1
|
Horger MN, Campbell K, Marshall PJ. Electrophysiological responses to digit stimulation in a tactile oddball paradigm. Int J Psychophysiol 2024; 203:112391. [PMID: 38964544 DOI: 10.1016/j.ijpsycho.2024.112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Sensory memory traces are assessed via oddball paradigms in which deviant (infrequent) stimuli are interspersed into a string of standard (frequent) stimuli. Once a memory trace for the standard is established, the deviant spurs a change detection response measured via the resulting event related potential (ERP). Response magnitude is sensitive to the differences in stimuli properties or categories and influenced by individual experience. The goal of the present study was to use ERPs to test the relation between individual digits in the somatosensory cortex and the extent to which digit representations are influenced by individual differences in experience such as independent mobility and playing video games. The present study of 60 undergraduates utilized a passive tactile oddball paradigm, stimulating the thumb, middle, and little fingers. The oddball paradigm was fully matched with each digit serving as the standard and deviant. A temporal principal component analysis (tPCA) identified factors that matched three a priori ERP components: N80, somatosensory mismatch negativity (sMMN), and P300. Analyses confirmed the anticipated differences between standards and deviants and provided some support for prior ERP work suggesting the thumb is in a different functional category than the other digits. Independent control of individual digits (such as the little finger) was positively related to only one aspect of the ERP (P3a) while video game experience was not associated with ERP differences. Cumulatively, these results provide a more nuanced examination of tactile oddball paradigms and how ERP methods can shed light on the relations between different digits.
Collapse
Affiliation(s)
- Melissa N Horger
- University of Massachusetts Amherst, Department of Psychological and Brain Sciences, United States of America.
| | - Kaitlyn Campbell
- Temple University, Department of Psychology and Neuroscience, United States of America
| | - Peter J Marshall
- Temple University, Department of Psychology and Neuroscience, United States of America
| |
Collapse
|
2
|
Grundei M, Schmidt TT, Blankenburg F. A multimodal cortical network of sensory expectation violation revealed by fMRI. Hum Brain Mapp 2023; 44:5871-5891. [PMID: 37721377 PMCID: PMC10619418 DOI: 10.1002/hbm.26482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/04/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
The brain is subjected to multi-modal sensory information in an environment governed by statistical dependencies. Mismatch responses (MMRs), classically recorded with EEG, have provided valuable insights into the brain's processing of regularities and the generation of corresponding sensory predictions. Only few studies allow for comparisons of MMRs across multiple modalities in a simultaneous sensory stream and their corresponding cross-modal context sensitivity remains unknown. Here, we used a tri-modal version of the roving stimulus paradigm in fMRI to elicit MMRs in the auditory, somatosensory and visual modality. Participants (N = 29) were simultaneously presented with sequences of low and high intensity stimuli in each of the three senses while actively observing the tri-modal input stream and occasionally reporting the intensity of the previous stimulus in a prompted modality. The sequences were based on a probabilistic model, defining transition probabilities such that, for each modality, stimuli were more likely to repeat (p = .825) than change (p = .175) and stimulus intensities were equiprobable (p = .5). Moreover, each transition was conditional on the configuration of the other two modalities comprising global (cross-modal) predictive properties of the sequences. We identified a shared mismatch network of modality general inferior frontal and temporo-parietal areas as well as sensory areas, where the connectivity (psychophysiological interaction) between these regions was modulated during mismatch processing. Further, we found deviant responses within the network to be modulated by local stimulus repetition, which suggests highly comparable processing of expectation violation across modalities. Moreover, hierarchically higher regions of the mismatch network in the temporo-parietal area around the intraparietal sulcus were identified to signal cross-modal expectation violation. With the consistency of MMRs across audition, somatosensation and vision, our study provides insights into a shared cortical network of uni- and multi-modal expectation violation in response to sequence regularities.
Collapse
Affiliation(s)
- Miro Grundei
- Neurocomputation and Neuroimaging UnitFreie Universität BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt Universität zu BerlinBerlinGermany
| | | | - Felix Blankenburg
- Neurocomputation and Neuroimaging UnitFreie Universität BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt Universität zu BerlinBerlinGermany
| |
Collapse
|
3
|
Abstract
Perhaps the most recognizable “sensory map” in neuroscience is the somatosensory homunculus. Although the homunculus suggests a direct link between cortical territory and body part, the relationship is actually ambiguous without a decoder that knows this mapping. How the somatosensory system derives a spatial code from an activation in the homunculus is a longstanding mystery we aimed to solve. We propose that touch location is disambiguated using multilateration, a computation used by surveying and global positioning systems to localize objects. We develop a Bayesian formulation of multilateration, which we implement in a neural network to identify its computational signature. We then detect this signature in psychophysical experiments. Our results suggest that multilateration provides the homunculus-to-body mapping necessary for localizing touch. Perhaps the most recognizable sensory map in all of neuroscience is the somatosensory homunculus. Although it seems straightforward, this simple representation belies the complex link between an activation in a somatotopic map and the associated touch location on the body. Any isolated activation is spatially ambiguous without a neural decoder that can read its position within the entire map, but how this is computed by neural networks is unknown. We propose that the somatosensory system implements multilateration, a common computation used by surveying and global positioning systems to localize objects. Specifically, to decode touch location on the body, multilateration estimates the relative distance between the afferent input and the boundaries of a body part (e.g., the joints of a limb). We show that a simple feedforward neural network, which captures several fundamental receptive field properties of cortical somatosensory neurons, can implement a Bayes-optimal multilateral computation. Simulations demonstrated that this decoder produced a pattern of localization variability between two boundaries that was unique to multilateration. Finally, we identify this computational signature of multilateration in actual psychophysical experiments, suggesting that it is a candidate computational mechanism underlying tactile localization.
Collapse
|
4
|
Examining central biases in somatosensory localization: Evidence from brain-damaged individuals. Neuropsychologia 2021; 166:108137. [PMID: 34953796 DOI: 10.1016/j.neuropsychologia.2021.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/12/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022]
Abstract
How does the brain localize touch under conditions of uncertainty caused by brain damage? By testing single cases, previous work found mislocalization of touch toward the center of the hand. We investigated whether such central bias changes as a function of uncertainty in somatosensory system. Fifty-one brain-damaged individuals were presented with a tactile detection task to establish their tactile threshold, and a tactile localization task in which they localized suprathreshold stimuli presented at different locations on the hand. We predicted that with increased somatosensory uncertainty, indexed by higher detection thresholds, participants would more likely to localize the stimuli toward the center of the hand. Consistent with this prediction, participants' localization errors were biased towards the center of the hand and, importantly, this bias increased as detection threshold increased. These findings provide evidence that instead of showing random errors, uncertainty leads to systematic localization errors toward the center of the hand. We discuss these findings under different frameworks as potential mechanisms to explain biases in tactile localization subsequent to brain damage.
Collapse
|
5
|
Xu Q, Ye C, Hämäläinen JA, Ruohonen EM, Li X, Astikainen P. Magnetoencephalography Responses to Unpredictable and Predictable Rare Somatosensory Stimuli in Healthy Adult Humans. Front Hum Neurosci 2021; 15:641273. [PMID: 33935671 PMCID: PMC8079819 DOI: 10.3389/fnhum.2021.641273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Mismatch brain responses to unpredicted rare stimuli are suggested to be a neural indicator of prediction error, but this has rarely been studied in the somatosensory modality. Here, we investigated how the brain responds to unpredictable and predictable rare events. Magnetoencephalography responses were measured in adults frequently presented with somatosensory stimuli (FRE) that were occasionally replaced by two consecutively presented rare stimuli [unpredictable rare stimulus (UR) and predictable rare stimulus (PR); p = 0.1 for each]. The FRE and PR were electrical stimulations administered to either the little finger or the forefinger in a counterbalanced manner between the two conditions. The UR was a simultaneous electrical stimulation to both the forefinger and the little finger (for a smaller subgroup, the UR and FRE were counterbalanced for the stimulus properties). The grand-averaged responses were characterized by two main components: one at 30-100 ms (M55) and the other at 130-230 ms (M150) latency. Source-level analysis was conducted for the primary somatosensory cortex (SI) and the secondary somatosensory cortex (SII). The M55 responses were larger for the UR and PR than for the FRE in both the SI and the SII areas and were larger for the UR than for the PR. For M150, both investigated areas showed increased activity for the UR and the PR compared to the FRE. Interestingly, although the UR was larger in stimulus energy (stimulation of two fingers at the same time) and had a larger prediction error potential than the PR, the M150 responses to these two rare stimuli did not differ in source strength in either the SI or the SII area. The results suggest that M55, but not M150, can possibly be associated with prediction error signals. These findings highlight the need for disentangling prediction error and rareness-related effects in future studies investigating prediction error signals.
Collapse
Affiliation(s)
- Qianru Xu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Chaoxiong Ye
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Jarmo A Hämäläinen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Elisa M Ruohonen
- Human Information Processing Laboratory, Psychology, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Xueqiao Li
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Piia Astikainen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Maggio MG, Naro A, Manuli A, Maresca G, Balletta T, Latella D, De Luca R, Calabrò RS. Effects of Robotic Neurorehabilitation on Body Representation in Individuals with Stroke: A Preliminary Study Focusing on an EEG-Based Approach. Brain Topogr 2021; 34:348-362. [PMID: 33661430 DOI: 10.1007/s10548-021-00825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/15/2021] [Indexed: 11/30/2022]
Abstract
Patients with stroke can experience a drastic change in their body representation (BR), beyond the physical and psychological consequences of stroke itself. Noteworthy, the misperception of BR could affect patients' motor performance even more. Our study aimed at evaluating the usefulness of a robot-aided gait training (RAGT) equipped with augmented visuomotor feedback, expected to target BR (RAGT + VR) in improving lower limb sensorimotor function, gait performance (using Fugl-Meyer Assessment scale for lower extremities, FMA-LE), and BR (using the Body Esteem Scale-BES- and the Body Uneasiness Test-BUT), as compared to RAGT - VR. We also assessed the neurophysiologic basis putatively subtending the BR-based motor function recovery, using EEG recording during RAGT. Forty-five patients with stroke were enrolled in this study and randomized with a 1:2 ratio into either the RAGT + VR (n = 30) or the RAGT - VR (n = 15) group. The former group carried out rehabilitation training with the Lokomat©Pro; whereas, the latter used the Lokomat©Nanos. The rehabilitation protocol consisted of 40 one-hour training sessions. At the end of the training, the RAGT + VR improved in FMA-LE (p < 0.001) and BR (as per BES, (p < 0.001), and BUT, (p < 0.001)) more than the RAGT- did (p < 0.001). These differences in clinical outcomes were paralleled by a greater strengthening of visuomotor connectivity and corticomotor excitability (as detected at the EEG analyses) in the RAGT + VR than in the RAGT - VR (all comparisons p < 0.001), corresponding to an improved motor programming and execution in the former group.We may argue that BR recovery was important concerning functional motor improvement by its integration with the motor control system. This likely occurred through the activation of the Mirror Neuron System secondary to the visuomotor feedback provision, resembling virtual reality. Last, our data further confirm the important role of visuomotor feedback in post-stroke rehabilitation, which can achieve better patient-tailored improvement in functional gait by means of RAGT + VR targeting BR.
Collapse
Affiliation(s)
- Maria Grazia Maggio
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Alfredo Manuli
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Giuseppa Maresca
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Desirèe Latella
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy.
| |
Collapse
|
7
|
Importance of body representations in social-cognitive development: New insights from infant brain science. PROGRESS IN BRAIN RESEARCH 2020; 254:25-48. [PMID: 32859291 DOI: 10.1016/bs.pbr.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
There is significant interest in the ways the human body, both one's own and that of others, is represented in the human brain. In this chapter we focus on body representations in infancy and synthesize relevant findings from both infant cognitive neuroscience and behavioral experiments. We review six experiments in infant neuroscience that have used novel EEG and MEG methods to explore infant neural body maps. We then consider results from behavioral studies of social imitation and examine what they contribute to our understanding of infant body representations at a psychological level. Finally, we interweave both neuroscience and behavioral lines of research to ground new theoretical claims about early infant social cognition. We propose, based on the evidence, that young infants can represent the bodily acts of others and their own bodily acts in commensurate terms. Infants initially recognize correspondences between self and other-they perceive that others are "like me" in terms of bodies and bodily actions. This capacity for registering and using self-other equivalence mappings has far-reaching implications for mechanisms of developmental change. Infants can learn about the affordances and powers of their own body by watching adults' actions and their causal consequences. Reciprocally, infants can enrich their understanding of other people's internal states by taking into account the way they themselves feel when they perform similar acts. The faces, bodies, and matching actions of people are imbued with unique meaning because they can be mapped to the infant's own body and behavior.
Collapse
|
8
|
Shen G, Meltzoff AN, Weiss SM, Marshall PJ. Body representation in infants: Categorical boundaries of body parts as assessed by somatosensory mismatch negativity. Dev Cogn Neurosci 2020; 44:100795. [PMID: 32716850 PMCID: PMC7303979 DOI: 10.1016/j.dcn.2020.100795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/10/2020] [Accepted: 05/05/2020] [Indexed: 11/24/2022] Open
Abstract
There is growing interest in developing and using novel measures to assess how the body is represented in human infancy. Various lines of evidence with adults and older children show that tactile perception is modulated by a high-level representation of the body. For instance, the distance between two points of tactile stimulation is perceived as being greater when these points cross a joint boundary than when they are within a body part, suggesting that the representation of the body is structured with joints acting as categorical boundaries between body parts. Investigating the developmental origins of this categorical effect has been constrained by infants’ inability to verbally report on the properties of tactile stimulation. Here we made novel use of an infant brain measure, the somatosensory mismatch negativity (sMMN), to explore categorical aspects of tactile body processing in infants aged 6–7 months. Amplitude of the sMMN elicited by tactile stimuli across the wrist boundary was significantly greater than for stimuli of equal distance that were within the boundary, suggesting a categorical effect in body processing in infants. We suggest that an early-appearing, structured representation of the body into ‘parts’ may play a role in mapping correspondences between self and other.
Collapse
Affiliation(s)
- Guannan Shen
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA.
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, Seattle, USA
| | - Staci M Weiss
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA
| | - Peter J Marshall
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
9
|
de Haan EH, Dijkerman HC. Somatosensation in the Brain: A Theoretical Re-evaluation and a New Model. Trends Cogn Sci 2020; 24:529-541. [DOI: 10.1016/j.tics.2020.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 04/17/2020] [Indexed: 01/24/2023]
|
10
|
Miller LE, Fabio C, Ravenda V, Bahmad S, Koun E, Salemme R, Luauté J, Bolognini N, Hayward V, Farnè A. Somatosensory Cortex Efficiently Processes Touch Located Beyond the Body. Curr Biol 2019; 29:4276-4283.e5. [PMID: 31813607 DOI: 10.1016/j.cub.2019.10.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 01/24/2023]
Abstract
The extent to which a tool is an extension of its user is a question that has fascinated writers and philosophers for centuries [1]. Despite two decades of research [2-7], it remains unknown how this could be instantiated at the neural level. To this aim, the present study combined behavior, electrophysiology and neuronal modeling to characterize how the human brain could treat a tool like an extended sensory "organ." As with the body, participants localize touches on a hand-held tool with near-perfect accuracy [7]. This behavior is owed to the ability of the somatosensory system to rapidly and efficiently use the tool as a tactile extension of the body. Using electroencephalography (EEG), we found that where a hand-held tool was touched was immediately coded in the neural dynamics of primary somatosensory and posterior parietal cortices of healthy participants. We found similar neural responses in a proprioceptively deafferented patient with spared touch perception, suggesting that location information is extracted from the rod's vibrational patterns. Simulations of mechanoreceptor responses [8] suggested that the speed at which these patterns are processed is highly efficient. A second EEG experiment showed that touches on the tool and arm surfaces were localized by similar stages of cortical processing. Multivariate decoding algorithms and cortical source reconstruction provided further evidence that early limb-based processes were repurposed to map touch on a tool. We propose that an elementary strategy the human brain uses to sense with tools is to recruit primary somatosensory dynamics otherwise devoted to the body.
Collapse
Affiliation(s)
- Luke E Miller
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France.
| | - Cécile Fabio
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France
| | - Valeria Ravenda
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Department of Psychology & Milan Center for Neuroscience-NeuroMi, University of Milano Bicocca, Building U6, 1 Piazza dell'Ateneo Nuovo, Milan 20126, Italy
| | - Salam Bahmad
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France
| | - Eric Koun
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France
| | - Romeo Salemme
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France
| | - Jacques Luauté
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France
| | - Nadia Bolognini
- Department of Psychology & Milan Center for Neuroscience-NeuroMi, University of Milano Bicocca, Building U6, 1 Piazza dell'Ateneo Nuovo, Milan 20126, Italy; Laboratory of Neuropsychology, IRCSS Istituto Auxologico Italiano, 28 Via G. Mercalli, Milan 20122, Italy
| | - Vincent Hayward
- Sorbonne Université, Institut des Systèmes Intelligents et de Robotique (ISIR), 4 Place Jussieu, Paris 75005, France; Centre for the Study of the Senses, School of Advanced Study, University of London, Senate House, Malet Street, London WC1E 7HU, UK
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France; Center for Mind/Brain Sciences, University of Trento, 31 Corso Bettini, Rovereto 38068, Italy
| |
Collapse
|
11
|
Shen G, Meltzoff AN, Marshall PJ. Body representations as indexed by oscillatory EEG activities in the context of tactile novelty processing. Neuropsychologia 2019; 132:107144. [PMID: 31319120 DOI: 10.1016/j.neuropsychologia.2019.107144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/07/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022]
Abstract
Neural oscillatory activities in different frequency bands are known to reflect different cognitive functions. The current study investigates neural oscillations involved in tactile novelty processing, in particular how physically different digits of the hand may be categorized as being more or less similar to one another. Time-frequency analyses were conducted on EEG responses recorded from a somatosensory mismatch protocol involving stimulation of the 1st, 3rd, and 5th digits. The pattern of tactile stimulation leveraged a functional category boundary between the 1st digit (thumb) and the other fingers. This functional category has been hypothesized to derive, in part, from the way that the hand is used to grasp and haptically explore objects. EEG responses to standard stimuli (the 3rd digit, probability of 80%) and two deviant stimuli (1st digit as across-boundary deviant and 5th digit as within-boundary deviant, probability of 10% each) were examined. Analyses of EEG responses examined changes in power as well as phase information. Deviant tactile stimuli evoked significantly greater theta event-related synchronization and greater phase-locking values compared to the corresponding control stimuli. The increase in theta power evoked by the contrast of the 3rd digit and the 1st digit was significantly larger than for the contrast between the 3rd and 5th digits. Desynchronization in the alpha and beta bands was greater for deviant than control stimuli, which may reflect increased local cortical excitation to novel stimuli, modulated by top-down feedback processes as part of a hierarchical novelty detection mechanism. The results are discussed in the context of the growing literature on neural processes involved in the generation and maintenance of body representations.
Collapse
Affiliation(s)
- Guannan Shen
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, USA
| | - Peter J Marshall
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
12
|
Tamè L, Azañón E, Longo MR. A Conceptual Model of Tactile Processing across Body Features of Size, Shape, Side, and Spatial Location. Front Psychol 2019; 10:291. [PMID: 30863333 PMCID: PMC6399380 DOI: 10.3389/fpsyg.2019.00291] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/29/2019] [Indexed: 11/30/2022] Open
Abstract
The processing of touch depends of multiple factors, such as the properties of the skin and type of receptors stimulated, as well as features related to the actual configuration and shape of the body itself. A large body of research has focused on the effect that the nature of the stimuli has on tactile processing. Less research, however, has focused on features beyond the nature of the touch. In this review, we focus on some features related to the body that have been investigated for less time and in a more fragmented way. These include the symmetrical quality of the two sides of the body, the postural configuration of the body, as well as the size and shape of different body parts. We will describe what we consider three key aspects: (1) how and at which stages tactile information is integrated between different parts and sides of the body; (2) how tactile signals are integrated with online and stored postural configurations of the body, regarded as priors; (3) and how tactile signals are integrated with representations of body size and shape. Here, we describe how these different body dimensions affect integration of tactile information as well as guide motor behavior by integrating them in a single model of tactile processing. We review a wide range of neuropsychological, neuroimaging, and neurophysiological data and suggest a revised model of tactile integration on the basis of the one proposed previously by Longo et al.
Collapse
Affiliation(s)
- Luigi Tamè
- Department of Psychological Sciences, Birkbeck University of London, London, United Kingdom.,School of Psychology, University of Kent, Canterbury, United Kingdom
| | - Elena Azañón
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck University of London, London, United Kingdom
| |
Collapse
|
13
|
Shen G, Weiss SM, Meltzoff AN, Marshall PJ. The somatosensory mismatch negativity as a window into body representations in infancy. Int J Psychophysiol 2018; 134:144-150. [PMID: 30385369 DOI: 10.1016/j.ijpsycho.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
Abstract
How the body is represented in the developing brain is a topic of growing interest. The current study takes a novel approach to investigating neural body representations in infants by recording somatosensory mismatch negativity (sMMN) responses elicited by tactile stimulation of different body locations. Recent research in adults has suggested that sMMN amplitude may be influenced by the relative distance between representations of the stimulated body parts in somatosensory cortex. The current study uses a similar paradigm to explore whether the sMMN can be elicited in infants, and to test whether the infant sMMN response is sensitive to the somatotopic organization of somatosensory cortex. Participants were healthy infants (n = 31) aged 6 and 7 months. The protocol leveraged a discontinuity in cortical somatotopic organization, whereby the representations of the neck and the face are separated by representations of the arms, the hands and the shoulder. In a double-deviant oddball protocol, stimulation of the hand (100 trials, 10% probability) and neck (100 trials, 10% probability) was interspersed among repeated stimulation of the face (800 trials, 80% probability). Waveforms showed evidence of an infant sMMN response that was significantly larger for the face/neck contrast than for the face/hand contrast. These results suggest that, for certain combinations of body parts, early pre-attentive tactile discrimination in infants may be influenced by distance between the corresponding cortical representations. The results provide the first evidence that the sMMN can be elicited in infants, and pave the way for further applications of the sMMN in studying body representations in preverbal infants.
Collapse
Affiliation(s)
- Guannan Shen
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA.
| | - Staci M Weiss
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA
| | - Peter J Marshall
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|