1
|
Gavenas J, Rutishauser U, Schurger A, Maoz U. Slow ramping emerges from spontaneous fluctuations in spiking neural networks. Nat Commun 2024; 15:7285. [PMID: 39179554 PMCID: PMC11344096 DOI: 10.1038/s41467-024-51401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The capacity to initiate actions endogenously is critical for goal-directed behavior. Spontaneous voluntary actions are typically preceded by slow-ramping activity in medial frontal cortex that begins around two seconds before movement, which may reflect spontaneous fluctuations that influence action timing. However, the mechanisms by which these slow ramping signals emerge from single-neuron and network dynamics remain poorly understood. Here, we developed a spiking neural-network model that produces spontaneous slow ramping activity in single neurons and population activity with onsets ~2 s before threshold crossings. A key prediction of our model is that neurons that ramp together have correlated firing patterns before ramping onset. We confirmed this model-derived hypothesis in a dataset of human single neuron recordings from medial frontal cortex. Our results suggest that slow ramping signals reflect bounded spontaneous fluctuations that emerge from quasi-winner-take-all dynamics in clustered networks that are temporally stabilized by slow-acting synapses.
Collapse
Affiliation(s)
- Jake Gavenas
- Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, USA.
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Aaron Schurger
- Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, USA
- Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, USA
- INSERM U992, Cognitive Neuroimaging Unit, NeuroSpin Center, Gif sur Yvette, 91191, France
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, I2BM, NeuroSpin Center, Gif sur Yvette, 91191, France
| | - Uri Maoz
- Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, USA.
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, USA.
- Fowler School of Engineering, Chapman University, Orange, CA, USA.
- Anderson School of Management, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Gavenas J, Rutishauser U, Schurger A, Maoz U. Slow ramping emerges from spontaneous fluctuations in spiking neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.27.542589. [PMID: 37398452 PMCID: PMC10312459 DOI: 10.1101/2023.05.27.542589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
1. We reveal a mechanism for slow-ramping signals before spontaneous voluntary movements. 2. Slow synapses stabilize spontaneous fluctuations in spiking neural network. 3. We validate model predictions in human frontal cortical single-neuron recordings. 4. The model recreates the readiness potential in an EEG proxy signal. 5. Neurons that ramp together had correlated activity before ramping onset. The capacity to initiate actions endogenously is critical for goal-directed behavior. Spontaneous voluntary actions are typically preceded by slow-ramping activity in medial frontal cortex that begins around two seconds before movement, which may reflect spontaneous fluctuations that influence action timing. However, the mechanisms by which these slow ramping signals emerge from single-neuron and network dynamics remain poorly understood. Here, we developed a spiking neural-network model that produces spontaneous slow ramping activity in single neurons and population activity with onsets ∼2 seconds before threshold crossings. A key prediction of our model is that neurons that ramp together have correlated firing patterns before ramping onset. We confirmed this model-derived hypothesis in a dataset of human single neuron recordings from medial frontal cortex. Our results suggest that slow ramping signals reflect bounded spontaneous fluctuations that emerge from quasi-winner-take-all dynamics in clustered networks that are temporally stabilized by slow-acting synapses.
Collapse
|
3
|
Xue X, Wimmer RD, Halassa MM, Chen ZS. Spiking Recurrent Neural Networks Represent Task-Relevant Neural Sequences in Rule-Dependent Computation. Cognit Comput 2023; 15:1167-1189. [PMID: 37771569 PMCID: PMC10530699 DOI: 10.1007/s12559-022-09994-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Background Prefrontal cortical neurons play essential roles in performing rule-dependent tasks and working memory-based decision making. Methods Motivated by PFG recordings of task-performing mice, we developed an excitatory-inhibitory spiking recurrent neural network (SRNN) to perform a rule-dependent two-alternative forced choice (2AFC) task. We imposed several important biological constraints onto the SRNN, and adapted spike frequency adaptation (SFA) and SuperSpike gradient methods to train the SRNN efficiently. Results The trained SRNN produced emergent rule-specific tunings in single-unit representations, showing rule-dependent population dynamics that resembled experimentally observed data. Under varying test conditions, we manipulated the SRNN parameters or configuration in computer simulations, and we investigated the impacts of rule-coding error, delay duration, recurrent weight connectivity and sparsity, and excitation/inhibition (E/I) balance on both task performance and neural representations. Conclusions Overall, our modeling study provides a computational framework to understand neuronal representations at a fine timescale during working memory and cognitive control, and provides new experimentally testable hypotheses in future experiments.
Collapse
Affiliation(s)
- Xiaohe Xue
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Ralf D. Wimmer
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M. Halassa
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|