1
|
Vakilna YS, Tang WC, Wheeler BC, Brewer GJ. The Flow of Axonal Information Among Hippocampal Subregions: 1. Feed-Forward and Feedback Network Spatial Dynamics Underpinning Emergent Information Processing. Front Neural Circuits 2021; 15:660837. [PMID: 34512275 PMCID: PMC8430040 DOI: 10.3389/fncir.2021.660837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
The tri-synaptic pathway in the mammalian hippocampus enables cognitive learning and memory. Despite decades of reports on anatomy and physiology, the functional architecture of the hippocampal network remains poorly understood in terms of the dynamics of axonal information transfer between subregions. Information inputs largely flow from the entorhinal cortex (EC) to the dentate gyrus (DG), and then are processed further in the CA3 and CA1 before returning to the EC. Here, we reconstructed elements of the rat hippocampus in a novel device over an electrode array that allowed for monitoring the directionality of individual axons between the subregions. The direction of spike propagation was determined by the transmission delay of the axons recorded between two electrodes in microfluidic tunnels. The majority of axons from the EC to the DG operated in the feed-forward direction, with other regions developing unexpectedly large proportions of feedback axons to balance excitation. Spike timing in axons between each region followed single exponential log-log distributions over two orders of magnitude from 0.01 to 1 s, indicating that conventional descriptors of mean firing rates are misleading assumptions. Most of the spiking occurred in bursts that required two exponentials to fit the distribution of inter-burst intervals. This suggested the presence of up-states and down-states in every region, with the least up-states in the DG to CA3 feed-forward axons and the CA3 subregion. The peaks of the log-normal distributions of intra-burst spike rates were similar in axons between regions with modes around 95 Hz distributed over an order of magnitude. Burst durations were also log-normally distributed around a peak of 88 ms over two orders of magnitude. Despite the diversity of these spike distributions, spike rates from individual axons were often linearly correlated to subregions. These linear relationships enabled the generation of structural connectivity graphs, not possible previously without the directional flow of axonal information. The rich axonal spike dynamics between subregions of the hippocampus reveal both constraints and broad emergent dynamics of hippocampal architecture. Knowledge of this network architecture may enable more efficient computational artificial intelligence (AI) networks, neuromorphic hardware, and stimulation and decoding from cognitive implants.
Collapse
Affiliation(s)
- Yash S Vakilna
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Bruce C Wheeler
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Center for Neuroscience of Learning and Memory, Memory Impairments and Neurological Disorders (MIND) Institute, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Calderini M, Zhang S, Berberian N, Thivierge JP. Optimal Readout of Correlated Neural Activity in a Decision-Making Circuit. Neural Comput 2018; 30:1573-1611. [PMID: 29652584 DOI: 10.1162/neco_a_01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The neural correlates of decision making have been extensively studied with tasks involving a choice between two alternatives that is guided by visual cues. While a large body of work argues for a role of the lateral intraparietal (LIP) region of cortex in these tasks, this role may be confounded by the interaction between LIP and other regions, including medial temporal (MT) cortex. Here, we describe a simplified linear model of decision making that is adapted to two tasks: a motion discrimination and a categorization task. We show that the distinct contribution of MT and LIP may indeed be confounded in these tasks. In particular, we argue that the motion discrimination task relies on a straightforward visuomotor mapping, which leads to redundant information between MT and LIP. The categorization task requires a more complex mapping between visual information and decision behavior, and therefore does not lead to redundancy between MT and LIP. Going further, the model predicts that noise correlations within LIP should be greater in the categorization compared to the motion discrimination task due to the presence of shared inputs from MT. The impact of these correlations on task performance is examined by analytically deriving error estimates of an optimal linear readout for shared and unique inputs. Taken together, results clarify the contribution of MT and LIP to decision making and help characterize the role of noise correlations in these regions.
Collapse
Affiliation(s)
- Matias Calderini
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Sophie Zhang
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nareg Berberian
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Philippe Thivierge
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Droste F, Lindner B. Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise. J Comput Neurosci 2017; 43:81-91. [PMID: 28585050 DOI: 10.1007/s10827-017-0649-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/14/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022]
Abstract
A neuron receives input from other neurons via electrical pulses, so-called spikes. The pulse-like nature of the input is frequently neglected in analytical studies; instead, the input is usually approximated to be Gaussian. Recent experimental studies have shown, however, that an assumption underlying this approximation is often not met: Individual presynaptic spikes can have a significant effect on a neuron's dynamics. It is thus desirable to explicitly account for the pulse-like nature of neural input, i.e. consider neurons driven by a shot noise - a long-standing problem that is mathematically challenging. In this work, we exploit the fact that excitatory shot noise with exponentially distributed weights can be obtained as a limit case of dichotomous noise, a Markovian two-state process. This allows us to obtain novel exact expressions for the stationary voltage density and the moments of the interspike-interval density of general integrate-and-fire neurons driven by such an input. For the special case of leaky integrate-and-fire neurons, we also give expressions for the power spectrum and the linear response to a signal. We verify and illustrate our expressions by comparison to simulations of leaky-, quadratic- and exponential integrate-and-fire neurons.
Collapse
Affiliation(s)
- Felix Droste
- Bernstein Center for Computational Neuroscience, Haus 2, Philippstrasse 13, 10115, Berlin, Germany. .,Department of Physics, Humboldt Universität zu Berlin, Newtonstr 15, 12489, Berlin, Germany.
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience, Haus 2, Philippstrasse 13, 10115, Berlin, Germany.,Department of Physics, Humboldt Universität zu Berlin, Newtonstr 15, 12489, Berlin, Germany
| |
Collapse
|
4
|
Wagatsuma N, von der Heydt R, Niebur E. Spike synchrony generated by modulatory common input through NMDA-type synapses. J Neurophysiol 2016; 116:1418-33. [PMID: 27486111 DOI: 10.1152/jn.01142.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/30/2016] [Indexed: 11/22/2022] Open
Abstract
Common excitatory input to neurons increases their firing rates and the strength of the spike correlation (synchrony) between them. Little is known, however, about the synchronizing effects of modulatory common input. Here, we show that modulatory common input with the slow synaptic kinetics of N-methyl-d-aspartate (NMDA) receptors enhances firing rates and also produces synchrony. Tight synchrony (correlations on the order of milliseconds) always increases with modulatory strength. Unexpectedly, the relationship between strength of modulation and strength of loose synchrony (tens of milliseconds) is not monotonic: The strongest loose synchrony is obtained for intermediate modulatory amplitudes. This finding explains recent neurophysiological results showing that in cortical areas V1 and V2, presumed modulatory top-down input due to contour grouping increases (loose and tight) synchrony but that additional modulatory input due to top-down attention does not change tight synchrony and actually decreases loose synchrony. These neurophysiological findings are understood from our model of integrate-and-fire neurons under the assumption that contour grouping as well as attention lead to additive modulatory common input through NMDA-type synapses. In contrast, circuits with common projections through model α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors did not exhibit the paradoxical decrease of synchrony with increased input. Our results suggest that NMDA receptors play a critical role in top-down response modulation in the visual cortex.
Collapse
Affiliation(s)
- Nobuhiko Wagatsuma
- School of Science and Engineering, Tokyo Denki University, Saitama, Japan; and Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland
| | | | - Ernst Niebur
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
5
|
Doiron B, Litwin-Kumar A, Rosenbaum R, Ocker GK, Josić K. The mechanics of state-dependent neural correlations. Nat Neurosci 2016; 19:383-93. [PMID: 26906505 DOI: 10.1038/nn.4242] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
Simultaneous recordings from large neural populations are becoming increasingly common. An important feature of population activity is the trial-to-trial correlated fluctuation of spike train outputs from recorded neuron pairs. Similar to the firing rate of single neurons, correlated activity can be modulated by a number of factors, from changes in arousal and attentional state to learning and task engagement. However, the physiological mechanisms that underlie these changes are not fully understood. We review recent theoretical results that identify three separate mechanisms that modulate spike train correlations: changes in input correlations, internal fluctuations and the transfer function of single neurons. We first examine these mechanisms in feedforward pathways and then show how the same approach can explain the modulation of correlations in recurrent networks. Such mechanistic constraints on the modulation of population activity will be important in statistical analyses of high-dimensional neural data.
Collapse
Affiliation(s)
- Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA
| | - Ashok Litwin-Kumar
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA.,Center for Theoretical Neuroscience, Columbia University, New York, New York, USA
| | - Robert Rosenbaum
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA.,Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, USA.,Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, Indiana, USA
| | - Gabriel K Ocker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA.,Allen Institute for Brain Science, Seattle, Washington, USA
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas, USA.,Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Chan HK, Yang DP, Zhou C, Nowotny T. Burst Firing Enhances Neural Output Correlation. Front Comput Neurosci 2016; 10:42. [PMID: 27242499 PMCID: PMC4860405 DOI: 10.3389/fncom.2016.00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
Neurons communicate and transmit information predominantly through spikes. Given that experimentally observed neural spike trains in a variety of brain areas can be highly correlated, it is important to investigate how neurons process correlated inputs. Most previous work in this area studied the problem of correlation transfer analytically by making significant simplifications on neural dynamics. Temporal correlation between inputs that arises from synaptic filtering, for instance, is often ignored when assuming that an input spike can at most generate one output spike. Through numerical simulations of a pair of leaky integrate-and-fire (LIF) neurons receiving correlated inputs, we demonstrate that neurons in the presence of synaptic filtering by slow synapses exhibit strong output correlations. We then show that burst firing plays a central role in enhancing output correlations, which can explain the above-mentioned observation because synaptic filtering induces bursting. The observed changes of correlations are mostly on a long time scale. Our results suggest that other features affecting the prevalence of neural burst firing in biological neurons, e.g., adaptive spiking mechanisms, may play an important role in modulating the overall level of correlations in neural networks.
Collapse
Affiliation(s)
- Ho Ka Chan
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of SussexBrighton, UK
- Department of Physics, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
- Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
| | - Dong-Ping Yang
- Department of Physics, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
- Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
- School of Physics, University of SydneyNew South Wales, Sydney, NSW, Australia
| | - Changsong Zhou
- Department of Physics, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
- Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
| | - Thomas Nowotny
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of SussexBrighton, UK
| |
Collapse
|
7
|
Han HG, Zhang L, Hou Y, Qiao JF. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:402-415. [PMID: 26336152 DOI: 10.1109/tnnls.2015.2465174] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.
Collapse
|
8
|
Bhardwaj M, Carroll S, Ma WJ, Josić K. Visual Decisions in the Presence of Measurement and Stimulus Correlations. Neural Comput 2015; 27:2318-53. [PMID: 26378875 DOI: 10.1162/neco_a_00778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Humans and other animals base their decisions on noisy sensory input. Much work has been devoted to understanding the computations that underlie such decisions. The problem has been studied in a variety of tasks and with stimuli of differing complexity. However, how the statistical structure of stimuli, along with perceptual measurement noise, affects perceptual judgments is not well understood. Here we examine how correlations between the components of a stimulus-stimulus correlations-together with correlations in sensory noise, affect decision making. As an example, we consider the task of detecting the presence of a single or multiple targets among distractors. We assume that both the distractors and the observer's measurements of the stimuli are correlated. The computations of an optimal observer in this task are nontrivial yet can be analyzed and understood intuitively. We find that when distractors are strongly correlated, measurement correlations can have a strong impact on performance. When distractor correlations are weak, measurement correlations have little impact unless the number of stimuli is large. Correlations in neural responses to structured stimuli can therefore have a strong impact on perceptual judgments.
Collapse
Affiliation(s)
- Manisha Bhardwaj
- Department of Mathematics, University of Houston, Houston, TX 77004, U.S.A.
| | - Samuel Carroll
- Department of Mathematics, University of Houston, Houston, TX 77004, U.S.A.
| | - Wei Ji Ma
- Center for Neural Science and Department of Psychology, New York University, NY 10003, U.S.A.
| | - Krešimir Josić
- Department of Biology and Biochemistry and Department of Mathematics, University of Houston, Houston, TX 77004, U.S.A.
| |
Collapse
|
9
|
Role of input correlations in shaping the variability and noise correlations of evoked activity in the neocortex. J Neurosci 2015; 35:8611-25. [PMID: 26041927 DOI: 10.1523/jneurosci.4536-14.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent analysis of evoked activity recorded across different brain regions and tasks revealed a marked decrease in noise correlations and trial-by-trial variability. Given the importance of correlations and variability for information processing within the rate coding paradigm, several mechanisms have been proposed to explain the reduction in these quantities despite an increase in firing rates. These models suggest that anatomical clusters and/or tightly balanced excitation-inhibition can generate intrinsic network dynamics that may exhibit a reduction in noise correlations and trial-by-trial variability when perturbed by an external input. Such mechanisms based on the recurrent feedback crucially ignore the contribution of feedforward input to the statistics of the evoked activity. Therefore, we investigated how statistical properties of the feedforward input shape the statistics of the evoked activity. Specifically, we focused on the effect of input correlation structure on the noise correlations and trial-by-trial variability. We show that the ability of neurons to transfer the input firing rate, correlation, and variability to the output depends on the correlations within the presynaptic pool of a neuron, and that an input with even weak within-correlations can be sufficient to reduce noise correlations and trial-by-trial variability, without requiring any specific recurrent connectivity structure. In general, depending on the ongoing activity state, feedforward input could either increase or decrease noise correlation and trial-by-trial variability. Thus, we propose that evoked activity statistics are jointly determined by the feedforward and feedback inputs.
Collapse
|
10
|
Yatsenko D, Josić K, Ecker AS, Froudarakis E, Cotton RJ, Tolias AS. Improved estimation and interpretation of correlations in neural circuits. PLoS Comput Biol 2015; 11:e1004083. [PMID: 25826696 PMCID: PMC4380429 DOI: 10.1371/journal.pcbi.1004083] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022] Open
Abstract
Ambitious projects aim to record the activity of ever larger and denser neuronal populations in vivo. Correlations in neural activity measured in such recordings can reveal important aspects of neural circuit organization. However, estimating and interpreting large correlation matrices is statistically challenging. Estimation can be improved by regularization, i.e. by imposing a structure on the estimate. The amount of improvement depends on how closely the assumed structure represents dependencies in the data. Therefore, the selection of the most efficient correlation matrix estimator for a given neural circuit must be determined empirically. Importantly, the identity and structure of the most efficient estimator informs about the types of dominant dependencies governing the system. We sought statistically efficient estimators of neural correlation matrices in recordings from large, dense groups of cortical neurons. Using fast 3D random-access laser scanning microscopy of calcium signals, we recorded the activity of nearly every neuron in volumes 200 μm wide and 100 μm deep (150-350 cells) in mouse visual cortex. We hypothesized that in these densely sampled recordings, the correlation matrix should be best modeled as the combination of a sparse graph of pairwise partial correlations representing local interactions and a low-rank component representing common fluctuations and external inputs. Indeed, in cross-validation tests, the covariance matrix estimator with this structure consistently outperformed other regularized estimators. The sparse component of the estimate defined a graph of interactions. These interactions reflected the physical distances and orientation tuning properties of cells: The density of positive 'excitatory' interactions decreased rapidly with geometric distances and with differences in orientation preference whereas negative 'inhibitory' interactions were less selective. Because of its superior performance, this 'sparse+latent' estimator likely provides a more physiologically relevant representation of the functional connectivity in densely sampled recordings than the sample correlation matrix.
Collapse
Affiliation(s)
- Dimitri Yatsenko
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Krešimir Josić
- Department of Mathematics and Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Alexander S. Ecker
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Werner Reichardt Center for Integrative Neuroscience and Institute for Theoretical Physics, University of Tübingen, Germany
- Bernstein Center for Computational Neuroscience, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - R. James Cotton
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andreas S. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Computational and Applied Mathematics, Rice University, Houston, Texas, United States of America
| |
Collapse
|
11
|
Moreno-Bote R. Poisson-like spiking in circuits with probabilistic synapses. PLoS Comput Biol 2014; 10:e1003522. [PMID: 25032705 PMCID: PMC4102400 DOI: 10.1371/journal.pcbi.1003522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. Neurons in cortex fire irregularly and in an irreproducible way under repeated presentations of an identical stimulus. Where is this spiking variability coming from? One unexplored possibility is that cortical variability originates from the amplification of a particular type of noise that is present throughout cortex: synaptic failures. In this paper we found that probabilistic synapses are sufficient to lead to cortical-like firing for several orders of magnitude in firing rate. Moreover, the resulting variability displays the property that variance of the spike counts is proportional to the mean for every cell in the network, the so-called Poisson-like firing, a well-known property of sensory cortical firing responses. We finally argue that far from being harmful, probabilistic synapses allow networks to sample neuronal states and sustain probabilistic population codes. Therefore, synaptic noise is not only a robust mechanism for the type of variability found in cortex, but it also provides cortical circuits with computational properties to perform probabilistic inference under noisy and ambiguous stimulation.
Collapse
Affiliation(s)
- Rubén Moreno-Bote
- Research Unit, Parc Sanitari Sant Joan de Déu and Universitat de Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Esplugues de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Yim MY, Kumar A, Aertsen A, Rotter S. Impact of correlated inputs to neurons: modeling observations from in vivo intracellular recordings. J Comput Neurosci 2014; 37:293-304. [PMID: 24789376 PMCID: PMC4159600 DOI: 10.1007/s10827-014-0502-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/24/2022]
Abstract
In vivo recordings in rat somatosensory cortex suggest that excitatory and inhibitory inputs are often correlated during spontaneous and sensory-evoked activity. Using a computational approach, we study how the interplay of input correlations and timing observed in experiments controls the spiking probability of single neurons. Several correlation-based mechanisms are identified, which can effectively switch a neuron on and off. In addition, we investigate the transfer of input correlation to output correlation in pairs of neurons, at the spike train and the membrane potential levels, by considering spike-driving and non-spike-driving inputs separately. In particular, we propose a plausible explanation for the in vivo finding that membrane potentials in neighboring neurons are correlated, but the spike-triggered averages of membrane potentials preceding a spike are not: Neighboring neurons possibly receive an ongoing bombardment of correlated subthreshold background inputs, and occasionally uncorrelated spike-driving inputs.
Collapse
Affiliation(s)
- Man Yi Yim
- Department of Mathematics, University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | |
Collapse
|
13
|
The correlation structure of local neuronal networks intrinsically results from recurrent dynamics. PLoS Comput Biol 2014; 10:e1003428. [PMID: 24453955 PMCID: PMC3894226 DOI: 10.1371/journal.pcbi.1003428] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Correlated neuronal activity is a natural consequence of network connectivity and shared inputs to pairs of neurons, but the task-dependent modulation of correlations in relation to behavior also hints at a functional role. Correlations influence the gain of postsynaptic neurons, the amount of information encoded in the population activity and decoded by readout neurons, and synaptic plasticity. Further, it affects the power and spatial reach of extracellular signals like the local-field potential. A theory of correlated neuronal activity accounting for recurrent connectivity as well as fluctuating external sources is currently lacking. In particular, it is unclear how the recently found mechanism of active decorrelation by negative feedback on the population level affects the network response to externally applied correlated stimuli. Here, we present such an extension of the theory of correlations in stochastic binary networks. We show that (1) for homogeneous external input, the structure of correlations is mainly determined by the local recurrent connectivity, (2) homogeneous external inputs provide an additive, unspecific contribution to the correlations, (3) inhibitory feedback effectively decorrelates neuronal activity, even if neurons receive identical external inputs, and (4) identical synaptic input statistics to excitatory and to inhibitory cells increases intrinsically generated fluctuations and pairwise correlations. We further demonstrate how the accuracy of mean-field predictions can be improved by self-consistently including correlations. As a byproduct, we show that the cancellation of correlations between the summed inputs to pairs of neurons does not originate from the fast tracking of external input, but from the suppression of fluctuations on the population level by the local network. This suppression is a necessary constraint, but not sufficient to determine the structure of correlations; specifically, the structure observed at finite network size differs from the prediction based on perfect tracking, even though perfect tracking implies suppression of population fluctuations. The co-occurrence of action potentials of pairs of neurons within short time intervals has been known for a long time. Such synchronous events can appear time-locked to the behavior of an animal, and also theoretical considerations argue for a functional role of synchrony. Early theoretical work tried to explain correlated activity by neurons transmitting common fluctuations due to shared inputs. This, however, overestimates correlations. Recently, the recurrent connectivity of cortical networks was shown responsible for the observed low baseline correlations. Two different explanations were given: One argues that excitatory and inhibitory population activities closely follow the external inputs to the network, so that their effects on a pair of cells mutually cancel. Another explanation relies on negative recurrent feedback to suppress fluctuations in the population activity, equivalent to small correlations. In a biological neuronal network one expects both, external inputs and recurrence, to affect correlated activity. The present work extends the theoretical framework of correlations to include both contributions and explains their qualitative differences. Moreover, the study shows that the arguments of fast tracking and recurrent feedback are not equivalent, only the latter correctly predicts the cell-type specific correlations.
Collapse
|
14
|
Grytskyy D, Tetzlaff T, Diesmann M, Helias M. A unified view on weakly correlated recurrent networks. Front Comput Neurosci 2013; 7:131. [PMID: 24151463 PMCID: PMC3799216 DOI: 10.3389/fncom.2013.00131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/10/2013] [Indexed: 11/13/2022] Open
Abstract
The diversity of neuron models used in contemporary theoretical neuroscience to investigate specific properties of covariances in the spiking activity raises the question how these models relate to each other. In particular it is hard to distinguish between generic properties of covariances and peculiarities due to the abstracted model. Here we present a unified view on pairwise covariances in recurrent networks in the irregular regime. We consider the binary neuron model, the leaky integrate-and-fire (LIF) model, and the Hawkes process. We show that linear approximation maps each of these models to either of two classes of linear rate models (LRM), including the Ornstein-Uhlenbeck process (OUP) as a special case. The distinction between both classes is the location of additive noise in the rate dynamics, which is located on the output side for spiking models and on the input side for the binary model. Both classes allow closed form solutions for the covariance. For output noise it separates into an echo term and a term due to correlated input. The unified framework enables us to transfer results between models. For example, we generalize the binary model and the Hawkes process to the situation with synaptic conduction delays and simplify derivations for established results. Our approach is applicable to general network structures and suitable for the calculation of population averages. The derived averages are exact for fixed out-degree network architectures and approximate for fixed in-degree. We demonstrate how taking into account fluctuations in the linearization procedure increases the accuracy of the effective theory and we explain the class dependent differences between covariances in the time and the frequency domain. Finally we show that the oscillatory instability emerging in networks of LIF models with delayed inhibitory feedback is a model-invariant feature: the same structure of poles in the complex frequency plane determines the population power spectra.
Collapse
Affiliation(s)
- Dmytro Grytskyy
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre and JARA Jülich, Germany
| | | | | | | |
Collapse
|
15
|
Bolhasani E, Azizi Y, Valizadeh A. Direct connections assist neurons to detect correlation in small amplitude noises. Front Comput Neurosci 2013; 7:108. [PMID: 23966940 PMCID: PMC3743174 DOI: 10.3389/fncom.2013.00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/24/2013] [Indexed: 11/13/2022] Open
Abstract
We address a question on the effect of common stochastic inputs on the correlation of the spike trains of two neurons when they are coupled through direct connections. We show that the change in the correlation of small amplitude stochastic inputs can be better detected when the neurons are connected by direct excitatory couplings. Depending on whether intrinsic firing rate of the neurons is identical or slightly different, symmetric or asymmetric connections can increase the sensitivity of the system to the input correlation by changing the mean slope of the correlation transfer function over a given range of input correlation. In either case, there is also an optimum value for synaptic strength which maximizes the sensitivity of the system to the changes in input correlation.
Collapse
Affiliation(s)
- E Bolhasani
- Department of Physics, Institute for Advanced Studies in Basic Sciences Zanjan, Iran
| | | | | |
Collapse
|
16
|
Schultze-Kraft M, Diesmann M, Grün S, Helias M. Noise suppression and surplus synchrony by coincidence detection. PLoS Comput Biol 2013; 9:e1002904. [PMID: 23592953 PMCID: PMC3617020 DOI: 10.1371/journal.pcbi.1002904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/25/2012] [Indexed: 12/04/2022] Open
Abstract
The functional significance of correlations between action potentials of neurons is still a matter of vivid debate. In particular, it is presently unclear how much synchrony is caused by afferent synchronized events and how much is intrinsic due to the connectivity structure of cortex. The available analytical approaches based on the diffusion approximation do not allow to model spike synchrony, preventing a thorough analysis. Here we theoretically investigate to what extent common synaptic afferents and synchronized inputs each contribute to correlated spiking on a fine temporal scale between pairs of neurons. We employ direct simulation and extend earlier analytical methods based on the diffusion approximation to pulse-coupling, allowing us to introduce precisely timed correlations in the spiking activity of the synaptic afferents. We investigate the transmission of correlated synaptic input currents by pairs of integrate-and-fire model neurons, so that the same input covariance can be realized by common inputs or by spiking synchrony. We identify two distinct regimes: In the limit of low correlation linear perturbation theory accurately determines the correlation transmission coefficient, which is typically smaller than unity, but increases sensitively even for weakly synchronous inputs. In the limit of high input correlation, in the presence of synchrony, a qualitatively new picture arises. As the non-linear neuronal response becomes dominant, the output correlation becomes higher than the total correlation in the input. This transmission coefficient larger unity is a direct consequence of non-linear neural processing in the presence of noise, elucidating how synchrony-coded signals benefit from these generic properties present in cortical networks. Whether spike timing conveys information in cortical networks or whether the firing rate alone is sufficient is a matter of controversial debate, touching the fundamental question of how the brain processes, stores, and conveys information. If the firing rate alone is the decisive signal used in the brain, correlations between action potentials are just an epiphenomenon of cortical connectivity, where pairs of neurons share a considerable fraction of common afferents. Due to membrane leakage, small synaptic amplitudes and the non-linear threshold, nerve cells exhibit lossy transmission of correlation originating from shared synaptic inputs. However, the membrane potential of cortical neurons often displays non-Gaussian fluctuations, caused by synchronized synaptic inputs. Moreover, synchronously active neurons have been found to reflect behavior in primates. In this work we therefore contrast the transmission of correlation due to shared afferents and due to synchronously arriving synaptic impulses for leaky neuron models. We not only find that neurons are highly sensitive to synchronous afferents, but that they can suppress noise on signals transmitted by synchrony, a computational advantage over rate signals.
Collapse
|
17
|
Rosenbaum R, Rubin JE, Doiron B. Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations. J Neurophysiol 2012; 109:475-84. [PMID: 23114215 DOI: 10.1152/jn.00733.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Correlated neuronal activity is an important feature in many neural codes, a neural correlate of a variety of cognitive states, as well as a signature of several disease states in the nervous system. The cellular and circuit mechanics of neural correlations is a vibrant area of research. Synapses throughout the cortex exhibit a form of short-term depression where increased presynaptic firing rates deplete neurotransmitter vesicles, which transiently reduces synaptic efficacy. The release and recovery of these vesicles are inherently stochastic, and this stochasticity introduces variability into the conductance elicited by depressing synapses. The impact of spiking and subthreshold membrane dynamics on the transfer of neuronal correlations has been studied intensively, but an investigation of the impact of short-term synaptic depression and stochastic vesicle dynamics on correlation transfer is lacking. We find that short-term synaptic depression and stochastic vesicle dynamics can substantially reduce correlations, shape the timescale over which these correlations occur, and alter the dependence of spiking correlations on firing rate. Our results show that short-term depression and stochastic vesicle dynamics need to be taken into account when modeling correlations in neuronal populations.
Collapse
Affiliation(s)
- Robert Rosenbaum
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | |
Collapse
|
18
|
Litwin-Kumar A, Chacron MJ, Doiron B. The spatial structure of stimuli shapes the timescale of correlations in population spiking activity. PLoS Comput Biol 2012; 8:e1002667. [PMID: 23028274 PMCID: PMC3441501 DOI: 10.1371/journal.pcbi.1002667] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/12/2012] [Indexed: 11/18/2022] Open
Abstract
Throughout the central nervous system, the timescale over which pairs of neural spike trains are correlated is shaped by stimulus structure and behavioral context. Such shaping is thought to underlie important changes in the neural code, but the neural circuitry responsible is largely unknown. In this study, we investigate a stimulus-induced shaping of pairwise spike train correlations in the electrosensory system of weakly electric fish. Simultaneous single unit recordings of principal electrosensory cells show that an increase in the spatial extent of stimuli increases correlations at short () timescales while simultaneously reducing correlations at long () timescales. A spiking network model of the first two stages of electrosensory processing replicates this correlation shaping, under the assumptions that spatially broad stimuli both saturate feedforward afferent input and recruit an open-loop inhibitory feedback pathway. Our model predictions are experimentally verified using both the natural heterogeneity of the electrosensory system and pharmacological blockade of descending feedback projections. For weak stimuli, linear response analysis of the spiking network shows that the reduction of long timescale correlation for spatially broad stimuli is similar to correlation cancellation mechanisms previously suggested to be operative in mammalian cortex. The mechanism for correlation shaping supports population-level filtering of irrelevant distractor stimuli, thereby enhancing the population response to relevant prey and conspecific communication inputs. The size of a stimulus that is sensed by the nervous system can control the activity of neurons in sensory areas. How neural wiring supports this dependence remains an open question. We explore this general phenomenon using weakly electric fish, which possess a sensory system that detects electric field modulations produced by the surrounding environment. In particular, these animals' nervous systems are tuned to detect the difference between spatially compact prey inputs and spatially broad communication calls from other fish. In experiment, we discover that these two classes of stimuli differentially control the synchrony between pairs of electrosensory neurons. Using a computational model, we predict that this modulation is related to feedforward and feedback neural pathways in the electrosensory system, and we verify this prediction with experiments. This architecture prevents low frequency distractor stimuli, such as the animal's own tail motion, from driving neural population responses. With our model, we demonstrate how a common neural architecture enables a population-level code for behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Ashok Litwin-Kumar
- Program for Neural Computation, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (ALK); (BD)
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Center for Applied Mathematics in Biology and Medicine, McGill University, Montréal, Québec, Canada
| | - Brent Doiron
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (ALK); (BD)
| |
Collapse
|
19
|
Tetzlaff T, Helias M, Einevoll GT, Diesmann M. Decorrelation of neural-network activity by inhibitory feedback. PLoS Comput Biol 2012; 8:e1002596. [PMID: 23133368 PMCID: PMC3487539 DOI: 10.1371/journal.pcbi.1002596] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/20/2012] [Indexed: 11/19/2022] Open
Abstract
Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II).
Collapse
Affiliation(s)
- Tom Tetzlaff
- Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Jülich, Jülich, Germany.
| | | | | | | |
Collapse
|
20
|
Reimer ICG, Staude B, Ehm W, Rotter S. Modeling and analyzing higher-order correlations in non-Poissonian spike trains. J Neurosci Methods 2012; 208:18-33. [PMID: 22561088 DOI: 10.1016/j.jneumeth.2012.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022]
Abstract
Measuring pairwise and higher-order spike correlations is crucial for studying their potential impact on neuronal information processing. In order to avoid misinterpretation of results, the tools used for data analysis need to be carefully calibrated with respect to their sensitivity and robustness. This, in turn, requires surrogate data with statistical properties common to experimental spike trains. Here, we present a novel method to generate correlated non-Poissonian spike trains and study the impact of single-neuron spike statistics on the inference of higher-order correlations. Our method to mimic cooperative neuronal spike activity allows the realization of a large variety of renewal processes with controlled higher-order correlation structure. Based on surrogate data obtained by this procedure we investigate the robustness of the recently proposed method empirical de-Poissonization (Ehm et al., 2007). It assumes Poissonian spiking, which is common also for many other estimation techniques. We observe that some degree of deviation from this assumption can generally be tolerated, that the results are more reliable for small analysis bins, and that the degree of misestimation depends on the detailed spike statistics. As a consequence of these findings we finally propose a strategy to assess the reliability of results for experimental data.
Collapse
Affiliation(s)
- Imke C G Reimer
- Bernstein Center Freiburg and Faculty of Biology, Albert-Ludwig University, Freiburg, Germany
| | | | | | | |
Collapse
|
21
|
Barreiro AK, Thilo EL, Shea-Brown E. A-current and type I/type II transition determine collective spiking from common input. J Neurophysiol 2012; 108:1631-45. [PMID: 22673330 DOI: 10.1152/jn.00928.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms and impact of correlated, or synchronous, firing among pairs and groups of neurons are under intense investigation throughout the nervous system. A ubiquitous circuit feature that can give rise to such correlations consists of overlapping, or common, inputs to pairs and populations of cells, leading to common spike train responses. Here, we use computational tools to study how the transfer of common input currents into common spike outputs is modulated by the physiology of the recipient cells. We focus on a key conductance, g(A), for the A-type potassium current, which drives neurons between "type II" excitability (low g(A)), and "type I" excitability (high g(A)). Regardless of g(A), cells transform common input fluctuations into a tendency to spike nearly simultaneously. However, this process is more pronounced at low g(A) values. Thus, for a given level of common input, type II neurons produce spikes that are relatively more correlated over short time scales. Over long time scales, the trend reverses, with type II neurons producing relatively less correlated spike trains. This is because these cells' increased tendency for simultaneous spiking is balanced by an anticorrelation of spikes at larger time lags. These findings extend and interpret prior findings for phase oscillators to conductance-based neuron models that cover both oscillatory (superthreshold) and subthreshold firing regimes. We demonstrate a novel implication for neural signal processing: downstream cells with long time constants are selectively driven by type I cell populations upstream and those with short time constants by type II cell populations. Our results are established via high-throughput numerical simulations and explained via the cells' filtering properties and nonlinear dynamics.
Collapse
Affiliation(s)
- Andrea K Barreiro
- Dept. of Applied Mathematics and Program in Neurobiology and Behavior, Univ. of Washington, Box 352420, Seattle, WA 98195, USA
| | | | | |
Collapse
|
22
|
Ly C, Middleton JW, Doiron B. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex. Front Comput Neurosci 2012; 6:7. [PMID: 22408615 PMCID: PMC3297366 DOI: 10.3389/fncom.2012.00007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/24/2012] [Indexed: 11/13/2022] Open
Abstract
The responses of cortical neurons are highly variable across repeated presentations of a stimulus. Understanding this variability is critical for theories of both sensory and motor processing, since response variance affects the accuracy of neural codes. Despite this influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of population responses remain poorly understood. We used a combination of experimental and computational techniques to uncover the mechanisms underlying response variability of populations of pyramidal (E) cells in layer 2/3 of rat whisker barrel cortex. Spike trains recorded from pairs of E-cells during either spontaneous activity or whisker deflected responses show similarly low levels of spiking co-variability, despite large differences in network activation between the two states. We developed network models that show how spike threshold non-linearities dilute E-cell spiking co-variability during spontaneous activity and low velocity whisker deflections. In contrast, during high velocity whisker deflections, cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise co-variability. Thus, the combination of these two mechanisms ensure low E-cell population variability over a wide range of whisker deflection velocities. Finally, we show how this active decorrelation of population variability leads to a drastic increase in the population information about whisker velocity. The prevalence of spiking non-linearities and feedforward inhibition in the nervous system suggests that the mechanisms for low network variability presented in our study may generalize throughout the brain.
Collapse
Affiliation(s)
- Cheng Ly
- Department of Mathematics, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
23
|
Reitsma P, Doiron B, Rubin J. Correlation transfer from basal ganglia to thalamus in Parkinson's disease. Front Comput Neurosci 2011; 5:58. [PMID: 22355287 PMCID: PMC3280480 DOI: 10.3389/fncom.2011.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/16/2011] [Indexed: 11/13/2022] Open
Abstract
Spike trains from neurons in the basal ganglia of parkinsonian primates show increased pairwise correlations, oscillatory activity, and burst rate compared to those from neurons recorded during normal brain activity. However, it is not known how these changes affect the behavior of downstream thalamic neurons. To understand how patterns of basal ganglia population activity may affect thalamic spike statistics, we study pairs of model thalamocortical (TC) relay neurons receiving correlated inhibitory input from the internal segment of the globus pallidus (GPi), a primary output nucleus of the basal ganglia. We observe that the strength of correlations of TC neuron spike trains increases with the GPi correlation level, and bursty firing patterns such as those seen in the parkinsonian GPi allow for stronger transfer of correlations than do firing patterns found under normal conditions. We also show that the T-current in the TC neurons does not significantly affect correlation transfer, despite its pronounced effects on spiking. Oscillatory firing patterns in GPi are shown to affect the timescale at which correlations are best transferred through the system. To explain this last result, we analytically compute the spike count correlation coefficient for oscillatory cases in a reduced point process model. Our analysis indicates that the dependence of the timescale of correlation transfer is robust to different levels of input spike and rate correlations and arises due to differences in instantaneous spike correlations, even when the long timescale rhythmic modulations of neurons are identical. Overall, these results show that parkinsonian firing patterns in GPi do affect the transfer of correlations to the thalamus.
Collapse
Affiliation(s)
- Pamela Reitsma
- Department of Mathematics, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
24
|
Rosenbaum R, Josić K. Membrane potential and spike train statistics depend distinctly on input statistics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051902. [PMID: 22181439 DOI: 10.1103/physreve.84.051902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/29/2011] [Indexed: 05/31/2023]
Abstract
A description of how the activity of a population of neurons reflects the structure of its inputs is essential for understanding neural coding. Many studies have examined how inputs determine spiking statistics, while comparatively little is known about membrane potentials. We examine how membrane potential statistics are related to input and spiking statistics. Surprisingly, firing rates and membrane potentials are sensitive to input current modulations in distinct regimes. Additionally, the correlation between the membrane potentials of two uncoupled cells and the correlation between their spike trains reflect input correlations in distinct regimes. Our predictions are experimentally testable, provide insight into the filtering properties of neurons, and indicate that care needs to be taken when interpreting neuronal recordings that reflect a combination of subthreshold and spiking activity.
Collapse
Affiliation(s)
- Robert Rosenbaum
- Department of Mathematics, University of Houston, Houston, Texas 77204-3008, USA
| | | |
Collapse
|
25
|
Deger M, Helias M, Boucsein C, Rotter S. Statistical properties of superimposed stationary spike trains. J Comput Neurosci 2011; 32:443-63. [PMID: 21964584 PMCID: PMC3343236 DOI: 10.1007/s10827-011-0362-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/28/2022]
Abstract
The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare their statistics to specific point process models. The constructed superimposed spike trains reveal strong deviations from the Poisson model. We find that superpositions of model spike trains that take the effective refractoriness of the neurons into account yield a much better description. A minimal model of this kind is the Poisson process with dead-time (PPD). For this process, and for superpositions thereof, we obtain analytical expressions for some second-order statistical quantities—like the count variability, inter-spike interval (ISI) variability and ISI correlations—and demonstrate the match with the in vivo data. We conclude that effective refractoriness is the key property that shapes the statistical properties of the superposition spike trains. We present new, efficient algorithms to generate superpositions of PPDs and of gamma processes that can be used to provide more realistic background input in simulations of networks of spiking neurons. Using these generators, we show in simulations that neurons which receive superimposed spike trains as input are highly sensitive for the statistical effects induced by neuronal refractoriness.
Collapse
Affiliation(s)
- Moritz Deger
- Bernstein Center Freiburg & Faculty of Biology, Albert-Ludwig University, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
26
|
Rosenbaum R, Marpeau F, Ma J, Barua A, Josić K. Finite volume and asymptotic methods for stochastic neuron models with correlated inputs. J Math Biol 2011; 65:1-34. [PMID: 21717104 DOI: 10.1007/s00285-011-0451-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 06/07/2011] [Indexed: 11/29/2022]
Abstract
We consider a pair of stochastic integrate and fire neurons receiving correlated stochastic inputs. The evolution of this system can be described by the corresponding Fokker-Planck equation with non-trivial boundary conditions resulting from the refractory period and firing threshold. We propose a finite volume method that is orders of magnitude faster than the Monte Carlo methods traditionally used to model such systems. The resulting numerical approximations are proved to be accurate, nonnegative and integrate to 1. We also approximate the transient evolution of the system using an Ornstein-Uhlenbeck process, and use the result to examine the properties of the joint output of cell pairs. The results suggests that the joint output of a cell pair is most sensitive to changes in input variance, and less sensitive to changes in input mean and correlation.
Collapse
|
27
|
Rosenbaum R, Trousdale J, Josić K. The effects of pooling on spike train correlations. Front Neurosci 2011; 5:58. [PMID: 21687787 PMCID: PMC3096837 DOI: 10.3389/fnins.2011.00058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 04/07/2011] [Indexed: 11/13/2022] Open
Abstract
Neurons integrate inputs from thousands of afferents. Similarly, some experimental techniques record the pooled activity of large populations of cells. When cells in these populations are correlated, the correlation coefficient between the collective activity of two subpopulations is typically much larger than the correlation coefficient between individual cells: The act of pooling individual cell signals amplifies correlations. We give an overview of this phenomenon and present several implications. In particular, we show that pooling leads to synchronization in feedforward networks and that it can amplify and otherwise distort correlations between recorded signals.
Collapse
Affiliation(s)
- Robert Rosenbaum
- Department of Mathematics, University of Houston Houston, TX, USA
| | | | | |
Collapse
|
28
|
Helias M, Deger M, Rotter S, Diesmann M. Finite post synaptic potentials cause a fast neuronal response. Front Neurosci 2011; 5:19. [PMID: 21427776 PMCID: PMC3047297 DOI: 10.3389/fnins.2011.00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 02/07/2011] [Indexed: 01/23/2023] Open
Abstract
A generic property of the communication between neurons is the exchange of pulses at discrete time points, the action potentials. However, the prevalent theory of spiking neuronal networks of integrate-and-fire model neurons relies on two assumptions: the superposition of many afferent synaptic impulses is approximated by Gaussian white noise, equivalent to a vanishing magnitude of the synaptic impulses, and the transfer of time varying signals by neurons is assessable by linearization. Going beyond both approximations, we find that in the presence of synaptic impulses the response to transient inputs differs qualitatively from previous predictions. It is instantaneous rather than exhibiting low-pass characteristics, depends non-linearly on the amplitude of the impulse, is asymmetric for excitation and inhibition and is promoted by a characteristic level of synaptic background noise. These findings resolve contradictions between the earlier theory and experimental observations. Here we review the recent theoretical progress that enabled these insights. We explain why the membrane potential near threshold is sensitive to properties of the afferent noise and show how this shapes the neural response. A further extension of the theory to time evolution in discrete steps quantifies simulation artifacts and yields improved methods to cross check results.
Collapse
Affiliation(s)
| | - Moritz Deger
- Bernstein Center Freiburg, Albert-Ludwig UniversityFreiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, Albert-Ludwig UniversityFreiburg, Germany
- Computational Neuroscience, Faculty of Biology, Albert-Ludwig UniversityFreiburg, Germany
| | - Markus Diesmann
- RIKEN Brain Science InstituteWako City, Japan
- Bernstein Center Freiburg, Albert-Ludwig UniversityFreiburg, Germany
- Institute for Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center JülichGermany
- Brain and Neural Systems Team, Computational Science Research Program, RIKENWako City, Japan
| |
Collapse
|