1
|
Zhu D, Peng X, Li L, Zhang J, Xiao P. 3D Printed Ion-Responsive Personalized Transdermal Patch. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14113-14123. [PMID: 38442338 DOI: 10.1021/acsami.3c18036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Microneedle patches are easy-to-use medical devices for transdermal administration. However, the insufficient insertion of microneedles due to the gap between planar patches and contoured skin affects drug delivery. Herein, we formulate a prepolymer for high-fidelity three-dimensional (3D) printed personalized transdermal patches. With the excellent photoinitiation ability of 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (Tz), a high-fidelity and precise microneedle patch is successfully fabricated. Upon irradiation of the white illuminator, the doped gold nanoparticles (AuNPs) in the patch release heat and promisingly induce sweat production. With the introduction of Na+, the dominant component of sweat, the curvature of the produced transdermal patch is observed due to the ion-induced network rearrangement. The alkanethiol-stabilized AuNP with an end group of a carboxyl group causes controlled drug release behavior. Furthermore, the irradiation-induced photothermal heating of AuNP can facilitate the sustainability of drug release thanks to the substantially increased particle size of AuNP. These findings demonstrate that the developed prepolymer is a promising candidate for the production of transdermal patches fitting the curvature of the body surface.
Collapse
Affiliation(s)
- D Zhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - X Peng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - L Li
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - J Zhang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - P Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
2
|
Ertugral-Samgar EG, Ozmen AM, Gok O. Thermo-Responsive Hydrogels Encapsulating Targeted Core-Shell Nanoparticles as Injectable Drug Delivery Systems. Pharmaceutics 2023; 15:2358. [PMID: 37765326 PMCID: PMC10537279 DOI: 10.3390/pharmaceutics15092358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
As therapeutic agents that allow for minimally invasive administration, injectable biomaterials stand out as effective tools with tunable properties. Furthermore, hydrogels with responsive features present potential platforms for delivering therapeutics to desired sites in the body. Herein, temperature-responsive hydrogel scaffolds with embedded targeted nanoparticles were utilized to achieve controlled drug delivery via local drug administration. Poly(N-isopropylacrylamide) (pNIPAM) hydrogels, prepared with an ethylene-glycol-based cross-linker, demonstrated thermo-sensitive gelation ability upon injection into environments at body temperature. This hydrogel network was engineered to provide a slow and controlled drug release profile by being incorporated with curcumin-loaded nanoparticles bearing high encapsulation efficiency. A core (alginate)-shell (chitosan) nanoparticle design was preferred to ensure the stability of the drug molecules encapsulated in the core and to provide slower drug release. Nanoparticle-embedded hydrogels were shown to release curcumin at least four times slower compared to the free nanoparticle itself and to possess high water uptake capacity and more mechanically stable viscoelastic behavior. Moreover, this therapy has the potential to specifically address tumor tissues over-expressing folate receptors like ovaries, as the nanoparticles target the receptors by folic acid conjugation to the periphery. Together with its temperature-driven injectability, it can be concluded that this hydrogel scaffold with drug-loaded and embedded folate-targeting nanoparticles would provide effective therapy for tumor tissues accessible via minimally invasive routes and be beneficial for post-operative drug administration after tumor resection.
Collapse
Affiliation(s)
- Elif Gulin Ertugral-Samgar
- Medical Engineering Program, Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (E.G.E.-S.); (A.M.O.)
| | - Ali Murad Ozmen
- Medical Engineering Program, Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (E.G.E.-S.); (A.M.O.)
| | - Ozgul Gok
- Medical Engineering Program, Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (E.G.E.-S.); (A.M.O.)
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
3
|
Ham Y, Mehta H, Kang-Mieler J, Mieler WF, Chang A. Novel Drug Delivery Methods and Approaches for the Treatment of Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2023; 12:402-413. [PMID: 37523432 DOI: 10.1097/apo.0000000000000623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 08/02/2023] Open
Abstract
This review discusses emerging approaches to ocular drug delivery for retinal diseases. Intravitreal injections have proven to be an effective, safe, and commonly used drug delivery method. However, the optimal management of chronic retinal diseases requires frequent intravitreal injections over extended periods of time. Although this can be achieved in a clinical trial environment, it is difficult to replicate in routine clinical practice. In addition, frequent treatment increases the risk of complications, incurs more costs, and increases the treatment burden for patients and caregivers. Given the aging global population and diabetes pandemic, there is an urgent need for drug delivery methods that support more durable retinal therapy while maintaining the efficacy and safety of currently available intravitreal therapies. Several innovative drug delivery methods are currently being investigated. These include sustained-release implants and depots using prodrugs, microparticles, and hydrogels, surgically implanted reservoirs, gene therapy via submacular injections or suprachoroidal injections, as well as topical and systemic therapies.
Collapse
Affiliation(s)
- Yeji Ham
- Sydney Retina Clinic, Sydney, Australia
| | - Hemal Mehta
- Sydney Retina Clinic, Sydney, Australia
- Save Sight Registries, The University of Sydney, Sydney, Australia
- Strathfield Retina Clinic, Sydney, Australia
| | - Jennifer Kang-Mieler
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ
| | | | - Andrew Chang
- Sydney Retina Clinic, Sydney Eye Hospital, The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Rafael D, Guerrero M, Marican A, Arango D, Sarmento B, Ferrer R, Durán-Lara EF, Clark SJ, Schwartz S. Delivery Systems in Ocular Retinopathies: The Promising Future of Intravitreal Hydrogels as Sustained-Release Scaffolds. Pharmaceutics 2023; 15:1484. [PMID: 37242726 PMCID: PMC10220769 DOI: 10.3390/pharmaceutics15051484] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Slow-release delivery systems are needed to ensure long-term sustained treatments for retinal diseases such as age-related macular degeneration and diabetic retinopathy, which are currently treated with anti-angiogenic agents that require frequent intraocular injections. These can cause serious co-morbidities for the patients and are far from providing the adequate drug/protein release rates and required pharmacokinetics to sustain prolonged efficacy. This review focuses on the use of hydrogels, particularly on temperature-responsive hydrogels as delivery vehicles for the intravitreal injection of retinal therapies, their advantages and disadvantages for intraocular administration, and the current advances in their use to treat retinal diseases.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), 20 ICTS Nanbiosis, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Marcelo Guerrero
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Adolfo Marican
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação, Saúde Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
| | - Roser Ferrer
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| | - Esteban F. Durán-Lara
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Simon J. Clark
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Simo Schwartz
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| |
Collapse
|
5
|
Huang Y, Morozova SM, Li T, Li S, Naguib HE, Kumacheva E. Stimulus-Responsive Transport Properties of Nanocolloidal Hydrogels. Biomacromolecules 2023; 24:1173-1183. [PMID: 36580573 DOI: 10.1021/acs.biomac.2c01222] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Applications of polymer hydrogels in separation technologies, environmental remediation, and drug delivery require control of hydrogel transport properties that are largely governed by the pore dimensions. Stimulus-responsive change in pore size offers the capability to change gel's transport properties "on demand". Here, we report a nanocolloidal hydrogel that exhibits temperature-controlled increase in pore size and, as a result, enhanced transport of encapsulated species from the gel. The hydrogel was formed by the covalent cross-linking of aldehyde-modified cellulose nanocrystals and chitosan carrying end-grafted poly(N-isopropylacrylamide) (pNIPAm) molecules. Owing to the temperature-mediated coil-to-globule transition of pNIPAm grafts, they acted as a temperature-responsive "gate" in the hydrogel. At elevated temperature, the size of the pores showed up to a 4-fold increase, with no significant changes in volume, in contrast with conventional pNIPAm-derived gels exhibiting a reduction in both pore size and volume in similar conditions. Temperature-mediated transport properties of the gel were explored by studying diffusion of nanoparticles with different dimensions from the gel, leading to the established correlation between the kinetics of diffusion-governed nanoparticle release and the ratio nanoparticle dimensions-to-pore size. The proposed approach to stimulus-responsive control of hydrogel transport properties has many applications, including their use in nanomedicine and tissue engineering.
Collapse
Affiliation(s)
- Yuhang Huang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, OntarioM5S 3H6, Canada
- N.E. Bauman Moscow State Technical University, 5/1 Second Baumanskaya Street, Moscow105005, Russian Federation
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, OntarioM5S 3E4, Canada
| | - Shangyu Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, OntarioM5S 3H6, Canada
| | - Hani E Naguib
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, OntarioM5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, OntarioM5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, OntarioM5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, OntarioM5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, OntarioM5S 3G9, Canada
| |
Collapse
|
6
|
Dosmar E, Vuotto G, Su X, Roberts E, Lannoy A, Bailey GJ, Mieler WF, Kang-Mieler JJ. Compartmental and COMSOL Multiphysics 3D Modeling of Drug Diffusion to the Vitreous Following the Administration of a Sustained-Release Drug Delivery System. Pharmaceutics 2021; 13:pharmaceutics13111862. [PMID: 34834276 PMCID: PMC8624029 DOI: 10.3390/pharmaceutics13111862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to examine antibiotic drug transport from a hydrogel drug delivery system (DDS) using a computational model and a 3D model of the eye. Hydrogel DDSs loaded with vancomycin (VAN) were synthesized and release behavior was characterized in vitro. Four different compartmental and four COMSOL models of the eye were developed to describe transport into the vitreous originating from a DDS placed topically, in the subconjunctiva, subretinally, and intravitreally. The concentration of the simulated DDS was assumed to be the initial concentration of the hydrogel DDS. The simulation was executed over 1500 and 100 h for the compartmental and COMSOL models, respectively. Based on the MATLAB model, topical, subconjunctival, subretinal and vitreous administration took most (~500 h to least (0 h) amount of time to reach peak concentrations in the vitreous, respectively. All routes successfully achieved therapeutic levels of drug (0.007 mg/mL) in the vitreous. These models predict the relative build-up of drug in the vitreous following DDS administration in four different points of origin in the eye. Our model may eventually be used to explore the minimum loading dose of drug required in our DDS leading to reduced drug use and waste.
Collapse
Affiliation(s)
- Emily Dosmar
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803, USA; (G.V.); (X.S.); (E.R.); (A.L.); (G.J.B.)
- Correspondence:
| | - Gabrielle Vuotto
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803, USA; (G.V.); (X.S.); (E.R.); (A.L.); (G.J.B.)
| | - Xingqi Su
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803, USA; (G.V.); (X.S.); (E.R.); (A.L.); (G.J.B.)
| | - Emily Roberts
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803, USA; (G.V.); (X.S.); (E.R.); (A.L.); (G.J.B.)
| | - Abigail Lannoy
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803, USA; (G.V.); (X.S.); (E.R.); (A.L.); (G.J.B.)
| | - Garet J. Bailey
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803, USA; (G.V.); (X.S.); (E.R.); (A.L.); (G.J.B.)
| | - William F. Mieler
- Department of Biomedical Engineering, Illinois Institute of Technology, 10 W 35th St., Chicago, IL 60616, USA;
| | - Jennifer J. Kang-Mieler
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1200 W Harrison St., Chicago, IL 60607, USA;
| |
Collapse
|
7
|
Lin X, Wu X, Chen X, Wang B, Xu W. Intellective and stimuli-responsive drug delivery systems in eyes. Int J Pharm 2021; 602:120591. [PMID: 33845152 DOI: 10.1016/j.ijpharm.2021.120591] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Stimuli-responsive drug delivery systems have attracted widespread attention in recent years since they can control drug release in a spatiotemporal manner and can achieve tunable drug release according to patient's physiological or pathological condition. In this review, we briefly introduce the drug delivery barriers and drug delivery systems in the anterior and posterior segment of eyes, and collect the recent advances in stimuli-responsive drug delivery systems in eyes for controlled drug release in response to exogenous stimuli (ultrasound, magnetic stimulus, electrical stimulus, and light) or endogenous stimuli (enzyme, active oxygen species, temperature, ions, and pH). In addition, the design and mechanisms of the stimuli-responsive drug delivery systems have been summarized in this review, and the advantages and limitations are also briefly discussed.
Collapse
Affiliation(s)
- Xueqi Lin
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xingdi Wu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiang Chen
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| | - Wen Xu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
8
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
9
|
Preclinical challenges for developing long acting intravitreal medicines. Eur J Pharm Biopharm 2020; 153:130-149. [DOI: 10.1016/j.ejpb.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
|
10
|
Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release 2020; 326:419-441. [PMID: 32717302 DOI: 10.1016/j.jconrel.2020.07.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
This review highlights how hydrogel formulations can improve intravitreal protein delivery to the posterior segment of the eye in order to increase therapeutic outcome and patient compliance. Several therapeutic proteins have shown excellent clinical successes for the treatment of various intraocular diseases. However, drug delivery to the posterior segment of the eye faces significant challenges due to multiple physiological barriers preventing drugs from reaching the retina, among which intravitreal protein instability and rapid clearance from the site of injection. Hence, frequent injections are required to maintain therapeutic levels. Moreover, because the world population ages, the number of patients suffering from ocular diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) is increasing and causing increased health care costs. Therefore, there is a growing need for suitable delivery systems able to tackle the current limitations in retinal protein delivery, which also may reduce costs. Hydrogels have shown to be promising delivery systems capable of sustaining release of therapeutic proteins and thus extending their local presence. Here, an extensive overview of preclinically developed intravitreal hydrogels is provided with attention to the rational design of clinically useful intravitreal systems. The currently used polymers, crosslinking mechanisms, in vitro/in vivo models and advancements are discussed together with the limitations and future perspective of these biomaterials.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
11
|
Kang-Mieler JJ, Rudeen KM, Liu W, Mieler WF. Advances in ocular drug delivery systems. Eye (Lond) 2020; 34:1371-1379. [PMID: 32071402 DOI: 10.1038/s41433-020-0809-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in pharmacological agents have led to successful treatment of a variety of retinal diseases such as neovascular age-related macular degeneration (AMD), diabetic macular oedema (DMO), and retinal vascular occlusions (RVO). These treatments often require repeated drug injections for an extended period of time. To reduce these repeated treatment burdens, minimally invasive drug delivery systems are needed. An ideal therapy should maintain effective levels of drug for the intended duration of treatment following a single application, recognising that a significant number of months of therapy may be required. There are numerous approaches under investigation to improve treatment options. This review will highlight the advantages and limitations of selected drug delivery systems of novel biomaterial implants and depots. The main emphasis will be placed on less invasive, longer acting, sustained release formulations for the treatment of retinal disorders.
Collapse
Affiliation(s)
- Jennifer J Kang-Mieler
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| | - Kayla M Rudeen
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Wenqiang Liu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - William F Mieler
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Awwad S, Abubakre A, Angkawinitwong U, Khaw PT, Brocchini S. In situ antibody-loaded hydrogel for intravitreal delivery. Eur J Pharm Sci 2019; 137:104993. [DOI: 10.1016/j.ejps.2019.104993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
13
|
Dosmar E, Liu W, Patel G, Rogozinski A, Mieler WF, Kang-Mieler JJ. Controlled Release of Vancomycin From a Thermoresponsive Hydrogel System for the Prophylactic Treatment of Postoperative Acute Endophthalmitis. Transl Vis Sci Technol 2019; 8:53. [PMID: 31293808 PMCID: PMC6601710 DOI: 10.1167/tvst.8.3.53] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/22/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose To investigate the efficacy of a poly(ethylene glycol) diacrylate and poly(N-isopropylacrylamide) based thermo-responsive hydrogel drug delivery system (DDS) to deliver prophylactic vancomycin (VAN) following ocular surgery. Methods VAN was encapsulated in a hydrogel DDS and characterized in terms of initial burst, release kinetics, bioactivity, and cytotoxicity. Long-Evans rats received an intravitreal injection of Staphylococcus aureus to produce acute endophthalmitis in four experimental groups. One of four treatments were then applied: (1) bolus subconjunctival injection of VAN, (2) blank DDS, (3) saline treatment, and (4) subconjunctival injection of VAN DDS. Animals were scored for infection (0–3) at 12, 24, 48, and 72 hours, and eyes were harvested at 24 and 48 hours for histology. Results Following a 36% initial burst, VAN release from the DDS continued at a steady rate for 2 weeks plateauing at 84% after 504 hours. Bioactivity was maintained for all release samples and cytotoxicity analysis for the DDS revealed cell viability >90%. Not until after 12 hours did any of the groups show evidence of infection; however, at 24 hours, animals that received the VAN DDS had significantly lower infection scores (0 ± 0) than those that received a bolus VAN injection, blank DDS, or saline (1.5 ±1.5, 2.3 ± 0.87, and 2.9 ± 0.25; respectively). At 48 and 72 hours, the VAN DDS and bolus VAN treatment groups performed comparably and showed significantly better infection scores than the control groups. Conclusions This DDS appears to have promise as a vehicle for short term, prophylactic antibiotic delivery. Translational Relevance This DDS may prevent the development of postoperative endophthalmitis.
Collapse
Affiliation(s)
- Emily Dosmar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Wenqiang Liu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Geeya Patel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Alison Rogozinski
- Department of Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - William F Mieler
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jennifer J Kang-Mieler
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
14
|
Sapino S, Chirio D, Peira E, Abellán Rubio E, Brunella V, Jadhav SA, Chindamo G, Gallarate M. Ocular Drug Delivery: A Special Focus on the Thermosensitive Approach. NANOMATERIALS 2019; 9:nano9060884. [PMID: 31207951 PMCID: PMC6630567 DOI: 10.3390/nano9060884] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
The bioavailability of ophthalmic therapeutics is reduced because of the presence of physiological barriers whose primary function is to hinder the entry of exogenous agents, therefore also decreasing the bioavailability of locally administered drugs. Consequently, repeated ocular administrations are required. Hence, the development of drug delivery systems that ensure suitable drug concentration for prolonged times in different ocular tissues is certainly of great importance. This objective can be partially achieved using thermosensitive drug delivery systems that, owing to their ability of changing their state in response to temperature variations, from room to body temperature, may increase drug bioavailability. In the case of topical instillation, in situ forming gels increase pre-corneal drug residence time as a consequence of their enhanced adhesion to the corneal surface. Otherwise, in the case of intraocular and periocular, i.e., subconjunctival, retrobulbar, peribulbar administration, among others, they have the undoubted advantage of being easily injectable and, owing to their sudden thickening at body temperature, have the ability to form an in situ drug reservoir. As a result, the frequency of administration can be reduced, also favoring the patient’s adhesion to therapy. In the main section of this review, we discuss some of the most common treatment options for ocular diseases, with a special focus on posterior segment treatments, and summarize the most recent improvement deriving from thermosensitive drug delivery strategies. Aside from this, an additional section describes the most widespread in vitro models employed to evaluate the functionality of novel ophthalmic drug delivery systems.
Collapse
Affiliation(s)
- Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| | | | - Valentina Brunella
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
- Department of Chemistry, University of Turin, 10125 Turin, Italy.
| | - Sushilkumar A Jadhav
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
- School of Nanoscience and Technology, Shivaji University Kolhapur, Maharashtra 416004, India.
| | - Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
15
|
Liu W, Borrell MA, Venerus DC, Mieler WF, Kang-Mieler JJ. Characterization of Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Ranibizumab. Transl Vis Sci Technol 2019; 8:12. [PMID: 30701127 PMCID: PMC6350854 DOI: 10.1167/tvst.8.1.12] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023] Open
Abstract
Purpose To characterize a biodegradable microsphere-hydrogel drug delivery system (DDS) for controlled and extended release of ranibizumab. Methods The degradable microsphere-hydrogel DDSs were fabricated by suspending ranibizumab-loaded or blank poly(lactic-co-glycolic acid) microspheres within a poly(ethylene glycol)-co-(L-lactic-acid) diacrylate/N-isopropylacrylamide (PEG-PLLA-DA/NIPAAm) hydrogel. The thermal responsive behavior of various DDS formulations was characterized in terms of volume phase transition temperature (VPTT) and swelling ratios changes from 22°C to 42°C. The mechanical properties were characterized using rheological methods. Degradability of hydrogels were also examined via wet weight loss. Finally, Iodine-125 was used to radiolabel ranibizumab for characterization of encapsulation efficiency and in vitro release. Results All DDS formulations investigated were injectable through a 28-gauge needle at room temperature. The VPTT increased with increase of cross-linker concentration. The swelling ratios decreased as temperature increased and were not influenced by presence of microspheres. Rheology data confirmed that increase of cross-linker concentration and microsphere loading made DDS stiffer. Increase of degradable cross-linker concentration facilitated hydrogel in vitro degradation. Controlled release of ranibizumab were achieved for investigated DDS formulations for 6 months; and increased degradable cross-linker concentration produced faster and more complete release. Conclusions The biodegradable DDSs are suitable for sustained release of ranibizumab. Considering ease of injection, degradability and release of ranibizumab, DDS with 3 mM cross-linker concentration and less than 20 mg/mL microsphere loadings is more favorable for future application. Translational Relevance The investigated DDS is promising for controlled and extended release of anti-VEGF therapeutics to achieve better treatment regimen in ocular neovascularizations.
Collapse
Affiliation(s)
- Wenqiang Liu
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Marta Arias Borrell
- Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - David C Venerus
- Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - William F Mieler
- Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
16
|
Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018; 4:E61. [PMID: 30674837 PMCID: PMC6209244 DOI: 10.3390/gels4030061] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Hydrogels are materials specially suited for encapsulation of biological elements. Their large water content provides an environment compatible with most biological molecules. Their crosslinked nature also provides an ideal material for the protection of encapsulated biological elements against degradation and/or immune recognition. This makes them attractive not only for controlled drug delivery of proteins, but they can also be used to encapsulate cells that can have therapeutic applications. Thus, hydrogels can be used to create systems that will deliver required therapies in a controlled manner by either encapsulation of proteins or even cells that produce molecules that will be released from these systems. Here, an overview of hydrogel encapsulation strategies of biological elements ranging from molecules to cells is discussed, with special emphasis on therapeutic applications.
Collapse
Affiliation(s)
- Víctor H Pérez-Luna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL 60616, USA.
| | - Orfil González-Reynoso
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco C.P. 44430, Mexico.
| |
Collapse
|
17
|
Awwad S, Angkawinitwong U. Overview of Antibody Drug Delivery. Pharmaceutics 2018; 10:E83. [PMID: 29973504 PMCID: PMC6161251 DOI: 10.3390/pharmaceutics10030083] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most important classes of therapeutic proteins, which are used to treat a wide number of diseases (e.g., oncology, inflammation and autoimmune diseases). Monoclonal antibody technologies are continuing to evolve to develop medicines with increasingly improved safety profiles, with the identification of new drug targets being one key barrier for new antibody development. There are many opportunities for developing antibody formulations for better patient compliance, cost savings and lifecycle management, e.g., subcutaneous formulations. However, mAb-based medicines also have limitations that impact their clinical use; the most prominent challenges are their short pharmacokinetic properties and stability issues during manufacturing, transport and storage that can lead to aggregation and protein denaturation. The development of long acting protein formulations must maintain protein stability and be able to deliver a large enough dose over a prolonged period. Many strategies are being pursued to improve the formulation and dosage forms of antibodies to improve efficacy and to increase the range of applications for the clinical use of mAbs.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of Pharmacy, London WC1N 1AX, UK.
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1 V9EL, UK.
| | | |
Collapse
|
18
|
Anwary M, Kumar P, du Toit LC, Choonara YE, Pillay V. Polymeric, injectable, intravitreal hydrogel devices for posterior segment applications and interventions. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1074-1081. [DOI: 10.1080/21691401.2018.1478845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Muhammed Anwary
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
19
|
Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur J Pharm Biopharm 2018; 124:95-103. [DOI: 10.1016/j.ejpb.2017.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
|
20
|
Awwad S, Al-Shohani A, Khaw PT, Brocchini S. Comparative Study of In Situ Loaded Antibody and PEG-Fab NIPAAM Gels. Macromol Biosci 2017; 18. [PMID: 29205853 DOI: 10.1002/mabi.201700255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/18/2017] [Indexed: 01/01/2023]
Abstract
Hydrogels can potentially prolong the release of a therapeutic protein, especially to treat blinding conditions. One challenge is to ensure that the protein and hydrogel are intimately mixed by better protein entanglement within the hydrogel. N-isopropylacrylamide (NIPAAM) gels are optimized with poly(ethylene glycol) diacrylate (PEDGA) crosslinker in the presence of either bevacizumab or PEG conjugated ranibizumab (PEG10 -Fabrani ). The release profiles of the hydrogels are evaluated using an outflow model of the eye, which is previously validated for human clearance of proteins. Release kinetics of in situ loaded bevacizumab-NIPAAM gels displays a prolonged bimodal release profile in phosphate buffered saline compared to bevacizumab loaded into a preformed NIPAAM gel. Bevacizumab release in simulated vitreous from in situ loaded gels is similar to bevacizumab control indicating that diffusion through the vitreous rather than from the gel is rate limiting. Ranibizumab is site-specifically PEGylated by disulfide rebridging conjugation. Prolonged and continuous release is observed with the in situ loaded PEG10 -Fabrani -NIPAAM gels compared to PEG10 -Fabrani injection (control). Compared to an unmodified protein, there is better mixing due to PEG entanglement and compatibility of PEG10 -Fabrani within the NIPAAM-PEDGA hydrogel. These encouraging results suggest that the extended release of PEGylated proteins in the vitreous can be achieved using injectable hydrogels.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of Pharmacy, London, WC1N 1AX, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Athmar Al-Shohani
- UCL School of Pharmacy, London, WC1N 1AX, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Steve Brocchini
- UCL School of Pharmacy, London, WC1N 1AX, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| |
Collapse
|
21
|
Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A. Principles of pharmacology in the eye. Br J Pharmacol 2017; 174:4205-4223. [PMID: 28865239 PMCID: PMC5715579 DOI: 10.1111/bph.14024] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
The eye is a highly specialized organ that is subject to a huge range of pathology. Both local and systemic disease may affect different anatomical regions of the eye. The least invasive routes for ocular drug administration are topical (e.g. eye drops) and systemic (e.g. tablets) formulations. Barriers that subserve as protection against pathogen entry also restrict drug permeation. Topically administered drugs often display limited bioavailability due to many physical and biochemical barriers including the pre-corneal tear film, the structure and biophysiological properties of the cornea, the limited volume that can be accommodated by the cul-de-sac, the lacrimal drainage system and reflex tearing. The tissue layers of the cornea and conjunctiva are further key factors that act to restrict drug delivery. Using carriers that enhance viscosity or bind to the ocular surface increases bioavailability. Matching the pH and polarity of drug molecules to the tissue layers allows greater penetration. Drug delivery to the posterior segment is a greater challenge and, currently, the standard route is via intravitreal injection, notwithstanding the risks of endophthalmitis and retinal detachment with frequent injections. Intraocular implants that allow sustained drug release are at different stages of development. Novel exciting therapeutic approaches include methods for promoting transscleral delivery, sustained release devices, nanotechnology and gene therapy.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Abeer H A Mohamed Ahmed
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Garima Sharma
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Jacob S Heng
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Steve Brocchini
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | | |
Collapse
|
22
|
Osswald CR, Guthrie MJ, Avila A, Valio JA, Mieler WF, Kang-Mieler JJ. In Vivo Efficacy of an Injectable Microsphere-Hydrogel Ocular Drug Delivery System. Curr Eye Res 2017; 42:1293-1301. [PMID: 28557571 DOI: 10.1080/02713683.2017.1302590] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Demonstrate in vivo that controlled and extended release of a low dose of anti-vascular endothelial growth factor (anti-VEGF) from a microsphere-hydrogel drug delivery system (DDS) has a therapeutic effect in a laser-induced rat model of choroidal neovascularization (CNV). METHODS Anti-VEGF (ranibizumab or aflibercept) was loaded into poly(lactic-co-glycolic acid) microspheres that were then suspended within an injectable poly(N-isopropylacrylamide)-based thermo-responsive hydrogel DDS.The DDS was shown previously to release bioactive anti-VEGF for ~200 days. CNV was induced using an Ar-green laser. The four experimental groups were as follows: (i) non-treated, (ii) drug-free DDS, (iii) anti-VEGF-loaded DDS, and (iv) bolus injection of anti-VEGF. CNV lesion areas were measured based on fluorescein angiograms and quantified using a multi-Otsu thresholding technique. Intraocular pressure (IOP) and dark-adapted electroretinogram (ERG) were also obtained pre- and post-treatment (1, 2, 4, 8, and 12 weeks). RESULTS The anti-VEGF-loaded DDS group had significantly smaller (60%) CNV lesion areas than non-treated animals throughout the study. A small transient increase in IOP was seen immediately after injection; however, all IOP measurements at all time points were within the normal range. There were no significant changes in ERG maximal response compared to pre-treatment measurements for the drug-loaded DDS, which suggests no adverse effects on retinal cellular function. CONCLUSIONS The current study demonstrates that the DDS can effectively decrease laser-induced CNV lesions in a murine model. Controlled and extended release from our DDS achieved greater treatment efficacy using an order of magnitude less drug than what is required with bolus administration. This suggests that our DDS may provide a significant advantage in the treatment of posterior segment eye diseases.
Collapse
Affiliation(s)
- Christian R Osswald
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Micah J Guthrie
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Abigail Avila
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Joseph A Valio
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - William F Mieler
- b Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| | - Jennifer J Kang-Mieler
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| |
Collapse
|
23
|
Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing. Polymers (Basel) 2017; 9:polym9040119. [PMID: 30970798 PMCID: PMC6432186 DOI: 10.3390/polym9040119] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022] Open
Abstract
Thermo-responsive hydrogels containing poly(N-isopropylacrylamide) (PNIPAAm), reinforced both with covalent and non-covalent interactions with cellulose nanocrystals (CNC), were synthesized via free-radical polymerization in the absence of any additional cross-linkers. The properties of PNIPAAm-CNC hybrid hydrogels were dependent on the amounts of incorporated CNC. The thermal stability of the hydrogels decreased with increasing CNC content. The rheological measurement indicated that the elastic and viscous moduli of hydrogels increased with the higher amounts of CNC addition, representing stronger mechanical properties of the hydrogels. Moreover, the hydrogel injection also supported the hypothesis that CNC reinforced the hydrogels; the increased CNC content exhibited higher structural integrity upon injection. The PNIPAAm-CNC hybrid hydrogels exhibited clear thermo-responsive behavior; the volume phase transition temperature (VPTT) was in the range of 36 to 39 °C, which is close to normal human body temperature. For wound dressing purposes, metronidazole, an antibiotic and antiprotozoal often used for skin infections, was used as a target drug to study drug-loading and the release properties of the hydrogels. The hydrogels showed a good drug-loading capacity at room temperature and a burst drug release, which was followed by slow and sustained release at 37 °C. These results suggested that newly developed drugs containing injectable hydrogels are promising materials for wound dressing.
Collapse
|
24
|
Challenges for Cartilage Regeneration. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/978-3-662-53574-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Osswald CR, Kang-Mieler JJ. Controlled and Extended In Vitro Release of Bioactive Anti-Vascular Endothelial Growth Factors from a Microsphere-Hydrogel Drug Delivery System. Curr Eye Res 2016; 41:1216-22. [PMID: 26764892 DOI: 10.3109/02713683.2015.1101140] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To demonstrate controlled and extended release of bioactive anti-vascular endothelial growth factor (VEGF) agents (ranibizumab or aflibercept) from an injectable microsphere-hydrogel drug delivery system (DDS). METHODS Anti-VEGF agents were radiolabeled with iodine-125 and loaded into poly(lactic-co-glycolic acid) (PLGA) 75:25 microspheres using a modified double-emulsion, solvent evaporation technique. Microspheres were then suspended in an injectable poly(N-isopropylacrylamide)-based thermo-responsive hydrogel to create a microsphere-hydrogel DDS. Release profiles were performed in phosphate buffered saline at 37°C and at predetermined intervals, release samples were collected. Microspheres were also made using non-radiolabeled anti-VEGFs to determine the bioactivity of the DDS throughout release. Bioactivity and cytotoxicity of release samples were determined using human umbilical vascular endothelial cells (HUVECs) under VEGF-induced proliferation. RESULTS The DDS is capable of releasing either ranibizumab or aflibercept for 196 days with an initial burst (first 24 h) of 22.2 ± 2.2 and 13.1 ± 0.5 μg, respectively, followed by controlled release of 0.153 and 0.065 μg/day, respectively. Release samples showed no toxicity in HUVECs at any time. Both anti-VEGFs remained bioactive throughout release with significant inhibition of HUVEC proliferation compared to the drug-free DDS, which showed no inhibitory effect on HUVEC proliferation. CONCLUSIONS Controlled, extended, and bioactive release for approximately 200 days was achieved for both ranibizumab and aflibercept in vitro. The use of anti-VEGF-loaded microspheres suspended within an injectable, thermo-responsive hydrogel may be an advantageous ocular DDS with the potential to improve upon current therapies.
Collapse
Affiliation(s)
- Christian R Osswald
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Jennifer J Kang-Mieler
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| |
Collapse
|
26
|
Osswald CR, Kang-Mieler JJ. Controlled and Extended Release of a Model Protein from a Microsphere-Hydrogel Drug Delivery System. Ann Biomed Eng 2015; 43:2609-17. [DOI: 10.1007/s10439-015-1314-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
|
27
|
Drapala PW, Jiang B, Chiu YC, Mieler WF, Brey EM, Kang-Mieler JJ, Pérez-Luna VH. The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins. Pharm Res 2014; 31:742-53. [PMID: 24022682 DOI: 10.1007/s11095-013-1195-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/21/2013] [Indexed: 12/29/2022]
Abstract
PURPOSE To control degradation and protein release using thermo-responsive hydrogels for localized delivery of anti-angiogenic proteins. METHODS Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and crosslinked with poly(ethylene glycol)-co-(L-lactic acid) diacrylate (Acry-PLLA-b-PEG-b-PLLA-Acry) were synthesized via free radical polymerization in the presence of glutathione, a chain transfer agent (CTA) added to modulate their degradation and release properties. Immunoglobulin G (IgG) and the recombinant proteins Avastin® and Lucentis® were encapsulated in these hydrogels and their release was studied. RESULTS The encapsulation efficiency of IgG was high (75-87%) and decreased with CTA concentration. The transition temperature of these hydrogels was below physiological temperature, which is important for minimally invasive therapies involving these materials. The toxicity from unreacted monomers and free radical initiators was eliminated with a minimum of three buffer extractions. Addition of CTA accelerated degradation and resulted in complete protein release. Glutathione caused the degradation products to become solubilized even at 37°C. Hydrogels prepared without glutathione did not disintegrate nor released protein completely after 3 weeks at 37°C. PEGylation of IgG postponed the burst release effect. Avastin® and Lucentis® released from degraded hydrogels retained their biological activity. CONCLUSIONS These systems offer a promising platform for the localized delivery of proteins.
Collapse
|
28
|
Kang-Mieler JJ, Osswald CR, Mieler WF. Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv 2014; 11:1647-60. [PMID: 24975820 DOI: 10.1517/17425247.2014.935338] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Recent advances in pharmacological therapies to treat ocular diseases such as glaucoma, age-related macular degeneration, diabetic macular edema and retinal vascular occlusions have greatly improved the prognosis for these diseases. Due to these advances in pharmacological therapy, there is a great deal of interest in minimally invasive delivery methods, which has generated rapid developments in the field of ocular drug delivery. AREAS COVERED This review will summarize currently available and recent developments for ocular drug delivery to both the anterior and posterior segments. Modes of delivery, including topical, systemic, transcleral/periocular and intravitreal, will be discussed and corresponding examples will be given. This review will highlight the advantages and disadvantages of each mode of delivery and discuss strategies to address these issues. EXPERT OPINION An ideal therapy should maintain effective levels of drug for the intended duration of treatment following a single application, yet a significant number of months of therapy may be required. There are numerous approaches under investigation to improve treatment options. From the use of novel biomaterial implants and depots for sustained release, to prodrug formations, to iontophoresis to improve drug delivery, the main emphasis will continue to be placed on less invasive, longer acting, sustained release formulations in the treatment of numerous ocular disorders.
Collapse
Affiliation(s)
- Jennifer J Kang-Mieler
- Illinois Institute of Technology, Department of Biomedical Engineering , Chicago, IL 60616 , USA
| | | | | |
Collapse
|
29
|
Miao L, Lu M, Yang C, Zhang Y, Shen T, Ma J. Preparation and microstructural analysis of poly(ethylene oxide) comb-type grafted poly(N-isopropyl acrylamide) hydrogels crosslinked by poly(ϵ-caprolactone). J Appl Polym Sci 2012. [DOI: 10.1002/app.38172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Jiang B, Larson JC, Drapala PW, Pérez-Luna VH, Kang-Mieler JJ, Brey EM. Investigation of lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater 2011; 100:668-76. [DOI: 10.1002/jbm.b.31991] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/13/2011] [Accepted: 09/20/2011] [Indexed: 01/02/2023]
|
31
|
Turturro SB, Guthrie MJ, Appel AA, Drapala PW, Brey EM, Pérez-Luna VH, Mieler WF, Kang-Mieler JJ. The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function. Biomaterials 2011; 32:3620-6. [DOI: 10.1016/j.biomaterials.2011.01.058] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 02/06/2023]
|