1
|
Anastasopoulou I, Cheyne DO, van Lieshout P, Johnson BW. Decoding kinematic information from beta-band motor rhythms of speech motor cortex: a methodological/analytic approach using concurrent speech movement tracking and magnetoencephalography. Front Hum Neurosci 2024; 18:1305058. [PMID: 38646159 PMCID: PMC11027130 DOI: 10.3389/fnhum.2024.1305058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Articulography and functional neuroimaging are two major tools for studying the neurobiology of speech production. Until now, however, it has generally not been feasible to use both in the same experimental setup because of technical incompatibilities between the two methodologies. Methods Here we describe results from a novel articulography system dubbed Magneto-articulography for the Assessment of Speech Kinematics (MASK), which is technically compatible with magnetoencephalography (MEG) brain scanning systems. In the present paper we describe our methodological and analytic approach for extracting brain motor activities related to key kinematic and coordination event parameters derived from time-registered MASK tracking measurements. Data were collected from 10 healthy adults with tracking coils on the tongue, lips, and jaw. Analyses targeted the gestural landmarks of reiterated utterances/ipa/ and /api/, produced at normal and faster rates. Results The results show that (1) Speech sensorimotor cortex can be reliably located in peri-rolandic regions of the left hemisphere; (2) mu (8-12 Hz) and beta band (13-30 Hz) neuromotor oscillations are present in the speech signals and contain information structures that are independent of those present in higher-frequency bands; and (3) hypotheses concerning the information content of speech motor rhythms can be systematically evaluated with multivariate pattern analytic techniques. Discussion These results show that MASK provides the capability, for deriving subject-specific articulatory parameters, based on well-established and robust motor control parameters, in the same experimental setup as the MEG brain recordings and in temporal and spatial co-register with the brain data. The analytic approach described here provides new capabilities for testing hypotheses concerning the types of kinematic information that are encoded and processed within specific components of the speech neuromotor system.
Collapse
Affiliation(s)
| | - Douglas Owen Cheyne
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Pascal van Lieshout
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Valaei A, Bamdad S, Golfam A, Golmohammadi G, Ameri H, Raoufy MR. Examining resting state functional connectivity and frequency power analysis in adults who stutter compared to adults who do not stutter. Front Hum Neurosci 2024; 18:1338966. [PMID: 38375364 PMCID: PMC10875099 DOI: 10.3389/fnhum.2024.1338966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Stuttering is a speech disorder characterized by impaired connections between brain regions involved in speech production. This study aimed to investigate functional connectivity and frequency power during rest in adults who stutter (AWS) compared to fluent adults (AWNS) in the dorsolateral prefrontal cortex (DLPFC), dorsolateral frontal cortex (DLFC), supplementary motor area (SMA), motor speech, angular gyrus (AG), and inferior temporal gyrus (ITG). Materials and methods Fifteen AWS (3 females, 12 males) and fifteen age- and sex-matched AWNS (3 females, 12 males) participated in this study. All participants were native Persian speakers. Stuttering severity in the AWS group was assessed using the Persian version of the Stuttering Severity Instrument Fourth Edition (SSI-4). Resting-state electroencephalography (EEG) was recorded for 5 min while participants sat comfortably with their eyes open. We analyzed frequency band power across various frequency bands and investigated functional connectivity within the specified speech region. Results Significant between-group differences were found in band powers including alpha, beta, delta, theta, and gamma, specifically in the premotor, SMA, motor speech, and frontal regions. AWS also showed increased coherence between the right motor speech region compared to controls. We demonstrate that the proposed hierarchical false discovery rate (FDR) method is the most effective for both simulations and experimental data. In the expected regions, this method revealed significant synchrony effects at an acceptable error rate of 5%. Conclusion The results highlight disrupted functional connectivity in AWS at resting state, particularly in speech-related and associated areas. Given the complex neurological basis of developmental stuttering, robust neural markers are closely linked to this phenomenon. These markers include imbalanced activity within brain regions associated with speech and motor functions, coupled with impaired functional connectivity between these regions. The cortico-basal ganglia-thalamo-cortical system governs the dynamic interplay between cortical regions, with SMA as a key cortical site. It is hypothesized that the aberrant resting state functional connectivity will impact the language planning and motor execution necessary for fluent speech. Examining resting-state metrics as biomarkers could further elucidate the neural underpinnings of stuttering and guide intervention.
Collapse
Affiliation(s)
- Atefeh Valaei
- Department of Linguistics, Tarbiat Modares University, Tehran, Iran
| | - Sobhan Bamdad
- Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
| | - Arsalan Golfam
- Department of Linguistics, Tarbiat Modares University, Tehran, Iran
| | - Golnoosh Golmohammadi
- Department of Speech Therapy, School of Rehabilitation Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Hayat Ameri
- Department of Linguistics, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain Science and Cognition, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Sklar AL, Yeh FC, Curtis M, Seebold D, Coffman BA, Salisbury DF. Functional and structural connectivity correlates of semantic verbal fluency deficits in first-episode psychosis. J Psychiatr Res 2024; 169:73-80. [PMID: 38000187 PMCID: PMC10843642 DOI: 10.1016/j.jpsychires.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
INTRODUCTION Semantic verbal fluency (SVF) impairments are debilitating and present early in the course of psychotic illness. Deficits within frontal, parietal, and temporal brain regions contribute to this deficit, as long-range communication across this functionally integrated network is critical to SVF. This study sought to isolate disruptions in functional and structural connectivity contributing to SVF deficits during first-episode psychosis in the schizophrenia spectrum (FESz). METHODS Thirty-three FESz and 34 matched healthy controls (HC) completed the Animal Naming Task to assess SVF. Magnetoencephalography was recorded during an analogous covert SVF task, and phase-locking value (PLV) used to measure functional connectivity between inferior frontal and temporoparietal structures bilaterally. Diffusion imaging was collected to measure fractional anisotropy (FA) of the arcuate fasciculus, the major tract connecting frontal and temporoparietal language areas. RESULTS SVF scores were lower among FESz compared to HC. While PLV and FA did not differ between groups overall, FESz exhibited an absence of the left-lateralized nature of both measures observed in HC. Among FESz, larger right-hemisphere PLV was associated with worse SVF performance (ρ = -0.51) and longer DUP (ρ = -0.50). DISCUSSION In addition to worse SVF, FESz exhibited diminished leftward asymmetry of structural and functional connectivity in fronto-temporoparietal SVF network. The relationship between theta-band hyperconnectivity and poorer performance suggests a disorganized executive network and may reflect dysfunction of frontal cognitive control centers. These findings illustrate an aberrant pattern across the distributed SVF network at disease onset and merit further investigation into development of asymmetrical hemispheric connectivity and its failure among high-risk populations.
Collapse
Affiliation(s)
- Alfredo L Sklar
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Fang-Cheng Yeh
- University of Pittsburgh School of Medicine, Department of Neurological Surgery, Pittsburgh, PA, USA
| | - Mark Curtis
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Dylan Seebold
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Brian A Coffman
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Dean F Salisbury
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Williams N, Ojanperä A, Siebenhühner F, Toselli B, Palva S, Arnulfo G, Kaski S, Palva JM. The influence of inter-regional delays in generating large-scale brain networks of phase synchronization. Neuroimage 2023; 279:120318. [PMID: 37572765 DOI: 10.1016/j.neuroimage.2023.120318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023] Open
Abstract
Large-scale networks of phase synchronization are considered to regulate the communication between brain regions fundamental to cognitive function, but the mapping to their structural substrates, i.e., the structure-function relationship, remains poorly understood. Biophysical Network Models (BNMs) have demonstrated the influences of local oscillatory activity and inter-regional anatomical connections in generating alpha-band (8-12 Hz) networks of phase synchronization observed with Electroencephalography (EEG) and Magnetoencephalography (MEG). Yet, the influence of inter-regional conduction delays remains unknown. In this study, we compared a BNM with standard "distance-dependent delays", which assumes constant conduction velocity, to BNMs with delays specified by two alternative methods accounting for spatially varying conduction velocities, "isochronous delays" and "mixed delays". We followed the Approximate Bayesian Computation (ABC) workflow, i) specifying neurophysiologically informed prior distributions of BNM parameters, ii) verifying the suitability of the prior distributions with Prior Predictive Checks, iii) fitting each of the three BNMs to alpha-band MEG resting-state data (N = 75) with Bayesian optimization for Likelihood-Free Inference (BOLFI), and iv) choosing between the fitted BNMs with ABC model comparison on a separate MEG dataset (N = 30). Prior Predictive Checks revealed the range of dynamics generated by each of the BNMs to encompass those seen in the MEG data, suggesting the suitability of the prior distributions. Fitting the models to MEG data yielded reliable posterior distributions of the parameters of each of the BNMs. Finally, model comparison revealed the BNM with "distance-dependent delays", as the most probable to describe the generation of alpha-band networks of phase synchronization seen in MEG. These findings suggest that distance-dependent delays might contribute to the neocortical architecture of human alpha-band networks of phase synchronization. Hence, our study illuminates the role of inter-regional delays in generating the large-scale networks of phase synchronization that might subserve the communication between regions vital to cognition.
Collapse
Affiliation(s)
- N Williams
- Helsinki Institute of Information Technology, Department of Computer Science, Aalto University, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Finland.
| | - A Ojanperä
- Department of Computer Science, Aalto University, Finland
| | - F Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; BioMag laboratory, HUS Medical Imaging Center, Helsinki, Finland
| | - B Toselli
- Department of Informatics, Bioengineering, Robotics & Systems Engineering, University of Genoa, Italy
| | - S Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Centre for Cognitive Neuroimaging, School of Neuroscience & Psychology, University of Glasgow, United Kingdom
| | - G Arnulfo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Department of Informatics, Bioengineering, Robotics & Systems Engineering, University of Genoa, Italy
| | - S Kaski
- Helsinki Institute of Information Technology, Department of Computer Science, Aalto University, Finland; Department of Computer Science, Aalto University, Finland; Department of Computer Science, University of Manchester, United Kingdom
| | - J M Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Centre for Cognitive Neuroimaging, School of Neuroscience & Psychology, University of Glasgow, United Kingdom
| |
Collapse
|
5
|
Li J, Yang Y, Viñas-Guasch N, Yang Y, Bi HY. Differences in brain functional networks for audiovisual integration during reading between children and adults. Ann N Y Acad Sci 2023; 1520:127-139. [PMID: 36478220 DOI: 10.1111/nyas.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Building robust letter-to-sound correspondences is a prerequisite for developing reading capacity. However, the neural mechanisms underlying the development of audiovisual integration for reading are largely unknown. This study used functional magnetic resonance imaging in a lexical decision task to investigate functional brain networks that support audiovisual integration during reading in developing child readers (10-12 years old) and skilled adult readers (20-28 years old). The results revealed enhanced connectivity in a prefrontal-superior temporal network (including the right medial frontal gyrus, right superior frontal gyrus, and left superior temporal gyrus) in adults relative to children, reflecting the development of attentional modulation of audiovisual integration involved in reading processing. Furthermore, the connectivity strength of this brain network was correlated with reading accuracy. Collectively, this study, for the first time, elucidates the differences in brain networks of audiovisual integration for reading between children and adults, promoting the understanding of the neurodevelopment of multisensory integration in high-level human cognition.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Yinghui Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,China Welfare Institute Information and Research Center, Soong Ching Ling Children Development Center, Shanghai, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
7
|
Herfurth K, Harpaz Y, Roesch J, Mueller N, Walther K, Kaltenhaeuser M, Pauli E, Goldstein A, Hamer H, Buchfelder M, Doerfler A, Prell J, Rampp S. Localization of beta power decrease as measure for lateralization in pre-surgical language mapping with magnetoencephalography, compared with functional magnetic resonance imaging and validated by Wada test. Front Hum Neurosci 2022; 16:996989. [PMID: 36393988 PMCID: PMC9644652 DOI: 10.3389/fnhum.2022.996989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2023] Open
Abstract
Objective: Atypical patterns of language lateralization due to early reorganizational processes constitute a challenge in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy. There is no consensus on an optimal analysis method used for the identification of language dominance in MEG. This study examines the concordance between MEG source localization of beta power desynchronization and fMRI with regard to lateralization and localization of expressive and receptive language areas using a visual verb generation task. Methods: Twenty-five patients with pharmaco-resistant epilepsy, including six patients with atypical language lateralization, and ten right-handed controls obtained MEG and fMRI language assessment. Fourteen patients additionally underwent the Wada test. We analyzed MEG beta power desynchronization in sensor (controls) and source space (patients and controls). Beta power decrease between 13 and 35 Hz was localized applying Dynamic Imaging of Coherent Sources Beamformer technique. Statistical inferences were grounded on cluster-based permutation testing for single subjects. Results: Event-related desynchronization of beta power in MEG was seen within the language-dominant frontal and temporal lobe and within the premotor cortex. Our analysis pipeline consistently yielded left language dominance with high laterality indices in controls. Language lateralization in MEG and Wada test agreed in all 14 patients for inferior frontal, temporal and parietal language areas (Cohen's Kappa = 1, p < 0.001). fMRI agreed with Wada test in 12 out of 14 cases (85.7%) for Broca's area (Cohen's Kappa = 0.71, p = 0.024), while the agreement for temporal and temporo-parietal language areas were non-significant. Concordance between MEG and fMRI laterality indices was highest within the inferior frontal gyrus, with an agreement in 19/24 cases (79.2%), and non-significant for Wernicke's area. Spatial agreement between fMRI and MEG varied considerably between subjects and brain regions with the lowest Euclidean distances within the inferior frontal region of interest. Conclusion: Localizing the desynchronization of MEG beta power using a verb generation task is a promising tool for the identification of language dominance in the pre-surgical evaluation of epilepsy patients. The overall agreement between MEG and fMRI was lower than expected and might be attributed to differences within the baseline condition. A larger sample size and an adjustment of the experimental designs are needed to draw further conclusions.
Collapse
Affiliation(s)
- Kirsten Herfurth
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle, Halle (Saale), Germany
| | - Yuval Harpaz
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Julie Roesch
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Nadine Mueller
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Katrin Walther
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | | | - Elisabeth Pauli
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Abraham Goldstein
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle, Halle (Saale), Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle, Halle (Saale), Germany
| |
Collapse
|
8
|
Barnes-Davis ME, Merhar SL, Holland SK, Parikh NA, Kadis DS. Extremely Preterm Children Demonstrate Interhemispheric Hyperconnectivity During Verb Generation: a Multimodal Approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.30.20222448. [PMID: 33173877 PMCID: PMC7654860 DOI: 10.1101/2020.10.30.20222448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Children born extremely preterm (EPT, <28 weeks gestation) are at risk for delays in development, including language. We use fMRI-constrained magnetoencephalography (MEG) during a verb generation task to assess the extent and functional connectivity (phase locking value, or PLV) of language networks in a large cohort of EPT children and their term comparisons (TC). 73 participants, aged 4 to 6 years, were enrolled (42 TC, 31 EPT). There were no significant group differences in age, sex, race, ethnicity, parental education, or family income. There were significant group differences in expressive language scores (p<0.05). Language representation was not significantly different between groups on fMRI, with task-specific activation involving bilateral temporal and left inferior frontal cortex. There were group differences in functional connectivity seen in MEG. To identify a possible subnetwork contributing to focal spectral differences in connectivity, we ran Network Based Statistics analyses. For both beta (20-25 Hz) and gamma (61-70 Hz) bands, we observed a subnetwork showing hyperconnectivity in the EPT group (p<0.05). Network strength was computed for the beta and gamma subnetworks and assessed for correlation with language performance. For the EPT group, exclusively, strength of the subnetwork identified in the gamma frequency band was positively correlated with expressive language scores (r=0.318, p<0.05). Thus, interhemispheric hyperconnectivity is positively related to language for EPT children and might represent a marker for resiliency in this population.
Collapse
Affiliation(s)
- Maria E. Barnes-Davis
- Cincinnati Children’s Hospital Medical Center, Perinatal Institute
- University of Cincinnati, Department of Pediatrics
- University of Cincinnati, Department of Neuroscience
| | - Stephanie L. Merhar
- Cincinnati Children’s Hospital Medical Center, Perinatal Institute
- University of Cincinnati, Department of Pediatrics
| | - Scott K. Holland
- Medpace Imaging Core Laboratory, Medpace Inc
- University of Cincinnati, Department of Physics
| | - Nehal A. Parikh
- Cincinnati Children’s Hospital Medical Center, Perinatal Institute
- University of Cincinnati, Department of Pediatrics
| | - Darren S. Kadis
- Hospital for Sick Children, Neurosciences and Mental Health
- University of Toronto, Department of Physiology
| |
Collapse
|
9
|
Youssofzadeh V, Stout J, Ustine C, Gross WL, Conant LL, Humphries CJ, Binder JR, Raghavan M. Mapping language from MEG beta power modulations during auditory and visual naming. Neuroimage 2020; 220:117090. [DOI: 10.1016/j.neuroimage.2020.117090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 01/22/2023] Open
|
10
|
Ohki T, Matsuda T, Gunji A, Takei Y, Sakuma R, Kaneko Y, Inagaki M, Hanakawa T, Ueda K, Fukuda M, Hiraki K. Timing of phase-amplitude coupling is essential for neuronal and functional maturation of audiovisual integration in adolescents. Brain Behav 2020; 10:e01635. [PMID: 32342667 PMCID: PMC7303405 DOI: 10.1002/brb3.1635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The ability to integrate audiovisual information matures late in adolescents, but its neuronal mechanism is still unknown. Recent studies showed that phase-amplitude coupling (PAC) of neuronal oscillations, which is defined as the modulation of high-frequency amplitude by low-frequency phase, is associated with audiovisual integration in adults. Thus, we investigated how PAC develops in adolescents and whether it is related to the functional maturation of audiovisual integration. In particular, we focused on the timing of PAC (or the coupling phase), which is defined as the low-frequency phase with maximum high-frequency amplitude. METHODS Using magnetoencephalography (MEG) on 15 adults and 14 adolescents while they performed an audiovisual speech integration task, we examined PAC in association cortexes with a trial-by-trial analysis. RESULTS Whereas delta-beta coupling was consistently observed in both adults and adolescents, we found that the timing of delta-beta PAC was delayed by 20-40 milliseconds in adolescents compared with adults. In addition, a logistic regression analysis revealed that the task performance improves as the timing of delta-beta PAC in the right temporal pole (TP) got closer to the trough position (180 degrees). CONCLUSION These results suggest that the timing of PAC is essential for binding audiovisual information and underlies the developmental process in adolescents.
Collapse
Affiliation(s)
- Takefumi Ohki
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Department of Developmental Disorders, National Institute of Mental Health, National Centre of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.,Osaka University Institute for Advanced Co-Creation Studies, Suita, Japan
| | - Takeru Matsuda
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan.,Mathematical Informatics Collaboration Unit, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsuko Gunji
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.,College of Education, Yokohama National University, Yokohama, Japan.,Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ryusuke Sakuma
- Department of Developmental Disorders, National Institute of Mental Health, National Centre of Neurology and Psychiatry, Tokyo, Japan.,Clinical Center for Developmental Disorders, Shirayuri College, Tokyo, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiro Ueda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Masato Fukuda
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuo Hiraki
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Panda EJ, Emami Z, Valiante TA, Pang EW. EEG phase synchronization during semantic unification relates to individual differences in children's vocabulary skill. Dev Sci 2020; 24:e12984. [PMID: 32384181 DOI: 10.1111/desc.12984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
Abstract
As we listen to speech, our ability to understand what was said requires us to retrieve and bind together individual word meanings into a coherent discourse representation. This so-called semantic unification is a fundamental cognitive skill, and its development relies on the integration of neural activity throughout widely distributed functional brain networks. In this proof-of-concept study, we examine, for the first time, how these functional brain networks develop in children. Twenty-six children (ages 4-17) listened to well-formed sentences and sentences containing a semantic violation, while EEG was recorded. Children with stronger vocabulary showed N400 effects that were more concentrated to centroparietal electrodes and greater EEG phase synchrony (phase lag index; PLI) between right centroparietal and bilateral frontocentral electrodes in the delta frequency band (1-3 Hz) 1.27-1.53 s after listening to well-formed sentences compared to sentences containing a semantic violation. These effects related specifically to individual differences in receptive vocabulary, perhaps pointing to greater recruitment of functional brain networks important for top-down semantic unification with development. Less skilled children showed greater delta phase synchrony for violation sentences 3.41-3.64 s after critical word onset. This later effect was partly driven by individual differences in nonverbal reasoning, perhaps pointing to non-verbal compensatory processing to extract meaning from speech in children with less developed vocabulary. We suggest that functional brain network communication, as measured by momentary changes in the phase synchrony of EEG oscillations, develops throughout the school years to support language comprehension in different ways depending on children's verbal and nonverbal skill levels.
Collapse
Affiliation(s)
- Erin J Panda
- Neurosciences and Mental Health, SickKids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada
| | - Zahra Emami
- Neurosciences and Mental Health, SickKids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Taufik A Valiante
- Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada.,Krembil Research Institute, University Health Network and Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth W Pang
- Neurosciences and Mental Health, SickKids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
12
|
Foley E, Wood AG, Furlong PL, Walsh AR, Kearney S, Bill P, Hillebrand A, Seri S. Mapping language networks and their association with verbal abilities in paediatric epilepsy using MEG and graph analysis. Neuroimage Clin 2020; 27:102265. [PMID: 32413809 PMCID: PMC7226893 DOI: 10.1016/j.nicl.2020.102265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 10/26/2022]
Abstract
Recent theoretical models of language have emphasised the importance of integration within distributed networks during language processing. This is particularly relevant to young patients with epilepsy, as the topology of the functional network and its dynamics may be altered by the disease, resulting in reorganisation of functional language networks. Thus, understanding connectivity within the language network in patients with epilepsy could provide valuable insights into healthy and pathological brain function, particularly when combined with clinical correlates. The objective of this study was to investigate interactions within the language network in a paediatric population of epilepsy patients using measures of MEG phase synchronisation and graph-theoretical analysis, and to examine their association with language abilities. Task dependent increases in connectivity were observed in fronto-temporal networks during verb generation across a group of 22 paediatric patients (9 males and 13 females; mean age 14 years). Differences in network connectivity were observed between patients with typical and atypical language representation and between patients with good and poor language abilities. In addition, node centrality in left frontal and temporal regions was significantly associated with language abilities, where patients with good language abilities had significantly higher node centrality within inferior frontal and superior temporal regions of the left hemisphere, compared to patients with poor language abilities. Our study is one of the first to apply task-based measures of MEG network synchronisation in paediatric epilepsy, and we propose that these measures of functional connectivity and node centrality could be used as tools to identify critical regions of the language network prior to epilepsy surgery.
Collapse
Affiliation(s)
- Elaine Foley
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK.
| | - Amanda G Wood
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK; School of Psychology, Faculty of Health, Melbourne Burwood Campus, Deakin University, Geelong, Victoria, Australia
| | - Paul L Furlong
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK
| | - A Richard Walsh
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Shauna Kearney
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Peter Bill
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefano Seri
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK; Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| |
Collapse
|
13
|
Gaudet I, Hüsser A, Vannasing P, Gallagher A. Functional Brain Connectivity of Language Functions in Children Revealed by EEG and MEG: A Systematic Review. Front Hum Neurosci 2020; 14:62. [PMID: 32226367 PMCID: PMC7080982 DOI: 10.3389/fnhum.2020.00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/10/2020] [Indexed: 01/29/2023] Open
Abstract
The development of language functions is of great interest to neuroscientists, as these functions are among the fundamental capacities of human cognition. For many years, researchers aimed at identifying cerebral correlates of language abilities. More recently, the development of new data analysis tools has generated a shift toward the investigation of complex cerebral networks. In 2015, Weiss-Croft and Baldeweg published a very interesting systematic review on the development of functional language networks, explored through the use of functional magnetic resonance imaging (fMRI). Compared to fMRI and because of their excellent temporal resolution, magnetoencephalography (MEG) and electroencephalography (EEG) provide different and important information on brain activity. Both therefore constitute crucial neuroimaging techniques for the investigation of the maturation of functional language brain networks. The main objective of this systematic review is to provide a state of knowledge on the investigation of language-related cerebral networks in children, through the use of EEG and MEG, as well as a detailed portrait of relevant MEG and EEG data analysis methods used in that specific research context. To do so, we have summarized the results and systematically compared the methodological approach of 24 peer-reviewed EEG or MEG scientific studies that included healthy children and children with or at high risk of language disabilities, from birth up to 18 years of age. All included studies employed functional and effective connectivity measures, such as coherence, phase locking value, and Phase Slope Index, and did so using different experimental paradigms (e.g., at rest or during language-related tasks). This review will provide more insight into the use of EEG and MEG for the study of language networks in children, contribute to the current state of knowledge on the developmental path of functional connectivity in language networks during childhood and adolescence, and finally allow future studies to choose the most appropriate type of connectivity analysis.
Collapse
Affiliation(s)
- Isabelle Gaudet
- Laboratoire d'imagerie optique en neurodéveloppement (LIONLAB), Sainte-Justine University Hospital Research Center, Montréal, QC, Canada.,Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Alejandra Hüsser
- Laboratoire d'imagerie optique en neurodéveloppement (LIONLAB), Sainte-Justine University Hospital Research Center, Montréal, QC, Canada.,Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Phetsamone Vannasing
- Laboratoire d'imagerie optique en neurodéveloppement (LIONLAB), Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Anne Gallagher
- Laboratoire d'imagerie optique en neurodéveloppement (LIONLAB), Sainte-Justine University Hospital Research Center, Montréal, QC, Canada.,Department of Psychology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Mapping critical hubs of receptive and expressive language using MEG: A comparison against fMRI. Neuroimage 2019; 201:116029. [PMID: 31325641 DOI: 10.1016/j.neuroimage.2019.116029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023] Open
Abstract
The complexity of the widespread language network makes it challenging for accurate localization and lateralization. Using large-scale connectivity and graph-theoretical analyses of task-based magnetoencephalography (MEG), we aimed to provide robust representations of receptive and expressive language processes, comparable with spatial profiles of corresponding functional magnetic resonance imaging (fMRI). We examined MEG and fMRI data from 12 healthy young adults (age 20-37 years) completing covert auditory word-recognition task (WRT) and covert auditory verb-generation task (VGT). For MEG language mapping, broadband (3-30 Hz) beamformer sources were estimated, voxel-level connectivity was quantified using phase locking value, and highly connected hubs were characterized using eigenvector centrality graph measure. fMRI data were analyzed using a classic general linear model approach. A laterality index (LI) was computed for 20 language-specific frontotemporal regions for both MEG and fMRI. MEG network analysis showed bilateral and symmetrically distributed hubs within the left and right superior temporal gyrus (STG) during WRT and predominant hubs in left inferior prefrontal gyrus (IFG) during VGT. MEG and fMRI localization maps showed high correlation values within frontotemporal regions during WRT and VGT (r = 0.63, 0.74, q < 0.05, respectively). Despite good concordance in localization, notable discordances were observed in lateralization between MEG and fMRI. During WRT, MEG favored a left-hemispheric dominance of left STG (LI = 0.25 ± 0.22) whereas fMRI supported a bilateral representation of STG (LI = 0.08 ± 0.2). Laterality of MEG and fMRI during VGT consistently showed a strong asymmetry in left IFG regions (MEG-LI = 0.45 ± 0.35 and fMRI-LI = 0.46 ± 0.13). Our results demonstrate the utility of a large-scale connectivity and graph theoretical analyses for robust identification of language-specific regions. MEG hubs are in great agreement with the literature in revealing with canonical and extra-canonical language sites, thus providing additional support for the underlying topological organization of receptive and expressive language cortices. Discordances in lateralization may emphasize the need for multimodal integration of MEG and fMRI to obtain an excellent predictive value in a heterogeneous healthy population and patients with neurosurgical conditions.
Collapse
|
15
|
Kostas D, Pang EW, Rudzicz F. Machine learning for MEG during speech tasks. Sci Rep 2019; 9:1609. [PMID: 30733596 PMCID: PMC6367450 DOI: 10.1038/s41598-019-38612-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
We consider whether a deep neural network trained with raw MEG data can be used to predict the age of children performing a verb-generation task, a monosyllable speech-elicitation task, and a multi-syllabic speech-elicitation task. Furthermore, we argue that the network makes predictions on the grounds of differences in speech development. Previous work has explored taking 'deep' neural networks (DNNs) designed for, or trained with, images to classify encephalographic recordings with some success, but this does little to acknowledge the structure of these data. Simple neural networks have been used extensively to classify data expressed as features, but require extensive feature engineering and pre-processing. We present novel DNNs trained using raw magnetoencephalography (MEG) and electroencephalography (EEG) recordings that mimic the feature-engineering pipeline. We highlight criteria the networks use, including relative weighting of channels and preferred spectro-temporal characteristics of re-weighted channels. Our data feature 92 subjects aged 4-18, recorded using a 151-channel MEG system. Our proposed model scores over 95% mean cross-validation accuracy distinguishing above and below 10 years of age in single trials of un-seen subjects, and can classify publicly available EEG with state-of-the-art accuracy.
Collapse
Affiliation(s)
- Demetres Kostas
- University of Toronto, Toronto, Canada.
- Vector Institute for Artificial Intelligence, Toronto, Canada.
| | - Elizabeth W Pang
- University of Toronto, Toronto, Canada
- Hospital for Sick Children, Toronto, Canada
- SickKids Research Institute, Toronto, Canada
| | - Frank Rudzicz
- University of Toronto, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Li Ka Shing Knowledge Institute at St Michael's Hospital, Toronto, Canada
- Surgical Safety Technologies Inc, Toronto, Canada
| |
Collapse
|
16
|
White EJ, Nayman C, Dunkley BT, Keller AE, Valiante TA, Pang EW. Addressing the Language Binding Problem With Dynamic Functional Connectivity During Meaningful Spoken Language Comprehension. Front Psychol 2018; 9:1960. [PMID: 30369900 PMCID: PMC6194231 DOI: 10.3389/fpsyg.2018.01960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022] Open
Abstract
During speech, how does the brain integrate information processed on different timescales and in separate brain areas so we can understand what is said? This is the language binding problem. Dynamic functional connectivity (brief periods of synchronization in the phase of EEG oscillations) may provide some answers. Here we investigate time and frequency characteristics of oscillatory power and phase synchrony (dynamic functional connectivity) during speech comprehension. Twenty adults listened to meaningful English sentences and non-sensical “Jabberwocky” sentences in which pseudo-words replaced all content words, while EEG was recorded. Results showed greater oscillatory power and global connectivity strength (mean phase lag index) in the gamma frequency range (30–80 Hz) for English compared to Jabberwocky. Increased power and connectivity relative to baseline was also seen in the theta frequency range (4–7 Hz), but was similar for English and Jabberwocky. High-frequency gamma oscillations may reflect a mechanism by which the brain transfers and integrates linguistic information so we can extract meaning and understand what is said. Slower frequency theta oscillations may support domain-general processing of the rhythmic features of speech. Our findings suggest that constructing a meaningful representation of speech involves dynamic interactions among distributed brain regions that communicate through frequency-specific functional networks.
Collapse
Affiliation(s)
- Erin J White
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada
| | - Candace Nayman
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Benjamin T Dunkley
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Anne E Keller
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada
| | - Taufik A Valiante
- Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada.,Krembil Research Institute, University Health Network and Toronto Western Hospital, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Elizabeth W Pang
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
17
|
Kwok EYL, Cardy JO, Allman BL, Allen P, Herrmann B. Dynamics of spontaneous alpha activity correlate with language ability in young children. Behav Brain Res 2018; 359:56-65. [PMID: 30352251 DOI: 10.1016/j.bbr.2018.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/21/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022]
Abstract
Early childhood is a period of tremendous growth in both language ability and brain maturation. To understand the dynamic interplay between neural activity and spoken language development, we used resting-state EEG recordings to explore the relation between alpha oscillations (7-10 Hz) and oral language ability in 4- to 6-year-old children with typical development (N = 41). Three properties of alpha oscillations were investigated: a) alpha power using spectral analysis, b) flexibility of the alpha frequency quantified via the oscillation's moment-to-moment fluctuations, and c) scaling behavior of the alpha oscillator investigated via the long-range temporal correlation in the alpha-amplitude time course. All three properties of the alpha oscillator correlated with children's oral language abilities. Higher language scores were correlated with lower alpha power, greater flexibility of the alpha frequency, and longer temporal correlations in the alpha-amplitude time course. Our findings demonstrate a cognitive role of several properties of the alpha oscillator that has largely been overlooked in the literature.
Collapse
Affiliation(s)
- Elaine Y L Kwok
- Communication Sciences and Disorders, The University of Western Ontario, London, ON, N6G 1H1, Canada.
| | - Janis Oram Cardy
- Communication Sciences and Disorders, The University of Western Ontario, London, ON, N6G 1H1, Canada; Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 5B7, Canada; National Centre for Audiology, The University of Western Ontario, London, ON, N6G 1H1, Canada
| | - Brian L Allman
- National Centre for Audiology, The University of Western Ontario, London, ON, N6G 1H1, Canada; Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Prudence Allen
- Communication Sciences and Disorders, The University of Western Ontario, London, ON, N6G 1H1, Canada; National Centre for Audiology, The University of Western Ontario, London, ON, N6G 1H1, Canada
| | - Björn Herrmann
- Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, ON, N6A 5C2, Canada.
| |
Collapse
|
18
|
Bolaños AD, Coffman BA, Candelaria-Cook FT, Kodituwakku P, Stephen JM. Altered Neural Oscillations During Multisensory Integration in Adolescents with Fetal Alcohol Spectrum Disorder. Alcohol Clin Exp Res 2017; 41:2173-2184. [PMID: 28944474 DOI: 10.1111/acer.13510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Children with fetal alcohol spectrum disorder (FASD), who were exposed to alcohol in utero, display a broad range of sensory, cognitive, and behavioral deficits, which are broadly theorized to be rooted in altered brain function and structure. Based on the role of neural oscillations in multisensory integration from past studies, we hypothesized that adolescents with FASD would show a decrease in oscillatory power during event-related gamma oscillatory activity (30 to 100 Hz), when compared to typically developing healthy controls (HC), and that such decrease in oscillatory power would predict behavioral performance. METHODS We measured sensory neurophysiology using magnetoencephalography (MEG) during passive auditory, somatosensory, and multisensory (synchronous) stimulation in 19 adolescents (12 to 21 years) with FASD and 23 age- and gender-matched HC. We employed a cross-hemisphere multisensory paradigm to assess interhemispheric connectivity deficits in children with FASD. RESULTS Time-frequency analysis of MEG data revealed a significant decrease in gamma oscillatory power for both unisensory and multisensory conditions in the FASD group relative to HC, based on permutation testing of significant group differences. Greater beta oscillatory power (15 to 30 Hz) was also noted in the FASD group compared to HC in both unisensory and multisensory conditions. Regression analysis revealed greater predictive power of multisensory oscillations from unisensory oscillations in the FASD group compared to the HC group. Furthermore, multisensory oscillatory power, for both groups, predicted performance on the Intra-Extradimensional Set Shift Task and the Cambridge Gambling Task. CONCLUSIONS Altered oscillatory power in the FASD group may reflect a restricted ability to process somatosensory and multisensory stimuli during day-to-day interactions. These alterations in neural oscillations may be associated with the neurobehavioral deficits experienced by adolescents with FASD and may carry over to adulthood.
Collapse
Affiliation(s)
- Alfredo D Bolaños
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Brian A Coffman
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Felicha T Candelaria-Cook
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Biomedical Informatics Unit, Health Sciences Library and Informatics Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Piyadasa Kodituwakku
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| |
Collapse
|
19
|
Youssofzadeh V, Williamson BJ, Kadis DS. Mapping Critical Language Sites in Children Performing Verb Generation: Whole-Brain Connectivity and Graph Theoretical Analysis in MEG. Front Hum Neurosci 2017; 11:173. [PMID: 28424604 PMCID: PMC5380724 DOI: 10.3389/fnhum.2017.00173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/22/2017] [Indexed: 11/13/2022] Open
Abstract
A classic left frontal-temporal brain network is known to support language processes. However, the level of participation of constituent regions, and the contribution of extra-canonical areas, is not fully understood; this is particularly true in children, and in individuals who have experienced early neurological insult. In the present work, we propose whole-brain connectivity and graph-theoretical analysis of magnetoencephalography (MEG) source estimates to provide robust maps of the pediatric expressive language network. We examined neuromagnetic data from a group of typically-developing young children (n = 15, ages 4–6 years) and adolescents (n = 14, 16–18 years) completing an auditory verb generation task in MEG. All source analyses were carried out using a linearly-constrained minimum-variance (LCMV) beamformer. Conventional differential analyses revealed significant (p < 0.05, corrected) low-beta (13–23 Hz) event related desynchrony (ERD) focused in the left inferior frontal region (Broca’s area) in both groups, consistent with previous studies. Connectivity analyses were carried out in broadband (3–30 Hz) on time-course estimates obtained at the voxel level. Patterns of connectivity were characterized by phase locking value (PLV), and network hubs identified through eigenvector centrality (EVC). Hub analysis revealed the importance of left perisylvian sites, i.e., Broca’s and Wernicke’s areas, across groups. The hemispheric distribution of frontal and temporal lobe EVC values was asymmetrical in most subjects; left dominant EVC was observed in 20% of young children, and 71% of adolescents. Interestingly, the adolescent group demonstrated increased critical sites in the right cerebellum, left inferior frontal gyrus (IFG) and left putamen. Here, we show that whole brain connectivity and network analysis can be used to map critical language sites in typical development; these methods may be useful for defining the margins of eloquent tissue in neurosurgical candidates.
Collapse
Affiliation(s)
- Vahab Youssofzadeh
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA.,Division of Neurology, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA
| | - Brady J Williamson
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA.,Department of Psychology, University of CincinnatiCincinnati, OH, USA
| | - Darren S Kadis
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA.,Division of Neurology, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA.,College of Medicine, Department of Pediatrics, University of CincinnatiCincinnati, OH, USA
| |
Collapse
|
20
|
Vakorin VA, Doesburg SM, Leung RC, Vogan VM, Anagnostou E, Taylor MJ. Developmental changes in neuromagnetic rhythms and network synchrony in autism. Ann Neurol 2017; 81:199-211. [DOI: 10.1002/ana.24836] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/25/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Vasily A. Vakorin
- Department of Biomedical Physiology and Kinesiology; Simon Fraser University; Burnaby British Columbia
- Behavioural and Cognitive Neuroscience Institute; Simon Fraser University; Burnaby British Columbia
| | - Sam M. Doesburg
- Department of Biomedical Physiology and Kinesiology; Simon Fraser University; Burnaby British Columbia
- Behavioural and Cognitive Neuroscience Institute; Simon Fraser University; Burnaby British Columbia
- Department of Diagnostic Imaging; Hospital for Sick Children; Toronto Ontario
- Neurosciences & Mental Health; Hospital for Sick Children Research Institute; Toronto Ontario
| | - Rachel C. Leung
- Department of Diagnostic Imaging; Hospital for Sick Children; Toronto Ontario
- Neurosciences & Mental Health; Hospital for Sick Children Research Institute; Toronto Ontario
- Department of Psychology; University of Toronto; Toronto Ontario
| | - Vanessa M. Vogan
- Department of Diagnostic Imaging; Hospital for Sick Children; Toronto Ontario
- Neurosciences & Mental Health; Hospital for Sick Children Research Institute; Toronto Ontario
| | - Evdokia Anagnostou
- Bloorview Research Institute; Holland Bloorview Kids Rehabilitation Hospital; Toronto Ontario
- Department of Neurology; Hospital for Sick Children; Toronto Ontario
| | - Margot J. Taylor
- Department of Diagnostic Imaging; Hospital for Sick Children; Toronto Ontario
- Neurosciences & Mental Health; Hospital for Sick Children Research Institute; Toronto Ontario
- Department of Psychology; University of Toronto; Toronto Ontario
- Department of Neurology; Hospital for Sick Children; Toronto Ontario
- Department of Medical Imaging; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
21
|
Pang EW, Snead III OC. From Structure to Circuits: The Contribution of MEG Connectivity Studies to Functional Neurosurgery. Front Neuroanat 2016; 10:67. [PMID: 27445705 PMCID: PMC4914570 DOI: 10.3389/fnana.2016.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/07/2016] [Indexed: 11/14/2022] Open
Abstract
New advances in structural neuroimaging have revealed the intricate and extensive connections within the brain, data which have informed a number of ambitious projects such as the mapping of the human connectome. Elucidation of the structural connections of the brain, at both the macro and micro levels, promises new perspectives on brain structure and function that could translate into improved outcomes in functional neurosurgery. The understanding of neuronal structural connectivity afforded by these data now offers a vista on the brain, in both healthy and diseased states, that could not be seen with traditional neuroimaging. Concurrent with these developments in structural imaging, a complementary modality called magnetoencephalography (MEG) has been garnering great attention because it too holds promise for being able to shed light on the intricacies of functional brain connectivity. MEG is based upon the elemental principle of physics that an electrical current generates a magnetic field. Hence, MEG uses highly sensitive biomagnetometers to measure extracranial magnetic fields produced by intracellular neuronal currents. Put simply then, MEG is a measure of neurophysiological activity, which captures the magnetic fields generated by synchronized intraneuronal electrical activity. As such, MEG recordings offer exquisite resolution in the time and oscillatory domain and, as well, when co-registered with magnetic resonance imaging (MRI), offer excellent resolution in the spatial domain. Recent advances in MEG computational and graph theoretical methods have led to studies of connectivity in the time-frequency domain. As such, MEG can elucidate a neurophysiological-based functional circuitry that may enhance what is seen with MRI connectivity studies. In particular, MEG may offer additional insight not possible by MRI when used to study complex eloquent function, where the precise timing and coordination of brain areas is critical. This article will review the traditional use of MEG for functional neurosurgery, describe recent advances in MEG connectivity analyses, and consider the additional benefits that could be gained with the inclusion of MEG connectivity studies. Since MEG has been most widely applied to the study of epilepsy, we will frame this article within the context of epilepsy surgery and functional neurosurgery for epilepsy.
Collapse
Affiliation(s)
- Elizabeth W. Pang
- Division of Neurology, Hospital for Sick ChildrenToronto, ON, Canada
- Neurosciences and Mental Health, SickKids Research InstituteToronto, ON, Canada
- Department of Paediatrics, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - O. C. Snead III
- Division of Neurology, Hospital for Sick ChildrenToronto, ON, Canada
- Neurosciences and Mental Health, SickKids Research InstituteToronto, ON, Canada
- Department of Paediatrics, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|