1
|
Wang H, Xie K, Lian Z, Cui Y, Chen Y, Zhang J, Xie L, Tsien J, Liu T. Large-Scale Circuitry Interactions Upon Earthquake Experiences Revealed by Recurrent Neural Networks. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2115-2125. [PMID: 30296236 PMCID: PMC6298947 DOI: 10.1109/tnsre.2018.2872919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain dynamics has recently received increasing interest due to its significant importance in basic and clinical neurosciences. However, due to inherent difficulties in both data acquisition and data analysis methods, studies on large-scale brain dynamics of mouse with local field potential (LFP) recording are very rare. In this paper, we did a series of works on modeling large-scale mouse brain dynamic activities responding to fearful earthquake. Based on LFP recording data from 13 brain regions that are closely related to fear learning and memory and the effective Bayesian connectivity change point model, we divided the response time series into four stages: "Before," "Earthquake," "Recovery," and "After." We first reported the changes in power and theta-gamma coupling during stage transitions. Then, a recurrent neural network model was designed to model the functional dynamics in these thirteen brain regions and six frequency bands in response to the fear stimulus. Interestingly, our results showed that the functional brain connectivities in theta and gamma bands exhibited distinct response processes: in theta band, there is a separated-united-separated alternation in whole-brain connectivity and a low-high-low change in connectivity strength; however, gamma bands have a united-separated-united transition and a high-low-high alternation in connectivity pattern and strength. In general, our results offer a novel perspective in studying functional brain dynamics under fearful stimulus and reveal its relationship to the brain's structural connectivity substrates.
Collapse
Affiliation(s)
- Han Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (
| | - Kun Xie
- The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and Technology, Yunnan, China; and Brain and Behavior Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, USA ()
| | - Zhichao Lian
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China ()
| | - Yan Cui
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China )
| | - Yaowu Chen
- Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Hangzhou, China; and Zhejiang University Embedded System Engineering Research Center, Ministry of Education of China, Hangzhou, China ()
| | - Jing Zhang
- Department of Math and Statistics, Georgia State University, Atlanta, GA ()
| | - Li Xie
- State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China ()
| | - Joe Tsien
- Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA ()
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, 30602 USA (phone: (706) 542-3478; )
| |
Collapse
|
2
|
Kortlang S, Mauermann M, Ewert SD. Suprathreshold auditory processing deficits in noise: Effects of hearing loss and age. Hear Res 2016; 331:27-40. [DOI: 10.1016/j.heares.2015.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/15/2022]
|
3
|
Jacobson TK, Howe MD, Schmidt B, Hinman JR, Escabí MA, Markus EJ. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation. J Neurophysiol 2013; 109:1852-65. [PMID: 23303862 DOI: 10.1152/jn.00409.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information.
Collapse
Affiliation(s)
- Tara K Jacobson
- Dept. of Psychology, Behavioral Neuroscience, Univ. of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|