1
|
Magno MA, Canu E, Filippi M, Agosta F. Social cognition in the FTLD spectrum: evidence from MRI. J Neurol 2021; 269:2245-2258. [PMID: 34797434 DOI: 10.1007/s00415-021-10892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Over the past few years, there has been great interest in social cognition, a wide term referring to the human ability of understanding others' emotions, thoughts, and intentions, to empathize with them and to behave accordingly. While there is no agreement on the classification of social cognitive processes, they can broadly be categorized as consisting of theory of mind, empathy, social perception, and social behavior. The study of social cognition and its relative deficits is increasingly assuming clinical relevance. However, the clinical and neuroanatomical correlates of social cognitive alterations in neurodegenerative conditions, such as those belonging to the frontotemporal lobar (FTLD) spectrum, are not fully established. In this review, we describe the current understanding of social cognition impairments in different FTLD conditions with respect to MRI.
Collapse
Affiliation(s)
- Maria Antonietta Magno
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
2
|
Zirbes C, Jones A, Manzel K, Denburg N, Barrash J. Assessing the Effects of Healthy and Neuropathological Aging on Personality with the Iowa Scales of Personality Change. Dev Neuropsychol 2021; 46:393-408. [PMID: 34283684 DOI: 10.1080/87565641.2021.1956500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Personality changes in older adults with brain disease may be confounded by effects of normal aging. In this cross-sectional study, ratings with the Iowa Scales of Personality Change for 62 healthy older adults (OA-H, aged 60+) were compared to matched older adults with brain diseases (OA-BD). OA-H did not show any significant personality changes from middle age to older adulthood. However, between 10% and 20% of OA-H developed a disturbance in Lack of Stamina, Inflexibility, Lability, and Lack of Insight. Otherwise, the pattern of findings suggesting normal aging effects on personality disturbances in clinical groups are generally minimal.
Collapse
Affiliation(s)
- Christian Zirbes
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
| | - Andrew Jones
- Department of Computer Science, Princeton University, Princeton, United States
| | - Kenneth Manzel
- Department of Neurology, University of Iowa, Iowa City, United States
| | - Natalie Denburg
- Departments of Neurology and Psychological and Brain Sciences, University of Iowa, Iowa City, United States
| | - Joseph Barrash
- Departments of Neurology and Psychological and Brain Sciences, University of Iowa, Iowa City, United States
| |
Collapse
|
3
|
Yan T, Zhuang K, He L, Liu C, Zeng R, Qiu J. Left temporal pole contributes to creative thinking via an individual semantic network. Psychophysiology 2021; 58:e13841. [PMID: 34159607 DOI: 10.1111/psyp.13841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/09/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
The neural substrates that contribute to creative thinking through the recruitment of semantic memory structures remain largely unknown. This study sought to investigate the properties of semantic networks using a semantic judgment rating task at the individual level and explore the relationship among creative abilities, the topological properties of semantic networks, and their underlying brain structures. We first used a semantic judgment rating to assess individual semantic networks and computed their topological properties. The analysis confirmed a significant correlation between the creative thinking abilities assessed by an alternate uses task and all three topological properties. In addition, voxel-based morphometry was employed to assess the neural correlates of gray matter volume (GMV) related to different topological properties of the semantic network. Results revealed a positive correlation between global efficiency and the left temporal pole cortex, considered to be involved in semantic information transmission and processing. Furthermore, mediation analysis found that the global efficiency of the individual semantic network mediated the association between the left temporal pole GMV and creative thinking, showing that the relationship between left temporal pole GMV and creative thinking may be affected by the semantic networks. To the best of our knowledge, this study is the first to combine a behavioral investigation of semantic networks with magnetic resonance imaging to shed light on the cerebral structural basis of semantic memory networks, in addition to their relationship to creativity.
Collapse
Affiliation(s)
- Tingrui Yan
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Li He
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Rongcan Zeng
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Haghighat H, Mirzarezaee M, Araabi BN, Khadem A. Functional Networks Abnormalities in Autism Spectrum Disorder: Age-Related Hypo and Hyper Connectivity. Brain Topogr 2021; 34:306-322. [PMID: 33905003 DOI: 10.1007/s10548-021-00831-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by defects in social interaction. The past functional connectivity studies using resting-state fMRI have found both patterns of hypo-connectivity and hyper-connectivity in ASD and proposed the age as an important factor on functional connectivity disorders. However, this influence is not clearly characterized yet. Previous studies have often examined the functional connectivity disorders in particular brain regions in an age group or a mixture of age groups. The present study compares whole-brain within-connectivity and between-connectivity between ASD individuals and typically developing (TD) controls in three age groups including children (< 11 years), adolescents (11-18 years), and adults (> 18 years), each comprising 21 ASD individuals and 21 TD controls. The age groups were matched for age, Full IQ, and gender. Independent component analysis and dual regression were used to investigate within-connectivity. The full and partial correlations between ICs were used to investigate between-connectivity. Examination of the within-connectivity showed hyper-connectivity, especially in cerebellum and brainstem in ASD children but both hyper/hypo connectivity in adolescents and ASD adults. In ASD children, difference in the between-connectivity among default mode network (DMN), salience-executive network and fronto-parietal network were observed. There was also a negative correlation between DMN and temporal network. Full correlation comparison between ASD adolescents and TD individuals showed significant differences between cerebellum and DMN. Our results supported just the hyper-connectivity in childhood, but both hypo and hyper-connectivity after childhood and hypothesized that abnormal resting connections in ASD exist in the regions of the brain known to be involved in social cognition.
Collapse
Affiliation(s)
- Hossein Haghighat
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Mirzarezaee
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Babak Nadjar Araabi
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Abstract
BACKGROUND Semantic dementia (SD) is characterized by progressive semantic anomia extending to a multimodal loss of semantic knowledge. Although often considered an early-onset dementia, SD also occurs in later life, when it may be misdiagnosed as Alzheimer disease (AD). OBJECTIVE To evaluate late-onset SD in comparison to early-onset SD and to AD. METHODS We identified 74 individuals with SD and then compared those with late-onset SD (≥65 years of age) to those with early-onset SD (<65) on demographic and clinical features. We also compared a subgroup of 23 of the late-onset SD individuals with an equal number of individuals with clinically probable AD. RESULTS Twenty-six (35.1%) of the SD individuals were late onset, and 48 (64.9%) were early onset. There were no differences between the two groups on clinical measures, although greater asymmetry of temporal involvement trended to significance in the late-onset SD group. Compared to the 23 AD individuals, the subgroup of 23 late-onset SD individuals had worse performance on confrontational naming, irregular word reading, and face recognition; however, this subgroup displayed better verbal delayed recall and constructions. The late-onset SD individuals also experienced early personality changes at a time when most individuals with AD had not yet developed behavioral changes. CONCLUSIONS Approximately one-third of SD individuals may be late onset, and the differentiation of late-onset SD from AD can lead to better disease management, education, and prognosis. SD may be distinguished by screening for disproportionate changes in reading, face recognition, and personality.
Collapse
|
6
|
More than words: Social cognition across variants of primary progressive aphasia. Neurosci Biobehav Rev 2019; 100:263-284. [PMID: 30876954 DOI: 10.1016/j.neubiorev.2019.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/06/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Although primary progressive aphasia (PPA) is clinically typified by linguistic impairments, emerging evidence highlights the presence of early deficits in social cognition. This review systematically describes the latter patterns, specifying their relation to the characteristic linguistic dysfunctions and atrophy patterns of non-fluent, semantic, and logopenic variants of the disease (nfvPPA, svPPA, and lvPPA, respectively), relative to closely related dementia types. Whereas the evidence on lvPPA proves scant, studies on nfvPPA and svPPA patients show consistent deficits in emotion recognition, theory of mind, and empathy. Notably, these seem to be intertwined with language impairments in nfvPPA, but they prove primary and independent of language disturbances in svPPA. Also, only the profile of svPPA resembles that of behavioral variant frontotemporal dementia, probably reflecting the overlap of fronto-temporal disruptions in both conditions. In short, the neurocognitive relationship between linguistic and socio-cognitive deficits cannot be precisely predicated for PPA as a whole; instead, specific links must be acknowledged in each variant. These emergent patterns pave the way for fruitful dimensional research in the field.
Collapse
|
7
|
Fateh AA, Long Z, Duan X, Cui Q, Pang Y, Farooq MU, Nan X, Chen Y, Sheng W, Tang Q, Chen H. Hippocampal functional connectivity-based discrimination between bipolar and major depressive disorders. Psychiatry Res Neuroimaging 2019; 284:53-60. [PMID: 30684896 DOI: 10.1016/j.pscychresns.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
Despite the impressive advancements in the neuropathology of mood disorders, patients with bipolar disorder (BD) are often misdiagnosed on the initial presentation with major depressive disorder (MDD). With supporting evidence from neuroimaging studies, the abnormal functional connectivity (FC) of the hippocampus has been associated with various mood disorders, including BD and MDD. However, the features of the hippocampal FC underlying MDD and BD have not been directly compared. This study aims to investigate the hippocampal resting-state FC (rsFC) analyses to distinguish these two clinical conditions. Resting-state functional magnetic resonance imaging (fMRI) data was collected from a sample group of 30 patients with BD, 29 patients with MDD and 30 healthy controls (HCs). One-way ANOVA was employed to assess the potential differences of the hippocampus FC across all subjects. BD patients exhibited increased FC of the bilateral anterior/posterior hippocampus with lingual gyrus and inferior frontal gyrus (IFG) relative to patients MDD patients. In comparison with HCs, patients with BD and MDD had an increased FC between the right anterior hippocampus and lingual gyrus and a decreased FC between the right posterior hippocampus and right IFG. The results revealed a distinct hippocampal FC in MDD patients compared with that observed in BD patients. These findings may assist investigators in attempting to distinguish mood disorders by using fMRI data.
Collapse
Affiliation(s)
- Ahmed Ameen Fateh
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiliang Long
- Sleep and Neuroimaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Muhammad Umar Farooq
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, China
| | - Xiaoyu Nan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China; School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Kruse B, Bogler C, Haynes JD, Schütz-Bosbach S. Am I seeing myself, my friend or a stranger? The role of personal familiarity in visual distinction of body identities in the human brain. Cortex 2016; 83:86-100. [PMID: 27498040 DOI: 10.1016/j.cortex.2016.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/19/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Several brain regions appear to play a role in representing different body identities. The specific contribution of each of these regions is still unclear, however. Here we investigated which brain areas enable the visual distinction between self and other bodies of different familiarity, and between familiar and unfamiliar other individuals, and moreover, where identity-specific information on the three individuals was encoded. Participants were confronted with standardized headless human body stimuli either showing the participant's own, a personally familiar or an unfamiliar other body, while performing a luminance discrimination task. Employing multivariate pattern analysis, we were able to identify areas that allowed for the distinction of self from personal familiar other bodies within the medial prefrontal cortex (mPFC) and posterior cingulate cortex/precuneus. Successful distinction of self from unfamiliar others was possible in the left middle frontal gyrus, the right inferior frontal gyrus, the left pre-supplementary motor area and the right putamen. Personally familiar others could be distinguished from unfamiliar others in the right temporoparietal junction (TPJ). An analysis of identity-specific information revealed a spatial gradient ranging from inferior posterior to superior anterior portions of the mPFC that was associated with encoding identity-related information for self via familiar to unfamiliar other bodies, respectively. Furthermore, several midline and frontal regions encoded information on more than one identity. The TPJ's role in deviance detection was underlined, as only identity-specific information on unfamiliar others was encoded here. Together, our findings suggest substantial spatial overlap in neural correlates of self and other body representation and thus, support the hypothesis of a socially-related representation of the self.
Collapse
Affiliation(s)
- Barbara Kruse
- Max Planck Research Group Body & Self, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, Asklepios Klinikum Harburg, Hamburg, Germany.
| | - Carsten Bogler
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Berlin, Germany; Berlin Center for Advanced Neuroimaging (BCAN), Berlin, Germany
| | - Simone Schütz-Bosbach
- Max Planck Research Group Body & Self, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychology, Ludwig Maximilians University of Munich, Germany.
| |
Collapse
|
9
|
Gainotti G. Is the difference between right and left ATLs due to the distinction between general and social cognition or between verbal and non-verbal representations? Neurosci Biobehav Rev 2015; 51:296-312. [DOI: 10.1016/j.neubiorev.2015.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 12/24/2014] [Accepted: 02/07/2015] [Indexed: 01/16/2023]
|
10
|
The Elusive Role of the Left Temporal Pole (BA38) in Language: A Preliminary Meta-Analytic Connectivity Study. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/946039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been suggested that the left temporal pole (Brodmann area 38 (BA38)) participates in diverse language functions, including semantic processing, speech comprehension, and naming. Utilizing the activation likelihood estimation (ALE), a meta-analytic connectivity study was conducted to further our understanding on the role of BA38 in language. Departing from the BrainMap functional database, 11 papers corresponding to 12 paradigms including 201 participants were selected. Initially, P<0.01 was employed as the significance level, resulting in the presence of four different activation clusters. However, when the significance level was lowered to P<0.05, sixteen activation clusters appeared, including classical language areas such as Broca’s and Wernicke’s areas. It was concluded that (1) this meta-analytic connectivity study suggests the presence of two major connection circuits involving BA38; one is related to language, while the other may be involved in visuospatial and integrative audiovisual functions. Furthermore, (2) BA38 also contributes to various brain networks supporting linguistic processes related not only to language comprehension but also to language production.
Collapse
|