated face configurations alongside random new configurations. We measured RT difference between new and repeated configurations; ERPs to uncover the neural processes underlying contextual cueing for early (N2pc), intermediate (P3b), and late (r-LRP) processes; and multiscale entropy and spectral power density analyses to examine neural dynamics. Both younger and older adults showed similar contextual cueing benefits in their visual search efficiency at the behavioral level. In addition, they showed similar patterns regarding contextual information processing: Repeated face configurations evoked decreased finer timescale entropy (1-20 msec) and higher frequency band power (13-30 Hz) compared with new configurations. However, we detected age-related differences in ERPs: Younger, but not older adults, had larger N2pc and P3b components for repeated compared with new configurations. These results suggest that contextual cueing remains intact with aging. Although attention- and target-evaluation-related ERPs differed between the age groups, the neural dynamics of contextual learning were preserved with aging, as both age groups increasingly utilized more globally grouped representations for repeated face configurations during the learning process.
Collapse
Affiliation(s)
- Boglárka Nagy
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Petia Kojouharova
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Zsófia Anna Gaál
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
2
|
van der Wijk G, Enkhbold Y, Cnudde K, Szostakiwskyj MW, Blier P, Knott V, Jaworska N, Protzner AB. One size does not fit all: notable individual variation in brain activity correlates of antidepressant treatment response. Front Psychiatry 2024; 15:1358018. [PMID: 38628260 PMCID: PMC11018891 DOI: 10.3389/fpsyt.2024.1358018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction To date, no robust electroencephalography (EEG) markers of antidepressant treatment response have been identified. Variable findings may arise from the use of group analyses, which neglect individual variation. Using a combination of group and single-participant analyses, we explored individual variability in EEG characteristics of treatment response. Methods Resting-state EEG data and Montgomery-Åsberg Depression Rating Scale (MADRS) symptom scores were collected from 43 patients with depression before, at 1 and 12 weeks of pharmacotherapy. Partial least squares (PLS) was used to: 1) identify group differences in EEG connectivity (weighted phase lag index) and complexity (multiscale entropy) between eventual medication responders and non-responders, and 2) determine whether group patterns could be identified in individual patients. Results Responders showed decreased alpha and increased beta connectivity, and early, widespread decreases in complexity over treatment. Non-responders showed an opposite connectivity pattern, and later, spatially confined decreases in complexity. Thus, as in previous studies, our group analyses identified significant differences between groups of patients with different treatment outcomes. These group-level EEG characteristics were only identified in ~40-60% of individual patients, as assessed quantitatively by correlating the spatiotemporal brain patterns between groups and individual results, and by independent raters through visualization. Discussion Our single-participant analyses suggest that substantial individual variation exists, and needs to be considered when investigating characteristics of antidepressant treatment response for potential clinical applicability. Clinical trial registration https://clinicaltrials.gov, identifier NCT00519428.
Collapse
Affiliation(s)
- Gwen van der Wijk
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Yaruuna Enkhbold
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Kelsey Cnudde
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | | | - Pierre Blier
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Natalia Jaworska
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrea B. Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Teghil A, Boccia M. Brain connectivity patterns associated with individual differences in the access to experience-near personal semantics: a resting-state fMRI study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:87-99. [PMID: 38200283 PMCID: PMC10827898 DOI: 10.3758/s13415-023-01149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
It has been proposed that a continuum of specificity exists between episodic and semantic autobiographical memory. Personal semantics have been theorized to situate intermediately on this continuum, with more "experience-near" personal semantics (enPS) closer to the episodic end. We used individual differences in behavior as a model to investigate brain networks associated with the access to episodic autobiographical (EAM) and enPS information, assessing the relation between performance in the EAM and enPS conditions of the Autobiographical Fluency Task (AFT) and intrinsic brain connectivity. Results of an intrinsic connectivity contrast analysis showed that the global connectivity of two clusters in the left and right posterior cingulate cortex (PCC) was predicted by performance in the enPS conditions. Moreover, enPS scores predicted the connectivity strength of the right PCC with the bilateral anterior hippocampus (aHC), anterior middle temporal gyrus (aMTG) and medial orbitofrontal cortex, and the left aMTG and PCC. enPS scores also predicted the connectivity strength of the left PCC with the bilateral HC and MTG. The network highlighted involves parts of the core and of the dorsal medial subsystems of the Default Mode Network, in line with the proposal that enPS represents an intermediate entity between episodic and semantic memory.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
4
|
Cnudde K, Kim G, Murch WS, Handy TC, Protzner AB, Kam JWY. EEG complexity during mind wandering: A multiscale entropy investigation. Neuropsychologia 2023; 180:108480. [PMID: 36621593 DOI: 10.1016/j.neuropsychologia.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Our attention often drifts away from the ongoing task to task-unrelated thoughts, a phenomenon commonly referred to as mind wandering. Ample studies dedicated to delineating its electrophysiological correlates have revealed distinct event-related potentials (ERP) and spectral patterns associated with mind wandering. It remains less clear whether the complexity of the electroencephalography (EEG) changes when our minds wander, a metric that captures the predictability of the time series at varying timescales. Accordingly, this study investigated whether mind wandering impacts EEG signal complexity. We further explored whether such effects differ across timescales, and change in a context-dependent manner as indexed by global and local levels of processing. To address this, we recorded participants' EEG while they completed Navon's global and local processing task and occasionally reported whether they were on-task or mind wandering throughout the task. We found that brain signal complexity as indexed by multiscale entropy decreased at medium timescales in centro-parietal regions and increased at coarse timescales in anterior and posterior regions during mind wandering, as compared to the on-task state, for global processing. Moreover, global processing showed increased complexity at fine to medium timescales compared to local processing. Finally, behavioral performance revealed a context-dependent effect in accuracy measures, with mind wandering showing lower accuracy compared to the on-task state only during the local condition. Taken together, these results indicate that changes in brain signal complexity across timescales may be an important feature of mind wandering.
Collapse
Affiliation(s)
- Kelsey Cnudde
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4.
| | - Gahyun Kim
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - W Spencer Murch
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, Canada, V6T 1Z4; Department of Sociology & Anthropology, Concordia University, 1455 de Maisonneuve Blvd W, Montreal, Quebec, Canada, H3G 1M8
| | - Todd C Handy
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 1N4; Mathison Centre for Mental Health, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| | - Julia W Y Kam
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4; Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, Canada, V6T 1Z4; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
5
|
Nagy B, Protzner AB, van der Wijk G, Wang H, Cortese F, Czigler I, Gaál ZA. The modulatory effect of adaptive task-switching training on resting-state neural network dynamics in younger and older adults. Sci Rep 2022; 12:9541. [PMID: 35680953 PMCID: PMC9184743 DOI: 10.1038/s41598-022-13708-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022] Open
Abstract
With increasing life expectancy and active aging, it becomes crucial to investigate methods which could compensate for generally detected cognitive aging processes. A promising candidate is adaptive cognitive training, during which task difficulty is adjusted to the participants' performance level to enhance the training and potential transfer effects. Measuring intrinsic brain activity is suitable for detecting possible distributed training-effects since resting-state dynamics are linked to the brain's functional flexibility and the effectiveness of different cognitive processes. Therefore, we investigated if adaptive task-switching training could modulate resting-state neural dynamics in younger (18-25 years) and older (60-75 years) adults (79 people altogether). We examined spectral power density on resting-state EEG data for measuring oscillatory activity, and multiscale entropy for detecting intrinsic neural complexity. Decreased coarse timescale entropy and lower frequency band power as well as increased fine timescale entropy and higher frequency band power revealed a shift from more global to local information processing with aging before training. However, cognitive training modulated these age-group differences, as coarse timescale entropy and lower frequency band power increased from pre- to post-training in the old-training group. Overall, our results suggest that cognitive training can modulate neural dynamics even when measured outside of the trained task.
Collapse
Affiliation(s)
- Boglárka Nagy
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, P.O. Box 286, Budapest, 1519, Hungary.
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre, University of Calgary, Calgary, AB, Canada
| | - Gwen van der Wijk
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Hongye Wang
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Centre, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - István Czigler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, P.O. Box 286, Budapest, 1519, Hungary
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Anna Gaál
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, P.O. Box 286, Budapest, 1519, Hungary
| |
Collapse
|
6
|
McDonough IM, Letang SK, Erwin HB, Kana RK. Evidence for Maintained Post-Encoding Memory Consolidation Across the Adult Lifespan Revealed by Network Complexity. ENTROPY 2019. [PMCID: PMC7514376 DOI: 10.3390/e21111072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Memory consolidation is well known to occur during sleep, but might start immediately after encoding new information while awake. While consolidation processes are important across the lifespan, they may be even more important to maintain memory functioning in old age. We tested whether a novel measure of information processing known as network complexity might be sensitive to post-encoding consolidation mechanisms in a sample of young, middle-aged, and older adults. Network complexity was calculated by assessing the irregularity of brain signals within a network over time using multiscale entropy. To capture post-encoding mechanisms, network complexity was estimated using functional magnetic resonance imaging (fMRI) during rest before and after encoding of picture pairs, and subtracted between the two rest periods. Participants received a five-alternative-choice memory test to assess associative memory performance. Results indicated that aging was associated with an increase in network complexity from pre- to post-encoding in the default mode network (DMN). Increases in network complexity in the DMN also were associated with better subsequent memory across all age groups. These findings suggest that network complexity is sensitive to post-encoding consolidation mechanisms that enhance memory performance. These post-encoding mechanisms may represent a pathway to support memory performance in the face of overall memory declines.
Collapse
|
7
|
Burles F, Lu J, Slone E, Cortese F, Iaria G, Protzner AB. Revisiting mental rotation with stereoscopic disparity: A new spin for a classic paradigm. Brain Cogn 2019; 136:103600. [PMID: 31550645 DOI: 10.1016/j.bandc.2019.103600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 11/19/2022]
Abstract
To understand how the presence of stereoscopic disparity influences cognitive and neural processing, we recorded participants' behavior and scalp electrical activity while they performed a mental rotation task. Participants wore active shutter 3D goggles, allowing us to present stimuli with or without stereoscopic disparity on a trial-by-trial basis. Participants were more accurate and faster when stimuli were presented with stereoscopic disparity. This improvement in performance was accompanied by changes in neural activity recorded from scalp electrodes at parietal and occipital regions; stereoscopic disparity produced earlier P2 peaks, larger N2 amplitudes, and earlier, smaller P300 peak amplitudes. The presence of stereoscopic disparity also produced greater neural entropy at occipital electrode sites, and lower entropy at frontal sites. These findings suggest that the nature of the benefit afforded by stereoscopic disparity occurs at both low-level perceptual processing and higher-level cognitive processing, and results in more accurate and rapid performance.
Collapse
Affiliation(s)
- Ford Burles
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada; Rotman Research Institute, Toronto, Ontario, Canada.
| | - James Lu
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Edward Slone
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, Calgary, Alberta, Canada; Seaman Family MR Research Centre, Calgary, Alberta, Canada
| | - Giuseppe Iaria
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Wang CH, Moreau D, Yang CT, Tsai YY, Lin JT, Liang WK, Tsai CL. Aerobic exercise modulates transfer and brain signal complexity following cognitive training. Biol Psychol 2019; 144:85-98. [PMID: 30943426 DOI: 10.1016/j.biopsycho.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/21/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
Although recent evidence has demonstrated the potent effect of physical exercise to increase the efficacy of cognitive training, the neural mechanisms underlying this causal relationship remain unclear. Here, we used multiscale entropy (MSE) of electroencephalography (EEG)-a measure of brain signal complexity-to address this issue. Young males were randomly assigned to either a 20-day dual n-back training following aerobic exercise or the same training regimen following a reading. A feature binding working memory task with concurrent EEG recording was used to test for transfer effects. Although results revealed weak-to-moderate evidence for exercise-induced facilitation on cognitive training, the combination of cognitive training with exercise resulted in greater transfer gains on conditions involving greater attentional demanding, together with greater increases in cognitive modulation on MSE, compared with the reading condition. Overall, our findings suggest that the addition of antecedent physical exercise to brain training regimen could enable wider, more robust improvements.
Collapse
Affiliation(s)
- Chun-Hao Wang
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - David Moreau
- School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Cheng-Ta Yang
- Department of Psychology, National Cheng Kung University, Social Sciences Building, No. 1, University Road, East District, Tainan City 701, Taiwan; Institute of Allied Health Sciences, National Cheng Kung University, No.1, University Road, Tainan City, Tainan
| | - Yun-Yen Tsai
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Jui-Tang Lin
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Jhongli 320, Taiwan.
| | - Chia-Liang Tsai
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
9
|
Kuntzelman K, Jack Rhodes L, Harrington LN, Miskovic V. A practical comparison of algorithms for the measurement of multiscale entropy in neural time series data. Brain Cogn 2018; 123:126-135. [PMID: 29562207 DOI: 10.1016/j.bandc.2018.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/22/2023]
Abstract
There is a broad family of statistical methods for capturing time series regularity, with increasingly widespread adoption by the neuroscientific community. A common feature of these methods is that they permit investigators to quantify the entropy of brain signals - an index of unpredictability/complexity. Despite the proliferation of algorithms for computing entropy from neural time series data there is scant evidence concerning their relative stability and efficiency. Here we evaluated several different algorithmic implementations (sample, fuzzy, dispersion and permutation) of multiscale entropy in terms of their stability across sessions, internal consistency and computational speed, accuracy and precision using a combination of electroencephalogram (EEG) and synthetic 1/ƒ noise signals. Overall, we report fair to excellent internal consistency and longitudinal stability over a one-week period for the majority of entropy estimates, with several caveats. Computational timing estimates suggest distinct advantages for dispersion and permutation entropy over other entropy estimates. Considered alongside the psychometric evidence, we suggest several ways in which researchers can maximize computational resources (without sacrificing reliability), especially when working with high-density M/EEG data or multivoxel BOLD time series signals.
Collapse
Affiliation(s)
- Karl Kuntzelman
- Department of Psychology, State University of New York at Binghamton, USA; Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, USA
| | - L Jack Rhodes
- Department of Psychology, State University of New York at Binghamton, USA
| | | | - Vladimir Miskovic
- Department of Psychology, State University of New York at Binghamton, USA.
| |
Collapse
|
10
|
Cross-cultural and hemispheric laterality effects on the ensemble coding of emotion in facial crowds. ACTA ACUST UNITED AC 2017; 5:125-152. [PMID: 29230379 DOI: 10.1007/s40167-017-0054-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In many social situations, we make a snap judgment about crowds of people relying on their overall mood (termed "crowd emotion"). Although reading crowd emotion is critical for interpersonal dynamics, the sociocultural aspects of this process have not been explored. The current study examined how culture modulates the processing of crowd emotion in Korean and American observers. Korean and American (non-East Asian) participants were briefly presented with two groups of faces that were individually varying in emotional expressions and asked to choose which group between the two they would rather avoid. We found that Korean participants were more accurate than American participants overall, in line with the framework on cultural viewpoints: Holistic versus analytic processing in East Asians versus Westerners. Moreover, we found a speed advantage for other-race crowds in both cultural groups. Finally, we found different hemispheric lateralization patterns: American participants were more accurate to perceive the facial crowd to be avoided when it was presented in the left visual field than the right visual field, indicating a right hemisphere advantage for processing crowd emotion of both European American and Korean facial crowds. However, Korean participants showed weak or nonexistent laterality effects, with a slight right hemisphere advantage for European American facial crowds and no advantage in perceiving Korean facial crowds. Instead, Korean participants showed positive emotion bias for own-race faces. This work suggests that culture plays a role in modulating our crowd emotion perception of groups of faces and responses to them.
Collapse
|
11
|
Vakorin VA, Doesburg SM, da Costa L, Jetly R, Pang EW, Taylor MJ. Detecting Mild Traumatic Brain Injury Using Resting State Magnetoencephalographic Connectivity. PLoS Comput Biol 2016; 12:e1004914. [PMID: 27906973 PMCID: PMC5131899 DOI: 10.1371/journal.pcbi.1004914] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/11/2016] [Indexed: 01/05/2023] Open
Abstract
Accurate means to detect mild traumatic brain injury (mTBI) using objective and quantitative measures remain elusive. Conventional imaging typically detects no abnormalities despite post-concussive symptoms. In the present study, we recorded resting state magnetoencephalograms (MEG) from adults with mTBI and controls. Atlas-guided reconstruction of resting state activity was performed for 90 cortical and subcortical regions, and calculation of inter-regional oscillatory phase synchrony at various frequencies was performed. We demonstrate that mTBI is associated with reduced network connectivity in the delta and gamma frequency range (>30 Hz), together with increased connectivity in the slower alpha band (8–12 Hz). A similar temporal pattern was associated with correlations between network connectivity and the length of time between the injury and the MEG scan. Using such resting state MEG network synchrony we were able to detect mTBI with 88% accuracy. Classification confidence was also correlated with clinical symptom severity scores. These results provide the first evidence that imaging of MEG network connectivity, in combination with machine learning, has the potential to accurately detect and determine the severity of mTBI. Detecting concussion is typically not possible using currently clinically used brain imaging, such as MRI and CT scans. Magnetoencephalographic (MEG) imaging is able to directly measure brain activity at fast time scales, and this can be used to map how various areas of the brain interact. We recorded MEG from individuals who had suffered a concussion, as well as control subjects who had not. We found characteristic alterations of inter-regional interactions associated with concussion. Moreover, using a machine learning approach, we were able to detect concussion with 88% accuracy from MEG connectivity, and confidence of classification correlated with symptom severity. This potentially provides new quantitative and objective methods for detecting and assessing the severity of concussion using neuroimaging.
Collapse
Affiliation(s)
- Vasily A. Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| | - Sam M. Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Leodante da Costa
- Department of Surgery, Division of Neurosurgery, Sunnybrook Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Sunnybrook Hospital, Toronto, Ontario, Canada
| | - Rakesh Jetly
- Canadian Forces Health Services, Directorate of Mental Health, Ottawa, Ontario, Canada
| | - Elizabeth W. Pang
- Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margot J. Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Dede AJO, Smith CN. The Functional and Structural Neuroanatomy of Systems Consolidation for Autobiographical and Semantic Memory. Curr Top Behav Neurosci 2016; 37:119-150. [PMID: 27677778 DOI: 10.1007/7854_2016_452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is well established that patients with memory impairment have more difficulty retrieving memories from the recent past relative to the remote past and that damage to the medial temporal lobe (MTL) plays a key role in this pattern of impairment. The precise role of the MTL and how it may interact with other brain regions remains an area of active research. We investigated the role of structures in a memory network that supports remembering. Our chapter focuses on two types of memory: episodic memory and semantic memory. Findings from studies of patients with brain damage and neuroimaging studies in patients and healthy individuals were considered together to identify the functional and structural neuroanatomy of past remembrance.
Collapse
Affiliation(s)
- Adam J O Dede
- Department of Psychology, University of California San Diego, San Diego, CA, 92093, USA
- Veteran Affairs San Diego Healthcare System, 3350 La Jolla Village Drive (116A), San Diego, CA, 92161, USA
| | - Christine N Smith
- Department of Psychiatry, University of California San Diego, San Diego, CA, 92093, USA.
- Veteran Affairs San Diego Healthcare System, 3350 La Jolla Village Drive (116A), San Diego, CA, 92161, USA.
| |
Collapse
|
13
|
Heisz JJ, Gould M, McIntosh AR. Age-related Shift in Neural Complexity Related to Task Performance and Physical Activity. J Cogn Neurosci 2015; 27:605-13. [DOI: 10.1162/jocn_a_00725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The human brain undergoes marked structural changes with age including cortical thinning and reduced connectivity because of the degradation of myelin. Although these changes can compromise cognitive function, the brain is able to functionally reorganize to compensate for some of this structural loss. However, there are interesting individual differences in outcome: When comparing individuals of similar age, those who engage in regular physical activity are less affected by the typical age-related decline in cognitive function. This study used multiscale entropy to reveal a shift in the way the brain processes information in older adults that is related to physical activity. Specifically, older adults who were more physically active engaged in more local neural information processing. Interestingly, this shift toward local information processing was also associated with improved executive function performance in older adults, suggesting that physical activity may help to improve aspects of cognitive function in older adults by biasing the neural system toward local information processing. In the face of age-related structural decline, the neural plasticity that is enhanced through physical activity may help older adults maintain cognitive health longer into their lifespan.
Collapse
|
14
|
McDonough IM, Nashiro K. Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project. Front Hum Neurosci 2014; 8:409. [PMID: 24959130 PMCID: PMC4051265 DOI: 10.3389/fnhum.2014.00409] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/22/2014] [Indexed: 12/01/2022] Open
Abstract
An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity.
Collapse
Affiliation(s)
- Ian M McDonough
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas , Dallas, TX, USA
| | - Kaoru Nashiro
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas , Dallas, TX, USA
| |
Collapse
|
15
|
Kronemyer D, Bystritsky A. A non-linear dynamical approach to belief revision in cognitive behavioral therapy. Front Comput Neurosci 2014; 8:55. [PMID: 24860491 PMCID: PMC4030160 DOI: 10.3389/fncom.2014.00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/24/2014] [Indexed: 01/17/2023] Open
Abstract
Belief revision is the key change mechanism underlying the psychological intervention known as cognitive behavioral therapy (CBT). It both motivates and reinforces new behavior. In this review we analyze and apply a novel approach to this process based on AGM theory of belief revision, named after its proponents, Carlos Alchourrón, Peter Gärdenfors and David Makinson. AGM is a set-theoretical model. We reconceptualize it as describing a non-linear, dynamical system that occurs within a semantic space, which can be represented as a phase plane comprising all of the brain's attentional, cognitive, affective and physiological resources. Triggering events, such as anxiety-producing or depressing situations in the real world, or their imaginal equivalents, mobilize these assets so they converge on an equilibrium point. A preference function then evaluates and integrates evidentiary data associated with individual beliefs, selecting some of them and comprising them into a belief set, which is a metastable state. Belief sets evolve in time from one metastable state to another. In the phase space, this evolution creates a heteroclinic channel. AGM regulates this process and characterizes the outcome at each equilibrium point. Its objective is to define the necessary and sufficient conditions for belief revision by simultaneously minimizing the set of new beliefs that have to be adopted, and the set of old beliefs that have to be discarded or reformulated. Using AGM, belief revision can be modeled using three (and only three) fundamental syntactical operations performed on belief sets, which are expansion; revision; and contraction. Expansion is like adding a new belief without changing any old ones. Revision is like adding a new belief and changing old, inconsistent ones. Contraction is like changing an old belief without adding any new ones. We provide operationalized examples of this process in action.
Collapse
Affiliation(s)
- David Kronemyer
- Anxiety and Related Disorders Program, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of CaliforniaLos Angeles, CA, USA
| | | |
Collapse
|