1
|
Li D, Hou D, Zhang Y, Zhao Y, Cui X, Niu Y, Xiang J, Wang B. Aberrant Functional Connectivity in Core-Periphery Structure Based on WSBM in ADHD. J Atten Disord 2024; 28:415-430. [PMID: 38102929 DOI: 10.1177/10870547231214985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
OBJECTIVE Brain network studies have revealed that the community structure of ADHD is altered. However, these studies have only focused on modular community structure, ignoring the core-periphery community structure. METHOD This paper employed the weighted stochastic block model to divide the functional connectivity (FC) into 10 communities. And we adopted core score to define the core-periphery structure of FC. Finally, connectivity strength (CS) and disruption index (DI) were used to evaluate the changes of core-periphery structure in ADHD. RESULTS The core community of visual network showed reduced CS and a positive value of DI, while the CS of periphery community was enhanced. In addition, the interaction between core communities (involving the sensorimotor and visual network) and periphery community of attention network showed increased CS and a negative valve of DI. CONCLUSION Anomalies in core-periphery community structure provide a new perspective for understanding the community structure of ADHD.
Collapse
Affiliation(s)
- Dandan Li
- Taiyuan University of Technology, Shanxi, China
| | - Dianni Hou
- Taiyuan University of Technology, Shanxi, China
| | | | - Yao Zhao
- Taiyuan University of Technology, Shanxi, China
| | | | - Yan Niu
- Taiyuan University of Technology, Shanxi, China
| | - Jie Xiang
- Taiyuan University of Technology, Shanxi, China
| | - Bin Wang
- Taiyuan University of Technology, Shanxi, China
| |
Collapse
|
2
|
Robinson B, Bhamidi S, Dayan E. The spatial distribution of coupling between tau and neurodegeneration in amyloid-β positive mild cognitive impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.13.23288533. [PMID: 37131677 PMCID: PMC10153340 DOI: 10.1101/2023.04.13.23288533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Synergies between amyloid-β (Aβ), tau, and neurodegeneration persist along the Alzheimer's disease (AD) continuum. This study aimed to evaluate the extent of spatial coupling between tau and neurodegeneration (atrophy) and its relation to Aβ positivity in mild cognitive impairment (MCI). Data from 409 subjects were included (95 cognitively normal controls, 158 Aβ positive (Aβ+) MCI, and 156 Aβ negative (Aβ-) MCI) Florbetapir PET, Flortaucipir PET, and structural MRI were used as biomarkers for Aβ, tau and atrophy, respectively. Individual correlation matrices for tau load and atrophy were used to layer a multilayer network, with separate layers for tau and atrophy. A measure of coupling between corresponding regions of interest/nodes in the tau and atrophy layers was computed, as a function of Aβ positivity. The extent to which tau-atrophy coupling mediated associations between Aβ burden and cognitive decline was also evaluated. Heightened coupling between tau and atrophy in Aβ+ MCI was found primarily in the entorhinal and hippocampal regions (i.e., in regions corresponding to Braak stages I/II), and to a lesser extent in limbic and neocortical regions (i.e., corresponding to later Braak stages). Coupling strengths in the right middle temporal and inferior temporal gyri mediated the association between Aβ burden and cognition in this sample. Higher coupling between tau and atrophy in Aβ+ MCI is primarily evident in regions corresponding to early Braak stages and relates to overall cognitive decline. Coupling in neocortical regions is more restricted in MCI.
Collapse
|
3
|
Klepl D, He F, Wu M, Blackburn DJ, Sarrigiannis PG. Cross-Frequency Multilayer Network Analysis with Bispectrum-based Functional Connectivity: A Study of Alzheimer's Disease. Neuroscience 2023; 521:77-88. [PMID: 37121381 DOI: 10.1016/j.neuroscience.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to affect functional connectivity (FC) across many brain regions. Linear FC measures have been applied to study the differences in AD by splitting neurophysiological signals, such as electroencephalography (EEG) recordings, into discrete frequency bands and analysing them in isolation from each other. We address this limitation by quantifying cross-frequency FC in addition to the traditional within-band approach. Cross-bispectrum, a higher-order spectral analysis approach, is used to measure the nonlinear FC and is compared with the cross-spectrum, which only measures the linear FC within bands. This work reports the reconstruction of a cross-frequency FC network where each frequency band is treated as a layer in a multilayer network with both inter- and intra-layer edges. Cross-bispectrum detects cross-frequency differences, mainly increased FC in AD cases in δ-θ coupling. Overall, increased strength of low-frequency coupling and decreased level of high-frequency coupling is observed in AD cases in comparison to healthy controls (HC). We demonstrate that a graph-theoretic analysis of cross-frequency brain networks is crucial to obtain a more detailed insight into their structure and function. Vulnerability analysis reveals that the integration and segregation properties of networks are enabled by different frequency couplings in AD networks compared to HCs. Finally, we use the reconstructed networks for classification. The extra cross-frequency coupling information can improve the classification performance significantly, suggesting an important role of cross-frequency FC. The results highlight the importance of studying nonlinearity and including cross-frequency FC in characterising AD.
Collapse
Affiliation(s)
- Dominik Klepl
- Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2JH, UK; Infocomm Research, A*STAR, Singapore
| | - Fei He
- Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2JH, UK.
| | - Min Wu
- Infocomm Research, A*STAR, Singapore
| | - Daniel J Blackburn
- Department of Neuroscience, University of Sheffield, SheffieldS10 2HQ, UK
| | | |
Collapse
|
4
|
Shang Y. Feature-enriched core percolation in multiplex networks. Phys Rev E 2022; 106:054314. [PMID: 36559501 DOI: 10.1103/physreve.106.054314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Percolation models have long served as a paradigm for unraveling the structure and resilience of complex systems comprising interconnected nodes. In many real networks, nodes are identified by not only their connections but nontopological metadata such as age and gender in social systems, geographical location in infrastructure networks, and component contents in biochemical networks. However, there is little known regarding how the nontopological features influence network structures under percolation processes. In this paper we introduce a feature-enriched core percolation framework using a generic multiplex network approach. We thereby analytically determine the corona cluster, size, and number of edges of the feature-enriched cores. We find a hybrid percolation transition combining a jump and a square root singularity at the critical points in both the network connectivity and the feature space. Integrating the degree-feature distribution with the Farlie-Gumbel-Morgenstern copula, we show the existence of continuous and discrete percolation transitions for feature-enriched cores at critical correlation levels. The inner and outer cores are found to undergo distinct phase transitions under the feature-enriched percolation, all limited by a characteristic curve of the feature distribution.
Collapse
Affiliation(s)
- Yilun Shang
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
5
|
The impact of aging on human brain network target controllability. Brain Struct Funct 2022; 227:3001-3015. [DOI: 10.1007/s00429-022-02584-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
|
6
|
Casas-Roma J, Martinez-Heras E, Solé-Ribalta A, Solana E, Lopez-Soley E, Vivó F, Diaz-Hurtado M, Alba-Arbalat S, Sepulveda M, Blanco Y, Saiz A, Borge-Holthoefer J, Llufriu S, Prados F. Applying multilayer analysis to morphological, structural, and functional brain networks to identify relevant dysfunction patterns. Netw Neurosci 2022; 6:916-933. [PMID: 36605412 PMCID: PMC9810367 DOI: 10.1162/netn_a_00258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/07/2022] [Indexed: 01/09/2023] Open
Abstract
In recent years, research on network analysis applied to MRI data has advanced significantly. However, the majority of the studies are limited to single networks obtained from resting-state fMRI, diffusion MRI, or gray matter probability maps derived from T1 images. Although a limited number of previous studies have combined two of these networks, none have introduced a framework to combine morphological, structural, and functional brain connectivity networks. The aim of this study was to combine the morphological, structural, and functional information, thus defining a new multilayer network perspective. This has proved advantageous when jointly analyzing multiple types of relational data from the same objects simultaneously using graph- mining techniques. The main contribution of this research is the design, development, and validation of a framework that merges these three layers of information into one multilayer network that links and relates the integrity of white matter connections with gray matter probability maps and resting-state fMRI. To validate our framework, several metrics from graph theory are expanded and adapted to our specific domain characteristics. This proof of concept was applied to a cohort of people with multiple sclerosis, and results show that several brain regions with a synchronized connectivity deterioration could be identified.
Collapse
Affiliation(s)
- Jordi Casas-Roma
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain,* Corresponding Author:
| | - Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Elisabet Lopez-Soley
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Vivó
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | - Salut Alba-Arbalat
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Maria Sepulveda
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Albert Saiz
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Ferran Prados
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain,Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom,Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
7
|
Canal-Garcia A, Gómez-Ruiz E, Mijalkov M, Chang YW, Volpe G, Pereira JB. Multiplex Connectome Changes across the Alzheimer’s Disease Spectrum Using Gray Matter and Amyloid Data. Cereb Cortex 2022; 32:3501-3515. [PMID: 35059722 PMCID: PMC9376877 DOI: 10.1093/cercor/bhab429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
The organization of the Alzheimer’s disease (AD) connectome has been studied using graph theory using single neuroimaging modalities such as positron emission tomography (PET) or structural magnetic resonance imaging (MRI). Although these modalities measure distinct pathological processes that occur in different stages in AD, there is evidence that they are not independent from each other. Therefore, to capture their interaction, in this study we integrated amyloid PET and gray matter MRI data into a multiplex connectome and assessed the changes across different AD stages. We included 135 cognitively normal (CN) individuals without amyloid-β pathology (Aβ−) in addition to 67 CN, 179 patients with mild cognitive impairment (MCI) and 132 patients with AD dementia who all had Aβ pathology (Aβ+) from the Alzheimer’s Disease Neuroimaging Initiative. We found widespread changes in the overlapping connectivity strength and the overlapping connections across Aβ-positive groups. Moreover, there was a reorganization of the multiplex communities in MCI Aβ + patients and changes in multiplex brain hubs in both MCI Aβ + and AD Aβ + groups. These findings offer a new insight into the interplay between amyloid-β pathology and brain atrophy over the course of AD that moves beyond traditional graph theory analyses based on single brain networks.
Collapse
Affiliation(s)
- Anna Canal-Garcia
- Address correspondence to Department of NVS, Division of Clinical Geriatrics, NEO seventh floor, Blickagången 16, 141 52 Huddinge, Sweden. ; Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| | | | - Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Yu-Wei Chang
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Joana B Pereira
- Address correspondence to Department of NVS, Division of Clinical Geriatrics, NEO seventh floor, Blickagången 16, 141 52 Huddinge, Sweden. ; Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| | | |
Collapse
|
8
|
Benigni B, Ghavasieh A, Corso A, d’Andrea V, De Domenico M. Persistence of information flow: A multiscale characterization of human brain. Netw Neurosci 2021; 5:831-850. [PMID: 34746629 PMCID: PMC8567833 DOI: 10.1162/netn_a_00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Information exchange in the human brain is crucial for vital tasks and to drive diseases. Neuroimaging techniques allow for the indirect measurement of information flows among brain areas and, consequently, for reconstructing connectomes analyzed through the lens of network science. However, standard analyses usually focus on a small set of network indicators and their joint probability distribution. Here, we propose an information-theoretic approach for the analysis of synthetic brain networks (based on generative models) and empirical brain networks, and to assess connectome's information capacity at different stages of dementia. Remarkably, our framework accounts for the whole network state, overcoming limitations due to limited sets of descriptors, and is used to probe human connectomes at different scales. We find that the spectral entropy of empirical data lies between two generative models, indicating an interpolation between modular and geometry-driven structural features. In fact, we show that the mesoscale is suitable for characterizing the differences between brain networks and their generative models. Finally, from the analysis of connectomes obtained from healthy and unhealthy subjects, we demonstrate that significant differences between healthy individuals and the ones affected by Alzheimer's disease arise at the microscale (max. posterior probability smaller than 1%) and at the mesoscale (max. posterior probability smaller than 10%).
Collapse
Affiliation(s)
- Barbara Benigni
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
- CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Arsham Ghavasieh
- CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Alessandra Corso
- CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy
- Department of Mathematics, University of Trento, Trento, Italy
| | | | | |
Collapse
|
9
|
Sigler T, Martinus K, Iacopini I, Derudder B, Loginova J. The structural architecture of international industry networks in the global economy. PLoS One 2021; 16:e0255450. [PMID: 34398876 PMCID: PMC8366998 DOI: 10.1371/journal.pone.0255450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Globalisation continuously produces novel economic relationships mediated by flows of goods, services, capital, and information between countries. The activity of multinational corporations (MNCs) has become a primary driver of globalisation, shaping these relationships through vast networks of firms and their subsidiaries. Extensive empirical research has suggested that globalisation is not a singular process, and that variation in the intensity of international economic interactions can be captured by 'multiple globalisations', however how this differs across industry sectors has remained unclear. This paper analyses how sectoral variation in the 'structural architecture' of international economic relations can be understood using a combination of social network analysis (SNA) measures based on firm-subsidiary ownership linkages. Applying an approach that combines network-level measures (Density, Clustering, Degree, Assortativity) in ways yet to be explored in the spatial networks literature, a typology of four idealised international network structures is presented to allow for comparison between sectors. All sectoral networks were found to be disassortative, indicating that international networks based on intraorganisational ties are characterised by a core-periphery structure, with professional services sectors such as Banks and Insurance being the most hierarchically differentiated. Retail sector networks, including Food & Staples Retailing, are the least clustered while the two most clustered networks-Materials and Capital Goods-have also the highest average degree, evidence of their extensive globalisations. Our findings suggest that the multiple globalisations characterising international economic interactions can be better understood through the 'structural architecture' of sectoral variation, which result from the advantages conferred by cross-border activity within each.
Collapse
Affiliation(s)
- Thomas Sigler
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Kirsten Martinus
- Centre for Regional Development, The University of Western Australia, Crawley, Western Australia, Australia
| | - Iacopo Iacopini
- Centre for Advanced Spatial Analysis, University College London, London, United Kingdom
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
- The Alan Turing Institute, The British Library, London, United Kingdom
| | - Ben Derudder
- Public Governance Institute, KU Leuven, Leuven, Belgium
| | - Julia Loginova
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
10
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
11
|
Corsi MC, Chavez M, Schwartz D, George N, Hugueville L, Kahn AE, Dupont S, Bassett DS, De Vico Fallani F. BCI learning induces core-periphery reorganization in M/EEG multiplex brain networks. J Neural Eng 2021; 18. [PMID: 33725682 DOI: 10.1088/1741-2552/abef39] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/16/2021] [Indexed: 11/11/2022]
Abstract
Brain-computer interfaces (BCIs) constitute a promising tool for communication and control. However, mastering non-invasive closed-loop systems remains a learned skill that is difficult to develop for a non-negligible proportion of users. The involved learning process induces neural changes associated with a brain network reorganization that remains poorly understood. To address this inter-subject variability, we adopted a multilayer approach to integrate brain network properties from electroencephalographic (EEG) and magnetoencephalographic (MEG) data resulting from a four-session BCI training program followed by a group of healthy subjects. Our method gives access to the contribution of each layer to multilayer network that tends to be equal with time. We show that regardless the chosen modality, a progressive increase in the integration of somatosensory areas in the α band was paralleled by a decrease of the integration of visual processing and working memory areas in the β band. Notably, only brain network properties in multilayer network correlated with future BCI scores in the α2 band: positively in somatosensory and decision-making related areas and negatively in associative areas. Our findings cast new light on neural processes underlying BCI training. Integrating multimodal brain network properties provides new information that correlates with behavioral performance and could be considered as a potential marker of BCI learning.
Collapse
Affiliation(s)
| | - Mario Chavez
- UMR-7225, CNRS, 47, boulevard de l'Hôpital, Paris, 75013, FRANCE
| | - Denis Schwartz
- INSERM, 47, boulevard de l'Hôpital, Paris, Île-de-France, 75013, FRANCE
| | - Nathalie George
- UMR-7225, CNRS, 47, boulevard de l'Hôpital, Paris, Île-de-France, 75013, FRANCE
| | - Laurent Hugueville
- Institut du Cerveau et de la Moelle Epiniere, 47, boulevard de l'Hôpital, Paris, Île-de-France, 75013, FRANCE
| | - Ari E Kahn
- Department of Neuroscience, University of Pennsylvania, 210 S. 33rd Street 240 Skirkanich Hall, Philadelphia, Pennsylvania, 19104-6321, UNITED STATES
| | - Sophie Dupont
- Institut du Cerveau et de la Moelle Epiniere, 47, boulevard de l'Hôpital, Paris, Île-de-France, 75013, FRANCE
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street 240 Skirkanich Hall, USA, Philadelphia, Pennsylvania, 19104-6321, UNITED STATES
| | | |
Collapse
|
12
|
Gonzalez-Astudillo J, Cattai T, Bassignana G, Corsi MC, De Vico Fallani F. Network-based brain computer interfaces: principles and applications. J Neural Eng 2020; 18. [PMID: 33147577 DOI: 10.1088/1741-2552/abc760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Brain-computer interfaces (BCIs) make possible to interact with the external environment by decoding the mental intention of individuals. BCIs can therefore be used to address basic neuroscience questions but also to unlock a variety of applications from exoskeleton control to neurofeedback (NFB) rehabilitation. In general, BCI usability critically depends on the ability to comprehensively characterize brain functioning and correctly identify the user's mental state. To this end, much of the efforts have focused on improving the classification algorithms taking into account localized brain activities as input features. Despite considerable improvement BCI performance is still unstable and, as a matter of fact, current features represent oversimplified descriptors of brain functioning. In the last decade, growing evidence has shown that the brain works as a networked system composed of multiple specialized and spatially distributed areas that dynamically integrate information. While more complex, looking at how remote brain regions functionally interact represents a grounded alternative to better describe brain functioning. Thanks to recent advances in network science, i.e. a modern field that draws on graph theory, statistical mechanics, data mining and inferential modelling, scientists have now powerful means to characterize complex brain networks derived from neuroimaging data. Notably, summary features can be extracted from these networks to quantitatively measure specific organizational properties across a variety of topological scales. In this topical review, we aim to provide the state-of-the-art supporting the development of a network theoretic approach as a promising tool for understanding BCIs and improve usability.
Collapse
|