1
|
Wang F, Kaneshiro B, Toomarian EY, Gosavi RS, Hasak LR, Moron S, Nguyen QTH, Norcia AM, McCandliss BD. Progress in elementary school reading linked to growth of cortical responses to familiar letter combinations within visual word forms. Dev Sci 2024; 27:e13435. [PMID: 37465984 DOI: 10.1111/desc.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Learning to read depends on the ability to extract precise details of letter combinations, which convey critical information that distinguishes tens of thousands of visual word forms. To support fluent reading skill, one crucial neural developmental process is one's brain sensitivity to statistical constraints inherent in combining letters into visual word forms. To test this idea in early readers, we tracked the impact of two years of schooling on within-subject longitudinal changes in cortical responses to three different properties of words: coarse tuning for print, and fine tuning to either familiar letter combinations within visual word forms or whole word representations. We then examined how each related to growth in reading skill. Three stimulus contrasts-words versus pseudofonts, words versus pseudowords, pseudowords versus nonwords-were presented while high-density EEG Steady-State Visual Evoked Potentials (SSVEPs, n = 31) were recorded. Internalization of abstract visual word form structures over two years of reading experience resulted in a near doubling of SSVEP amplitude, with increasing left lateralization. Longitudinal changes (decreases) in brain responses to such word form structural information were linked to the growth in reading skills, especially in rapid automatic naming of letters. No such changes were observed for whole word representation processing and coarse tuning for print. Collectively, these findings indicate that sensitivity to visual word form structure develops rapidly through exposure to print and is linked to growth in reading skill. RESEARCH HIGHLIGHTS: Longitudinal changes in cognitive responses to coarse print tuning, visual word from structure, and whole word representation were examined in early readers. Visual word form structure processing demonstrated striking patterns of growth with nearly doubled in EEG amplitude and increased left lateralization. Longitudinal changes (decreases) in brain responses to visual word form structural information were linked to the growth in rapid automatic naming for letters. No longitudinal changes were observed for whole word representation processing and coarse tuning for print.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Radhika S Gosavi
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Lindsey R Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Suanna Moron
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Wang F, Nguyen QTH, Kaneshiro B, Hasak L, Wang AM, Toomarian EY, Norcia AM, McCandliss BD. Lexical and sublexical cortical tuning for print revealed by Steady-State Visual Evoked Potentials (SSVEPs) in early readers. Dev Sci 2023; 26:e13352. [PMID: 36413170 PMCID: PMC10881121 DOI: 10.1111/desc.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
There are multiple levels of processing relevant to reading that vary in their visual, sublexical, and lexical orthographic processing demands. Segregating distinct cortical sources for each of these levels has been challenging in EEG studies of early readers. To address this challenge, we applied recent advances in analyzing high-density EEG using Steady-State Visual Evoked Potentials (SSVEPs) via data-driven Reliable Components Analysis (RCA) in a group of early readers spanning from kindergarten to second grade. Three controlled stimulus contrasts-familiar words versus unfamiliar pseudofonts, familiar words versus pseudowords, and pseudowords versus nonwords-were used to isolate coarse print tuning, lexical processing, and sublexical orthography-related processing, respectively. First, three overlapping yet distinct neural sources-left vOT, dorsal parietal, and primary visual cortex were revealed underlying coarse print tuning. Second, we segregated distinct cortical sources for the other two levels of processing: lexical fine tuning over occipito-temporal/parietal regions; sublexical orthographic fine tuning over left occipital regions. Finally, exploratory group analyses based on children's reading fluency suggested that coarse print tuning emerges early even in children with limited reading knowledge, while sublexical and higher-level lexical processing emerge only in children with sufficient reading knowledge. RESEARCH HIGHLIGHTS: Cognitive processes underlying coarse print tuning, sublexical, and lexical fine tuning were examined in beginning readers. Three overlapping yet distinct neural sources-left ventral occipito-temporal (vOT), left temporo-parietal, and primary visual cortex-were revealed underlying coarse print tuning. Responses to sublexical orthographic fine tuning were found over left occipital regions, while responses to higher-level linguistic fine tuning were found over occipito-temporal/parietal regions. Exploratory group analyses suggested that coarse print tuning emerges in children with limited reading knowledge, while sublexical and higher-level linguistic fine tuning effects emerge in children with sufficient reading knowledge.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Lindsey Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Angie M. Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y. Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Anthony M. Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D. McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Liu X, Melcher D. The effect of familiarity on behavioral oscillations in face perception. Sci Rep 2023; 13:10145. [PMID: 37349366 PMCID: PMC10287701 DOI: 10.1038/s41598-023-34812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023] Open
Abstract
Studies on behavioral oscillations demonstrate that visual sensitivity fluctuates over time and visual processing varies periodically, mirroring neural oscillations at the same frequencies. Do these behavioral oscillations reflect fixed and relatively automatic sensory sampling, or top-down processes such as attention or predictive coding? To disentangle these theories, the current study used a dual-target rapid serial visual presentation paradigm, where participants indicated the gender of a face target embedded in streams of distractors presented at 30 Hz. On critical trials, two identical targets were presented with varied stimulus onset asynchrony from 200 to 833 ms. The target was either familiar or unfamiliar faces, divided into different blocks. We found a 4.6 Hz phase-coherent fluctuation in gender discrimination performance across both trial types, consistent with previous reports. In addition, however, we found an effect at the alpha frequency, with behavioral oscillations in the familiar blocks characterized by a faster high-alpha peak than for the unfamiliar face blocks. These results are consistent with the combination of both a relatively stable modulation in the theta band and faster modulation of the alpha oscillations. Therefore, the overall pattern of perceptual sampling in visual perception may depend, at least in part, on task demands. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 16/08/2022. The protocol, as accepted by the journal, can be found at: https://doi.org/10.17605/OSF.IO/A98UF .
Collapse
Affiliation(s)
- Xiaoyi Liu
- New York University Abu Dhabi, Abu Dhabi, UAE
| | | |
Collapse
|
4
|
Distinct neural sources underlying visual word form processing as revealed by steady state visual evoked potentials (SSVEP). Sci Rep 2021; 11:18229. [PMID: 34521874 PMCID: PMC8440525 DOI: 10.1038/s41598-021-95627-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
EEG has been central to investigations of the time course of various neural functions underpinning visual word recognition. Recently the steady-state visual evoked potential (SSVEP) paradigm has been increasingly adopted for word recognition studies due to its high signal-to-noise ratio. Such studies, however, have been typically framed around a single source in the left ventral occipitotemporal cortex (vOT). Here, we combine SSVEP recorded from 16 adult native English speakers with a data-driven spatial filtering approach—Reliable Components Analysis (RCA)—to elucidate distinct functional sources with overlapping yet separable time courses and topographies that emerge when contrasting words with pseudofont visual controls. The first component topography was maximal over left vOT regions with a shorter latency (approximately 180 ms). A second component was maximal over more dorsal parietal regions with a longer latency (approximately 260 ms). Both components consistently emerged across a range of parameter manipulations including changes in the spatial overlap between successive stimuli, and changes in both base and deviation frequency. We then contrasted word-in-nonword and word-in-pseudoword to test the hierarchical processing mechanisms underlying visual word recognition. Results suggest that these hierarchical contrasts fail to evoke a unitary component that might be reasonably associated with lexical access.
Collapse
|
5
|
Barzegaran E, Norcia AM. Neural sources of letter and Vernier acuity. Sci Rep 2020; 10:15449. [PMID: 32963270 PMCID: PMC7509830 DOI: 10.1038/s41598-020-72370-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/01/2020] [Indexed: 01/23/2023] Open
Abstract
Visual acuity can be measured in many different ways, including with letters and Vernier offsets. Prior psychophysical work has suggested that the two acuities are strongly linked given that they both depend strongly on retinal eccentricity and both are similarly affected in amblyopia. Here we used high-density EEG recordings to ask whether the underlying neural sources are common as suggested by the psychophysics or distinct. To measure visual acuity for letters, we recorded evoked potentials to 3 Hz alternations between intact and scrambled text comprised of letters of varying size. To measure visual acuity for Vernier offsets, we recorded evoked potentials to 3 Hz alternations between bar gratings with and without a set of Vernier offsets. Both alternation types elicited robust activity at the 3 Hz stimulus frequency that scaled in amplitude with both letter and offset size, starting near threshold. Letter and Vernier offset responses differed in both their scalp topography and temporal dynamics. The earliest evoked responses to letters occurred on lateral occipital visual areas, predominantly over the left hemisphere. Later responses were measured at electrodes over early visual cortex, suggesting that letter structure is first extracted in second-tier extra-striate areas and that responses over early visual areas are due to feedback. Responses to Vernier offsets, by contrast, occurred first at medial occipital electrodes, with responses at later time-points being more broadly distributed—consistent with feedforward pathway mediation. The previously observed commonalities between letter and Vernier acuity may be due to common bottlenecks in early visual cortex but not because the two tasks are subserved by a common network of visual areas.
Collapse
Affiliation(s)
- Elham Barzegaran
- Wu Tsai Neurosciences Institute, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| | - Anthony M Norcia
- Wu Tsai Neurosciences Institute, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Norcia AM, Yakovleva A, Hung B, Goldberg JL. Dynamics of Contrast Decrement and Increment Responses in Human Visual Cortex. Transl Vis Sci Technol 2020; 9:6. [PMID: 32953246 PMCID: PMC7476656 DOI: 10.1167/tvst.9.10.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The goal of the present experiments was to determine whether electrophysiologic response properties of the ON and OFF visual pathways observed in animal experimental models can be observed in humans. Methods Steady-state visual evoked potentials (SSVEPs) were recorded in response to equivalent magnitude contrast increments and decrements presented within a probe-on-pedestal Westheimer sensitization paradigm. The probes were modulated with sawtooth temporal waveforms at a temporal frequency of 3 or 2.73 Hz. SSVEP response waveforms and response spectra for incremental and decremental stimuli were analyzed as a function of stimulus size and visual field location in 67 healthy adult participants. Results SSVEPs recorded at the scalp differ between contrast decrements and increments of equal Weber contrast: SSVEP responses were larger in amplitude and shorter in latency for contrast decrements than for contrast increments. Both increment and decrement responses were larger for displays that were scaled for cortical magnification. Conclusions In a fashion that parallels results from the early visual system of cats and monkeys, two key properties of ON versus OFF pathways found in single-unit recordings are recapitulated at the population level of activity that can be observed with scalp electrodes, allowing differential assessment of ON and OFF pathway activity in human. Translational Relevance As data from preclinical models of visual pathway dysfunction point to differential damage to subtypes of retinal ganglion cells, this approach may be useful in future work on disease detection and treatment monitoring.
Collapse
Affiliation(s)
- Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, CA, USA
| | | | - Bethany Hung
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
7
|
Montani V, Chanoine V, Grainger J, Ziegler JC. Frequency-tagged visual evoked responses track syllable effects in visual word recognition. Cortex 2019; 121:60-77. [PMID: 31550616 DOI: 10.1016/j.cortex.2019.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 08/11/2019] [Indexed: 01/05/2023]
Abstract
The processing of syllables in visual word recognition was investigated using a novel paradigm based on steady-state visual evoked potentials (SSVEPs). French words were presented to proficient readers in a delayed naming task. Words were split into two segments, the first of which was flickered at 18.75 Hz and the second at 25 Hz. The first segment either matched (congruent condition) or did not match (incongruent condition) the first syllable. The SSVEP responses in the congruent condition showed increased power compared to the responses in the incongruent condition, providing new evidence that syllables are important sublexical units in visual word recognition and reading aloud. With respect to the neural correlates of the effect, syllables elicited an early activation of a right hemisphere network. This network is typically associated with the programming of complex motor sequences, cognitive control and timing. Subsequently, responses were obtained in left hemisphere areas related to phonological processing.
Collapse
Affiliation(s)
- Veronica Montani
- Aix-Marseille University and CNRS, Brain and Language Research Institute, Marseille Cedex 3, France.
| | - Valérie Chanoine
- Aix-Marseille University, Institute of Language, Communication and the Brain, Brain and Language Research Institute, Aix-en-Provence, France
| | | | | |
Collapse
|
8
|
Montani V, Chanoine V, Stoianov IP, Grainger J, Ziegler JC. Steady state visual evoked potentials in reading aloud: Effects of lexicality, frequency and orthographic familiarity. BRAIN AND LANGUAGE 2019; 192:1-14. [PMID: 30826643 DOI: 10.1016/j.bandl.2019.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/16/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The present study explored the possibility to use Steady-State Visual Evoked Potentials (SSVEPs) as a tool to investigate the core mechanisms in visual word recognition. In particular, we investigated three benchmark effects of reading aloud: lexicality (words vs. pseudowords), frequency (high-frequency vs. low-frequency words), and orthographic familiarity ('familiar' versus 'unfamiliar' pseudowords). We found that words and pseudowords elicited robust SSVEPs. Words showed larger SSVEPs than pseudowords and high-frequency words showed larger SSVEPs than low-frequency words. SSVEPs were not sensitive to orthographic familiarity. We further localized the neural generators of the SSVEP effects. The lexicality effect was located in areas associated with early level of visual processing, i.e. in the right occipital lobe and in the right precuneus. Pseudowords produced more activation than words in left sensorimotor areas, rolandic operculum, insula, supramarginal gyrus and in the right temporal gyrus. These areas are devoted to speech processing and/or spelling-to-sound conversion. The frequency effect involved the left temporal pole and orbitofrontal cortex, areas previously implicated in semantic processing and stimulus-response associations respectively, and the right postcentral and parietal inferior gyri, possibly indicating the involvement of the right attentional network.
Collapse
Affiliation(s)
- Veronica Montani
- Aix-Marseille University and CNRS, Brain and Language Research Institute, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France.
| | - Valerie Chanoine
- Aix-Marseille University, Institute of Language, Communication and the Brain, Brain and Language Research Institute, 13100 Aix-en-Provence, France
| | - Ivilin Peev Stoianov
- Aix-Marseille University and CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France; Institute of Cognitive Sciences and Technologies, CNR, Via Martiri della Libertà 2, 35137 Padova, Italy
| | - Jonathan Grainger
- Aix-Marseille University and CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Johannes C Ziegler
- Aix-Marseille University and CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| |
Collapse
|
9
|
Safi SMM, Pooyan M, Motie Nasrabadi A. SSVEP recognition by modeling brain activity using system identification based on Box-Jenkins model. Comput Biol Med 2018; 101:82-89. [PMID: 30114547 DOI: 10.1016/j.compbiomed.2018.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 11/26/2022]
Abstract
The steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) has received increasing attention in recent years. The present study proposes a new method for recognition based on system identification. The method relies on modeling the electroencephalogram (EEG) signals using the Box-Jenkins model. In this approach, the recorded EEG signal is considered as a combination of an SSVEP signal evoked by periodic visual stimulation and a background EEG signal whose components are modeled by a moving average (MA) process and an auto-regressive moving average (ARMA) process, respectively. Then, the target frequency is determined by comparing the modeled SSVEP signals for all stimulation frequencies. The experimental results of the proposed method for recorded EEG signals from five subjects (each subject with four stimulation frequencies) demonstrated a significant improvement in the accuracy of the SSVEP recognition in contrast to canonical correlation analysis, least absolute shrinkage and selection operator, and multivariate linear regression methods. The proposed method exhibits enhanced accuracy especially for short data length and a small number of channels. This superiority suggests that the proposed method is an appropriate choice for the implementation of real-time SSVEP based BCI systems.
Collapse
Affiliation(s)
| | - Mohammad Pooyan
- Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran.
| | - Ali Motie Nasrabadi
- Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
| |
Collapse
|
10
|
Word selectivity in high-level visual cortex and reading skill. Dev Cogn Neurosci 2018; 36:100593. [PMID: 30318344 PMCID: PMC6969272 DOI: 10.1016/j.dcn.2018.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Word-selective neural responses in human ventral occipito-temporal cortex (VOTC) emerge as children learn to read, creating a visual word form area (VWFA) in the literate brain. It has been suggested that the VWFA arises through competition between pre-existing selectivity for other stimulus categories, changing the topography of VOTC to support rapid word recognition. Here, we hypothesized that competition between words and objects would be resolved as children acquire reading skill. Using functional magnetic resonance imaging (fMRI), we examined the relationship between responses to words and objects in VOTC in two ways. First, we defined the VWFA using a words > objects contrast and found that only skilled readers had a region that responded more to words than objects. Second, we defined the VWFA using a words > faces contrast and examined selectivity for words over objects in this region. We found that word selectivity strongly correlated with reading skill, suggesting reading skill-dependent tuning for words. Furthermore, we found that low word selectivity in struggling readers was not due to a lack of response to words, but to a high response to objects. Our results suggest that the fine-tuning of word-selective responses in VOTC is a critical component of skilled reading.
Collapse
|
11
|
Collins E, Robinson AK, Behrmann M. Distinct neural processes for the perception of familiar versus unfamiliar faces along the visual hierarchy revealed by EEG. Neuroimage 2018; 181:120-131. [PMID: 29966716 DOI: 10.1016/j.neuroimage.2018.06.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 12/29/2022] Open
Abstract
Humans recognize faces with ease, despite the complexity of the task and of the visual system which underlies it. Different spatial regions, including both the core and extended face processing networks, and distinct temporal stages of processing have been implicated in face recognition, but there is ongoing controversy regarding the extent to which the mechanisms for recognizing a familiar face differ from those for an unfamiliar face. Here, we used electroencephalogram (EEG) and flicker SSVEP, a high signal-to-noise approach, and searchlight decoding methods to elucidate the mechanisms mediating the processing of familiar and unfamiliar faces in the time domain. Familiar and unfamiliar faces were presented periodically at 15 Hz, 6 Hz and 3.75 Hz either upright or inverted in separate blocks, with the rationale that faster frequencies require shorter processing times per image and tap into fundamentally different levels of visual processing. The 15 Hz trials, likely to reflect early visual processing, exhibited enhanced neural responses for familiar over unfamiliar face trials, but only when the faces were upright. In contrast, decoding methods revealed similar classification accuracies for upright and inverted faces for both familiar and unfamiliar faces. For the 6 Hz frequency, familiar faces had lower amplitude responses than unfamiliar faces, and decoding familiarity was more accurate for upright compared with inverted faces. Finally, the 3.75 Hz frequency revealed no main effects of familiarity, but decoding showed significant correlations with behavioral ratings of face familiarity, suggesting that activity evoked by this slow presentation frequency reflected higher-level, cognitive aspects of familiarity processing. This three-way dissociation between frequencies reveals that fundamentally different stages of the visual hierarchy are modulated by face familiarity. The combination of experimental and analytical approaches used here represent a novel method for elucidating spatio-temporal characteristics within the visual system.
Collapse
Affiliation(s)
- Elliot Collins
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, USA; School of Medicine, University of Pittsburgh, Pittsburgh, USA.
| | - Amanda K Robinson
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, USA; School of Psychology, The University of Sydney, Australia; ARC Centre of Excellence in Cognition and its Disorders, Department of Cognitive Science, Macquarie University, Australia
| | - Marlene Behrmann
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, USA
| |
Collapse
|
12
|
Nguyen T, Kuntzelman K, Miskovic V. Entrainment of visual steady-state responses is modulated by global spatial statistics. J Neurophysiol 2017; 118:344-352. [PMID: 28446580 PMCID: PMC5498732 DOI: 10.1152/jn.00129.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/22/2022] Open
Abstract
The rhythmic delivery of visual stimuli evokes large-scale neuronal entrainment in the form of steady-state oscillatory field potentials. The spatiotemporal properties of stimulus drive appear to constrain the relative degrees of neuronal entrainment. Specific frequency ranges, for example, are uniquely suited for enhancing the strength of stimulus-driven brain oscillations. When it comes to the nature of the visual stimulus itself, studies have used a plethora of inputs ranging from spatially unstructured empty fields to simple contrast patterns (checkerboards, gratings, stripes) and complex arrays (human faces, houses, natural scenes). At present, little is known about how the global spatial statistics of the input stimulus influence entrainment of scalp-recorded electrophysiological signals. In this study, we used rhythmic entrainment source separation of scalp EEG to compare stimulus-driven phase alignment for distinct classes of visual inputs, including broadband spatial noise ensembles with varying second-order statistics, natural scenes, and narrowband sine-wave gratings delivered at a constant flicker frequency. The relative magnitude of visual entrainment was modulated by the global properties of the driving stimulus. Entrainment was strongest for pseudo-naturalistic broadband visual noise patterns in which luminance contrast is greatest at low spatial frequencies (a power spectrum slope characterized by 1/ƒ-2).NEW & NOTEWORTHY Rhythmically modulated visual stimuli entrain the activity of neuronal populations, but the effect of global stimulus statistics on this entrainment is unknown. We assessed entrainment evoked by 1) visual noise ensembles with different spectral slopes, 2) complex natural scenes, and 3) narrowband sinusoidal gratings. Entrainment was most effective for broadband noise with naturalistic luminance contrast. This reveals some global properties shaping stimulus-driven brain oscillations in the human visual system.
Collapse
Affiliation(s)
- Thomas Nguyen
- Department of Psychology, State University of New York at Binghamton, Binghamton, New York; and
| | - Karl Kuntzelman
- Department of Psychology, State University of New York at Binghamton, Binghamton, New York; and
| | - Vladimir Miskovic
- Department of Psychology, State University of New York at Binghamton, Binghamton, New York; and
- Center for Affective Science, State University of New York at Binghamton, Binghamton, New York
| |
Collapse
|