1
|
Branscheidt M, Hadjiosif AM, Anaya MA, Keller J, Widmer M, Runnalls KD, Luft AR, Bastian AJ, Krakauer JW, Celnik PA. Reinforcement Learning is Impaired in the Sub-acute Post-stroke Period. Neurorehabil Neural Repair 2025:15459683241304352. [PMID: 39849897 DOI: 10.1177/15459683241304352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
BACKGROUND In humans, most spontaneous recovery from motor impairment after stroke occurs in the first 3 months. Studies in animal models show higher responsiveness to training over a similar time-period. Both phenomena are often attributed to a milieu of heightened plasticity, which may share some mechanistic overlap with plasticity associated with normal motor learning. OBJECTIVE Given that neurorehabilitation approaches are frequently predicated on motor learning principles, here we asked if the sensitivity of trial-to-trial learning for 2 kinds of motor learning processes often involved during rehabilitation is also enhanced early post-stroke. In a cross-sectional design, we compared (1) reinforcement and (2) error-based learning in 2 groups: 1 tested within 3 months after stroke (early group, N = 35) another tested more than 6 months after stroke (late group, N = 30). These 2 forms of motor learning were assessed with variations of the same visuomotor rotation task. Critically, motor execution was matched between the 2 groups. RESULTS Reinforcement learning was impaired in the early but not the late group, whereas error-based learning was unimpaired in either group. These findings could not be attributed to differences in baseline execution, cognitive impairment, gender, age, or lesion volume and location. DISCUSSION The presence of a deficit in reinforcement motor learning in the first 3 months after stroke has important implications for rehabilitation. CONCLUSION It might be necessary to either increase reinforcement feedback given early after stroke, increase the dose of rehabilitation to compensate, or delay onset of rehabilitation approaches that may rely on reinforcement, for example, constraint-induced movement therapy, and instead emphasize other forms of motor training in the subacute time period.
Collapse
Affiliation(s)
- Meret Branscheidt
- Cereneo Center for Rehabilitation and Neurology, Weggis, Switzerland
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
| | - Alkis M Hadjiosif
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Manuel A Anaya
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Jennifer Keller
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mario Widmer
- Cereneo Center for Rehabilitation and Neurology, Weggis, Switzerland
- Neuro-Musculoskeletal Functioning and Mobility, Swiss Paraplegic Research, Nottwil, Switzerland
| | - Keith D Runnalls
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- Jefferson Moss Rehabilitation Research Institute, Philadelphia, PA, USA
| | - Andreas R Luft
- Cereneo Center for Rehabilitation and Neurology, Weggis, Switzerland
- University Hospital Zurich, Zurich, Switzerland
| | - Amy J Bastian
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Santa Fe Institute, Santa Fe, New Mexico
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
2
|
Perlova K, Schmidt CC, Fink GR, Weiss PH. The role of the left primary motor cortex in apraxia. Neurol Res Pract 2025; 7:2. [PMID: 39780250 PMCID: PMC11716253 DOI: 10.1186/s42466-024-00359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Apraxia is a motor-cognitive disorder that primary sensorimotor deficits cannot solely explain. Previous research in stroke patients has focused on damage to the fronto-parietal praxis networks in the left hemisphere (LH) as the cause of apraxic deficits. In contrast, the potential role of the (left) primary motor cortex (M1) has largely been neglected. However, recent brain stimulation and lesion-mapping studies suggest an involvement of left M1 in motor cognitive processes-over and above its role in motor execution. Therefore, this study explored whether the left M1 plays a specific role in apraxia. METHODS We identified 157 right-handed patients with first-ever unilateral LH stroke in the sub-acute phase (< 90 days post-stroke), for whom apraxia assessments performed with the ipsilesional left hand and lesion maps were available. Utilizing the maximum probability map of Brodmann area 4 (representing M1) provided by the JuBrain Anatomy Toolbox in SPM, patients were subdivided into two groups depending on whether their lesions involved (n = 40) or spared (n = 117) left M1. We applied a mixed model ANCOVA with repeated measures to compare apraxic deficits between the two patient groups, considering the factors "body part" and "gesture meaning". Furthermore, we explored potential differential effects of the anterior (4a) and posterior (4p) parts of Brodmann area 4 by correlation analyses. RESULTS Patients with and without M1 involvement did not differ in age and time post-stroke but in lesion size. When controlling for lesion size, the total apraxia scores did not differ significantly between groups. However, the mixed model ANCOVA showed that LH stroke patients with lesions involving left M1 performed differentially worse when imitating meaningless finger gestures. This effect was primarily driven by lesions affecting Brodmann area 4p. CONCLUSIONS Even though many current definitions of apraxia disregard a relevant role of (left) M1, the observed differential effect of M1 lesions, specifically involving subarea 4p, on the imitation of meaningless finger gestures in the current sample of LH stroke patients suggests a specific role of left M1 in imitation when high amounts of (motor) attention and sensorimotor integration are required.
Collapse
Affiliation(s)
- Ksenia Perlova
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Claudia C Schmidt
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Peter H Weiss
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| |
Collapse
|
3
|
Schmidt CC, Achilles EIS, Bolte K, Kleineberg NN, Richter MK, Schloss N, Fink GR, Weiss PH. Association of Circumscribed Subcortical Gray and White Matter Lesions With Apraxic Deficits in Patients With Left Hemisphere Stroke. Neurology 2023; 101:e1137-e1144. [PMID: 37463748 PMCID: PMC10513893 DOI: 10.1212/wnl.0000000000207598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/15/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Apraxia is commonly attributed to left hemisphere (LH) lesions of the cortical fronto-temporo-parietal praxis networks or white matter lesions causing disconnections between cortical nodes. By contrast, the contribution of lesions to the subcortical gray matter, that is, basal ganglia or thalamus, to apraxic deficits remains controversial. Here, we investigate whether damage to these subcortical gray matter structures (i.e., caudate nucleus, putamen, globus pallidus, and thalamus) or the adjacent white matter tracts was associated with apraxic deficits. METHODS We identified patients with distinct subcortical lesions with and without apraxia from a large retrospective sample of subacute LH ischemic stroke patients (n = 194). To test which subcortical structures (caudate nucleus, putamen, globus pallidus, thalamus, and adjacent white matter tracts), when lesioned, contributed to apraxic deficits, we statistically compared the proportion of lesioned voxels within subcortical gray and white matter structures between the apraxic and nonapraxic patients. RESULTS Of the 194 stroke patients screened, 39 (median age = 65 years, range 30-82 years; median time poststroke at the apraxia assessment = 7 days, range 1-44 days) had lesions confined to subcortical regions (gray and white matter). Eleven patients showed apraxic deficits when imitating gestures or pantomiming object use. Region-wise statistical lesion comparison (controlled for lesion size) revealed a more significant proportion of damage ('lesion load') in the caudate nucleus in apraxic stroke patients (mean difference = 6.9%, 95% CI 0.4-13.3, p = 0.038, η p 2 = 0.11). By contrast, apraxic patients had lower lesion load in the globus pallidus (mean difference = 9.9%, 95% CI 0.1-19.8, p = 0.048, η p 2 = 0.10), whereas the lesion load in other subcortical structures (putamen, thalamus, and adjacent white matter tracts) did not differ significantly between the apraxic and nonapraxic patients. DISCUSSION These findings provide new insights into the subcortical anatomy of apraxia after LH stroke, suggesting a specific contribution of caudate nucleus lesions to apraxic deficits.
Collapse
Affiliation(s)
- Claudia C Schmidt
- From the Cognitive Neuroscience (C.C.S., E.I.S.A., N.N.K., M.K.R., G.R.F., P.H.W.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Germany; and Department of Neurology (E.I.S.A., K.B., N.N.K., M.K.R., N.S., G.R.F., P.H.W.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.
| | - Elisabeth I S Achilles
- From the Cognitive Neuroscience (C.C.S., E.I.S.A., N.N.K., M.K.R., G.R.F., P.H.W.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Germany; and Department of Neurology (E.I.S.A., K.B., N.N.K., M.K.R., N.S., G.R.F., P.H.W.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Katharina Bolte
- From the Cognitive Neuroscience (C.C.S., E.I.S.A., N.N.K., M.K.R., G.R.F., P.H.W.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Germany; and Department of Neurology (E.I.S.A., K.B., N.N.K., M.K.R., N.S., G.R.F., P.H.W.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Nina N Kleineberg
- From the Cognitive Neuroscience (C.C.S., E.I.S.A., N.N.K., M.K.R., G.R.F., P.H.W.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Germany; and Department of Neurology (E.I.S.A., K.B., N.N.K., M.K.R., N.S., G.R.F., P.H.W.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Monika K Richter
- From the Cognitive Neuroscience (C.C.S., E.I.S.A., N.N.K., M.K.R., G.R.F., P.H.W.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Germany; and Department of Neurology (E.I.S.A., K.B., N.N.K., M.K.R., N.S., G.R.F., P.H.W.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Natalie Schloss
- From the Cognitive Neuroscience (C.C.S., E.I.S.A., N.N.K., M.K.R., G.R.F., P.H.W.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Germany; and Department of Neurology (E.I.S.A., K.B., N.N.K., M.K.R., N.S., G.R.F., P.H.W.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Gereon R Fink
- From the Cognitive Neuroscience (C.C.S., E.I.S.A., N.N.K., M.K.R., G.R.F., P.H.W.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Germany; and Department of Neurology (E.I.S.A., K.B., N.N.K., M.K.R., N.S., G.R.F., P.H.W.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Peter H Weiss
- From the Cognitive Neuroscience (C.C.S., E.I.S.A., N.N.K., M.K.R., G.R.F., P.H.W.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Germany; and Department of Neurology (E.I.S.A., K.B., N.N.K., M.K.R., N.S., G.R.F., P.H.W.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| |
Collapse
|
4
|
Kleineberg NN, Schmidt CC, Richter MK, Bolte K, Schloss N, Fink GR, Weiss PH. Gesture meaning modulates the neural correlates of effector-specific imitation deficits in left hemisphere stroke. Neuroimage Clin 2023; 37:103331. [PMID: 36716655 PMCID: PMC9900453 DOI: 10.1016/j.nicl.2023.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
BACKGROUND Previous studies on left hemisphere (LH) stroke patients reported effector-specific (hand, fingers, bucco-facial) differences in imitation performance. Furthermore, imitation performance differed between meaningless (ML) and meaningful (MF) gestures. Recent work suggests that a gesture's meaning impacts the body-part specificity of gesture imitation. METHODS We tested the hypothesis that the gesture's meaning (ML vs MF) affects the lesion correlates of effector-specific imitation deficits (here: bucco-facial vs arm/hand gestures) using behavioural data and support vector regression-based lesion-symptom mapping (SVR-LSM) in a large sample of 194 sub-acute LH stroke patients. RESULTS Behavioural data revealed a significant interaction between the effector used for imitation and the meaning of the imitated gesture. SVR-LSM analyses revealed shared lesion correlates for impaired imitation independent of effector or gesture meaning in the left supramarginal (SMG) and superior temporal gyri (STG). Besides, within the territory of the left middle cerebral artery, impaired imitation of bucco-facial gestures was associated with more anterior lesions, while arm/hand imitation deficits were associated with more posterior lesions. MF gestures were specifically associated with lesions in the left inferior frontal gyrus and the left insular region. Notably, an interaction of effector-specificity and gesture meaning was also present at the lesion level: A more pronounced difference in imitation performance between the effectors for ML (versus MF) gestures was associated with left-hemispheric lesions in the STG, SMG, putamen, precentral gyrus and white matter tracts. CONCLUSION The current behavioural data show that ML gestures are particularly sensitive in assessing effector-specific imitation deficits in LH stroke patients. Moreover, a gesture's meaning modulated the effector-specific lesion correlates of bucco-facial and arm/hand gesture imitation. Hence, it is crucial to consider gesture meaning in apraxia assessments.
Collapse
Affiliation(s)
- Nina N Kleineberg
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Claudia C Schmidt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany
| | - Monika K Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Katharina Bolte
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Natalie Schloss
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
5
|
Schmidt CC, Achilles EIS, Fink GR, Weiss PH. Distinct cognitive components and their neural substrates underlying praxis and language deficits following left hemisphere stroke. Cortex 2021; 146:200-215. [PMID: 34896806 DOI: 10.1016/j.cortex.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Apraxia is characterised by multiple deficits of higher motor functions, primarily caused by left hemisphere (LH) lesions to parietal-frontal praxis networks. While previous neuropsychological and lesion studies tried to relate the various apraxic deficits to specific lesion sites, a comprehensive analysis of the different apraxia profiles and the related (impaired) motor-cognitive processes as well as their differential neural substrates in LH stroke is lacking. To reveal the cognitive mechanisms that underlie the different patterns of praxis and (related) language deficits, we applied principal component analysis (PCA) to the scores of sub-acute LH stroke patients (n = 91) in several tests of apraxia and aphasia. Voxel-based lesion-symptom mapping (VLSM) analyses were then used to investigate the neural substrates of the identified components. The PCA yielded a first component related to language functions and three components related to praxis functions, with each component associated with specific lesion patterns. Regarding praxis functions, performance in imitating arm/hand gestures was accounted for by a second component related to the left precentral gyrus and the inferior parietal lobule. Imitating finger configurations, pantomiming the use of objects related to the face, and actually using objects loaded on component 3, related to the left anterior intraparietal sulcus and angular gyrus. The last component represented the imitation of bucco-facial gestures and was linked to the basal ganglia and LH white matter tracts. The results further revealed that pantomime of (limb-related) object use depended on both the component 2 and 3, which were shared with gesture imitation and actual object use. Data support and extend the notion that apraxia represents a multi-componential syndrome comprising different (impaired) motor-cognitive processes, which dissociate - at least partially - from language processes. The distinct components might be disturbed to a varying degree following LH stroke since they are associated with specific lesion patterns within the LH.
Collapse
Affiliation(s)
- Claudia C Schmidt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.
| | - Elisabeth I S Achilles
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|
6
|
Russo C, Veronelli L, Casati C, Monti A, Perucca L, Ferraro F, Corbo M, Vallar G, Bolognini N. Explicit motor sequence learning after stroke: a neuropsychological study. Exp Brain Res 2021; 239:2303-2316. [PMID: 34091696 PMCID: PMC8282572 DOI: 10.1007/s00221-021-06141-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
Motor learning interacts with and shapes experience-dependent cerebral plasticity. In stroke patients with paresis of the upper limb, motor recovery was proposed to reflect a process of re-learning the lost/impaired skill, which interacts with rehabilitation. However, to what extent stroke patients with hemiparesis may retain the ability of learning with their affected limb remains an unsolved issue, that was addressed by this study. Nineteen patients, with a cerebrovascular lesion affecting the right or the left hemisphere, underwent an explicit motor learning task (finger tapping task, FTT), which was performed with the paretic hand. Eighteen age-matched healthy participants served as controls. Motor performance was assessed during the learning phase (i.e., online learning), as well as immediately at the end of practice, and after 90 min and 24 h (i.e., retention). Results show that overall, as compared to the control group, stroke patients, regardless of the side (left/right) of the hemispheric lesion, do not show a reliable practice-dependent improvement; consequently, no retention could be detected in the long-term (after 90 min and 24 h). The motor learning impairment was associated with subcortical damage, predominantly affecting the basal ganglia; conversely, it was not associated with age, time elapsed from stroke, severity of upper-limb motor and sensory deficits, and the general neurological condition. This evidence expands our understanding regarding the potential of post-stroke motor recovery through motor practice, suggesting a potential key role of basal ganglia, not only in implicit motor learning as previously pointed out, but also in explicit finger tapping motor tasks.
Collapse
Affiliation(s)
- Cristina Russo
- Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milan, Italy.
| | - Laura Veronelli
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
| | - Carlotta Casati
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessia Monti
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
| | - Laura Perucca
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Francesco Ferraro
- Riabilitazione Specialistica Neuromotoria - Dipartimento di Neuroscienze, ASST "Carlo Poma" di Mantova - Presidio di Riabilitazione Multifunzionale di Bozzolo, Mantua, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
| | - Giuseppe Vallar
- Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
7
|
Dahms C, Brodoehl S, Witte OW, Klingner CM. The importance of different learning stages for motor sequence learning after stroke. Hum Brain Mapp 2020; 41:270-286. [PMID: 31520506 PMCID: PMC7268039 DOI: 10.1002/hbm.24793] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/31/2019] [Accepted: 09/02/2019] [Indexed: 11/12/2022] Open
Abstract
The task of learning predefined sequences of interrelated motor actions is of everyday importance and has also strong clinical importance for regaining motor function after brain lesions. A solid understanding of sequence learning in stroke patients can help clinicians to optimize and individualize rehabilitation strategies. Moreover, to investigate the impact of a focal lesion on the ability to successfully perform motor sequence learning can enhance our comprehension of the underlying physiological principles of motor sequence learning. In this article, we will first provide an overview of current concepts related to motor sequence learning in healthy subjects with focus on the involved brain areas and their assumed functions according to the temporal stage model. Subsequently, we will consider the question of what we can learn from studies investigating motor sequence learning in stroke patients. We will first focus on the implications of lesion location. Then, we will analyze whether distinct lesion locations affect specific learning stages. Finally, we will discuss the implications for clinical rehabilitation and suggest directions for further research.
Collapse
Affiliation(s)
- Christiane Dahms
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Stefan Brodoehl
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Biomagnetic CenterJena University HospitalJenaGermany
| | - Otto W. Witte
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Carsten M. Klingner
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Biomagnetic CenterJena University HospitalJenaGermany
| |
Collapse
|
8
|
Dovern A, Niessen E, Ant JM, Saliger J, Karbe H, Fink GR, Koch I, Weiss PH. Timing independent spatial motor sequence learning is preserved in left hemisphere stroke. Neuropsychologia 2017; 106:322-327. [PMID: 28963057 DOI: 10.1016/j.neuropsychologia.2017.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022]
Abstract
During neurorehabilitation, the re-learning of motor sequences is crucial for patients with motor deficits, enabling them to master again complex movements. A recent study showed that patients with left hemisphere (LH) stroke exhibited preserved motor sequence learning (as assessed by the serial reaction time (SRT) task) when the timing of the stimuli was comparable in the training and later test phase. However, patients showed significantly smaller learning scores as compared to healthy controls when the temporal delay between the patient's motor response and the following stimulus was randomized in the test phase. We here investigated whether LH stroke patients were able to learn spatial motor sequences even if no predictable temporal information was provided (i.e., adopting random response-stimulus intervals, RSIs) already during the training phase. Twelve right-handed LH stroke patients and 18 right-handed healthy controls performed a SRT task with random RSIs to test incidental learning of a complex spatial motor sequence. Results indicate that, although the learning condition with random RSIs was more difficult than learning with predictable RSIs, LH stroke patients performed as well as healthy controls regarding sequence specific learning. Thus, data show for the first time that LH stroke patients are able to incidentally learn a spatial sequence even when no predictable temporal information is available.
Collapse
Affiliation(s)
- Anna Dovern
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany.
| | - Eva Niessen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany.
| | - Jana M Ant
- Department of Neurology, University Hospital Cologne, Germany.
| | - Jochen Saliger
- Neurological Rehabilitation Centre Godeshöhe, Bonn, Germany.
| | - Hans Karbe
- Neurological Rehabilitation Centre Godeshöhe, Bonn, Germany.
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany; Department of Neurology, University Hospital Cologne, Germany.
| | - Iring Koch
- Institute of Psychology, RWTH Aachen University, Aachen, Germany.
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany; Department of Neurology, University Hospital Cologne, Germany.
| |
Collapse
|
9
|
Bimanual tapping of a syncopated rhythm reveals hemispheric preferences for relative movement frequencies. Hum Mov Sci 2017; 54:287-296. [PMID: 28605695 DOI: 10.1016/j.humov.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 11/23/2022]
Abstract
In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere.
Collapse
|
10
|
Fleming MK, Newham DJ, Rothwell JC. Explicit motor sequence learning with the paretic arm after stroke. Disabil Rehabil 2016; 40:323-328. [PMID: 27927022 DOI: 10.1080/09638288.2016.1258091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Motor sequence learning is important for stroke recovery, but experimental tasks require dexterous movements, which are impossible for people with upper limb impairment. This makes it difficult to draw conclusions about the impact of stroke on learning motor sequences. We aimed to test a paradigm requiring gross arm movements to determine whether stroke survivors with upper limb impairment were capable of learning a movement sequence as effectively as age-matched controls. MATERIALS AND METHODS In this case-control study, 12 stroke survivors (10-138 months post-stroke, mean age 64 years) attempted the task once using their affected arm. Ten healthy controls (mean 66 years) used their non-dominant arm. A sequence of 10 movements was repeated 25 times. The variables were: time from target illumination until the cursor left the central square (onset time; OT), accuracy (path length), and movement speed. RESULTS OT reduced with training (p < 0.05) for both groups, with no change in movement speed or accuracy (p > 0.1). We quantified learning as the OT difference between the end of training and a random sequence; this was smaller for stroke survivors than controls (p = 0.015). CONCLUSIONS Stroke survivors can learn a movement sequence with their paretic arm, but demonstrate impairments in sequence specific learning. Implications for Rehabilitation Motor sequence learning is important for recovery of movement after stroke. Stroke survivors were found to be capable of learning a movement sequence with their paretic arm, supporting the concept of repetitive task training for recovery of movement. Stroke survivors showed impaired sequence specific learning in comparison with age-matched controls, indicating that they may need more repetitions of a sequence in order to re-learn movements. Further research is required into the effect of lesion location, time since stroke, hand dominance and gender on learning of motor sequences after stroke.
Collapse
Affiliation(s)
- Melanie K Fleming
- a Centre of Human and Aerospace Physiological Sciences , King's College London , London , UK
| | - Di J Newham
- a Centre of Human and Aerospace Physiological Sciences , King's College London , London , UK
| | - John C Rothwell
- b Institute of Neurology , University College London , London , UK
| |
Collapse
|
11
|
Linden J, Van de Beeck L, Plumier JC, Ferrara A. Procedural learning as a measure of functional impairment in a mouse model of ischemic stroke. Behav Brain Res 2016; 307:35-45. [DOI: 10.1016/j.bbr.2016.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
|