1
|
Micro-Macro Scale Relationship in Creep Deformation of Ultra High Molecular Weight Polyethylene. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Raman spectroscopy reveals creep and wear rate of e-beam-sterilized conventional UHMWPE tibial inserts. J Mech Behav Biomed Mater 2020; 110:103902. [DOI: 10.1016/j.jmbbm.2020.103902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/01/2020] [Accepted: 05/30/2020] [Indexed: 11/19/2022]
|
3
|
Hiejima Y, Kida T, Takeda K, Igarashi T, Nitta KH. Microscopic structural changes during photodegradation of low-density polyethylene detected by Raman spectroscopy. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Mechanical wear and oxidative degradation analysis of retrieved ultra high molecular weight polyethylene acetabular cups. J Mech Behav Biomed Mater 2018; 79:314-323. [DOI: 10.1016/j.jmbbm.2018.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/03/2018] [Indexed: 11/19/2022]
|
5
|
Pezzotti G. Raman spectroscopy of biomedical polyethylenes. Acta Biomater 2017; 55:28-99. [PMID: 28359859 DOI: 10.1016/j.actbio.2017.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022]
Abstract
With the development of three-dimensional Raman algorithms for local mapping of oxidation and plastic strain, and the ability to resolve molecular orientation patterns with microscopic spatial resolution, there is an opportunity to re-examine many of the foundations on which our understanding of biomedical grade ultra-high molecular weight polyethylenes (UHMWPEs) are based. By implementing polarized Raman spectroscopy into an automatized tool with an improved precision in non-destructively resolving Euler angles, oxidation levels, and microscopic strain, we become capable to make accurate and traceable measurements of the in vitro and in vivo tribological responses of a variety of commercially available UHMWPE bearings for artificial hip and knee joints. In this paper, we first review the foundations and the main algorithms for Raman analyses of oxidation and strain of biomedical polyethylene. Then, we critically re-examine a large body of Raman data previously collected on different polyethylene joint components after in vitro testing or in vivo service, in order to shed new light on an area of particular importance to joint orthopedics: the microscopic nature of UHMWPE surface degradation in the human body. A complex scenario of physical chemistry appears from the Raman analyses, which highlights the importance of molecular-scale phenomena besides mere microstructural changes. The availability of the Raman microscopic probe for visualizing oxidation patterns unveiled striking findings related to the chemical contribution to wear degradation: chain-breaking and subsequent formation of carboxylic acid sites preferentially occur in correspondence of third-phase regions, and they are triggered by emission of dehydroxylated oxygen from ceramic oxide counterparts. These findings profoundly differ from more popular (and simplistic) notions of mechanistic tribology adopted in analyzing joint simulator data. Statement of Significance This review was dedicated to the theoretical and experimental evaluation of the commercially available biomedical polyethylene samples by Raman spectroscopy with regard to their molecular textures, oxidative patterns, and plastic strain at the microscopic level in the three dimensions of the Euclidean space. The main achievements could be listed, as follow: (i) visualization of molecular patterns at the surface of UHMWPE bearings operating against metallic components; (ii) differentiation between wear and creep deformation in retrievals; (iii) non-destructive mapping of oxidative patterns; and, (iv) the clarification of chemical interactions between oxide/non-oxide ceramic heads and advanced UHMWPE liners.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan; Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, 565-0871 Osaka, Japan; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, 602-0841 Kyoto, Japan.
| |
Collapse
|
6
|
Wang H, Xu L, Li R, Hu J, Wang M, Wu G. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Puppulin L, Miura Y, Casagrande E, Hasegawa M, Marunaka Y, Tone S, Sudo A, Pezzotti G. Validation of a protocol based on Raman and infrared spectroscopies to nondestructively estimate the oxidative degradation of UHMWPE used in total joint arthroplasty. Acta Biomater 2016; 38:168-78. [PMID: 27131572 DOI: 10.1016/j.actbio.2016.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED As a matter of fact, the in vivo oxidative degradation of highly cross-linked polyethylene (HXLPE) still remains one of the limiting factors that affect the long term survivorship of joint replacements. Recent studies clearly pointed out that also the new generation of highly cross-linked and remelted polyethylene components in total hip and knee replacement underwent unexpected oxidation after 5-10years of implantation. The standard methodology to investigate the oxidation of polyethylene (PE) relies on the use of infrared spectroscopy, which, if from one hand is a reliable technique for the detection of oxidized species containing carbonyl group, on the other hand it is not capable of discriminating the fraction of carboxyl acids that is responsible for chain scission and subsequent deterioration of the mechanical properties of the polymer. In the present study we validate a new protocol based on Raman spectroscopy, which is suitable on assessing the structural degradation of polyethylene induced by oxidation. Following in vitro accelerated aging experiments, the oxidation index (OI) of different commercially available HXLPEs, as calculated by infrared spectroscopy according to ASTM standard, has been univocally correlated to the most severe variation of crystalline phase (αc), as calculated by Raman spectroscopy. In each material, locations with equal values of OI showed different degree of recrystallization induced by chain scission, confirming that infrared spectroscopy might overestimate the effective mechanical degradation of the polymer. In addition, as compared to the standards based on infrared spectroscopy, this new method of assessing oxidation enables to investigate the degradation occurring on the original surface of HXLPE components, due to the nondestructive nature of Raman spectroscopy and its high spatial resolution. STATEMENT OF SIGNIFICANCE In the present study we validate a new protocol based on Raman spectroscopy, which is suitable on assessing the structural degradation of polyethylene induced by oxidation. In fact, the standard methodology to investigate the oxidation in polyethylene relies on the use of infrared spectroscopy, which is capable of detecting the presence of oxidized species containing carbonyl group, the main products of oxidation in polyolefins. If from one hand this technique enables quantitative analysis of oxidation, on the other hand it is not capable of discriminating the fraction of species with carbonyl groups responsible for the chain scission. In fact, esters, ketones and carboxyl acids are products of oxidation with carbonyl groups commonly formed on polyethylene at the end of the oxidative cascade initiated by the presence of free radicals, but only the latter are responsible for the chain scission and the subsequent deterioration of the mechanical properties. The oxidation index as obtained according to the ASTM standards is not univocally correlated to a certain degree of mechanical deterioration, but, in simple words, two retrievals with the same amount of carbonyl groups might have had different degradation of the mechanical properties. Recrystallization is a direct consequence of the reduction of molecular weight that occurs after chain scission. Raman spectroscopy (RS) is a viable non-destructive method to assess the fraction of crystalline phase in polyethylene and, due to its high spatial resolution, is perfectly suitable to analyze the microstructural modification at the mesoscopic scale, where the effects of oxidation manifest themselves. The aim of the present paper is twofold: i) to compare the microstructural modifications caused by in vitro oxidation on 5 different types of polyethylene currently available on the market of joint replacements; ii) to establish a protocol based on the comparative analysis of IR and RS results to obtain a phenomenological correlation capable to judge the mechanical deterioration of the material induced by the oxidative degradation.
Collapse
|
8
|
In-vivo degradation of middle-term highly cross-linked and remelted polyethylene cups: Modification induced by creep, wear and oxidation. J Mech Behav Biomed Mater 2015. [PMID: 26202469 DOI: 10.1016/j.jmbbm.2015.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study Raman (RS) and Fourier Transform Infrared (FT-IR) spectroscopic techniques were exploited to study 11 retrieved liners made of remelted highly cross-linked polyethylene (HXLPE), with the intent to elucidate their in-vivo mechanical and chemical degradation. The retrievals had different follow-ups, ranging from a few months to 7 years of implantation time and belong to the first generation of highly cross-linked and remelted polyethylene clinically introduced in 1999, but still currently implanted. Raman assessments enabled to discriminate contributes of wear and creep on the total reduction of thickness in different locations of the cup. According to our results, although the most of the viscoelastic deformation occurred during the first year (bedding-in period), it progressed during the steady wear state up to 7 years with much lower but not negligible rate. Overall, the wear rate of this remelted HXLPE liner was low. Preliminary analysis on microtomed sections of the liners after in-vivo and in-vitro accelerated aging (ASTM F2003-02) enabled to obtain a phenomenological correlation between the oxidation index (OI) and the amount of orthorhombic phase fraction (αc), which can be easily non-destructively measured by RS. Profiles of αc obtained from different locations of the cups were used to judge the oxidative degradation of the 11 retrievals, considering also the ex-vivo time elapsed from the revision surgery to the spectroscopic experiments. Low but measurable level of oxidation was detected in all the short-term retrievals, while in the middle-term samples peaks of OI were observed in the subsurface (up to OI=4.5), presumably induced by the combined effect of mechanical stress, lipid absorption and prolonged ex-vivo shelf-aging in air.
Collapse
|
9
|
Takahashi Y, Yamamoto K, Pezzotti G. Effects of vitamin E blending on plastic deformation mechanisms of highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) in total hip arthroplasty. Acta Biomater 2015; 15:227-36. [PMID: 25560613 DOI: 10.1016/j.actbio.2014.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/27/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
The molecular mobility and crystalline texture development in highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) blended with antioxidant vitamin E (VE, dl-α-tocopherol) were studied via uniaxial compression at room temperature by means of confocal/polarized Raman spectroscopy. The results were compared to morphological analyses under the same compression conditions performed on HXL-UHMWPE prepared in exactly the same way but blending VE into the polyethylene resin (VE-free HXL-UHMWPE). These comparative analyses allow us to evaluate the physical role of VE in morphological alterations of HXL-UHMWPE induced by compression deformation, which can greatly affect its micromechanical behavior. Molecular rearrangement and phase transitions in crystalline and non-crystalline phase, i.e. amorphous and intermediate (third) phase, were found to be part of a reconstruction process after plastic deformation in the samples. Although VE-blended HXL-UHMWPE exhibited more pronounced molecular mobility, as evidenced by its significant deformation-induced texturing, crystallinity change was totally inhibited by the presence of VE during deformation. On the other hand, amorphous-to-intermediate phase transition was confirmed. VE-free HXL-UHMWPE also presented significant crystallization after deformation, but its surface texture evolution occurred to a much lesser extent. This study suggests that the addition of VE induced earlier activation of compression deformation modes in crystalline and non-crystalline phases (e.g. chain slip, interlamellar shear and rotation) due to an increase in polyethylene chain mobility.
Collapse
|
10
|
Takahashi Y, Shishido T, Yamamoto K, Masaoka T, Kubo K, Tateiwa T, Pezzotti G. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint. J Mech Behav Biomed Mater 2014; 42:43-53. [PMID: 25460925 DOI: 10.1016/j.jmbbm.2014.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components.
Collapse
Affiliation(s)
- Yasuhito Takahashi
- Department of Orthopaedic Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan; Department of Bone and Joint Biomaterial Research, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Takaaki Shishido
- Department of Orthopaedic Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Kengo Yamamoto
- Department of Orthopaedic Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Toshinori Masaoka
- Department of Orthopaedic Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Kosuke Kubo
- Department of Orthopaedic Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Toshiyuki Tateiwa
- Department of Orthopaedic Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
| |
Collapse
|
11
|
Pezzotti G. Bioceramics for Hip Joints: The Physical Chemistry Viewpoint. MATERIALS (BASEL, SWITZERLAND) 2014; 7:4367-4410. [PMID: 28788682 PMCID: PMC5455897 DOI: 10.3390/ma7064367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 11/16/2022]
Abstract
Which intrinsic biomaterial parameter governs and, if quantitatively monitored, could reveal to us the actual lifetime potential of advanced hip joint bearing materials? An answer to this crucial question is searched for in this paper, which identifies ceramic bearings as the most innovative biomaterials in hip arthroplasty. It is shown that, if in vivo exposures comparable to human lifetimes are actually searched for, then fundamental issues should lie in the physical chemistry aspects of biomaterial surfaces. Besides searching for improvements in the phenomenological response of biomaterials to engineering protocols, hip joint components should also be designed to satisfy precise stability requirements in the stoichiometric behavior of their surfaces when exposed to extreme chemical and micromechanical conditions. New spectroscopic protocols have enabled us to visualize surface stoichiometry at the molecular scale, which is shown to be the key for assessing bioceramics with elongated lifetimes with respect to the primitive alumina biomaterials used in the past.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8126, Japan.
- Department of Orthopedic Research, Loma Linda University, 11406 Loma Linda Drive, Suite 606 Loma Linda, CA 92354, USA.
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, Kyoto 602-0841, Japan .
| |
Collapse
|
12
|
Puppulin L, Sugano N, Zhu W, Pezzotti G. Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components. J Mech Behav Biomed Mater 2014; 31:86-99. [PMID: 23706989 DOI: 10.1016/j.jmbbm.2013.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 10/26/2022]
|
13
|
Pezzotti G, Yamamoto K. Artificial hip joints: The biomaterials challenge. J Mech Behav Biomed Mater 2014; 31:3-20. [DOI: 10.1016/j.jmbbm.2013.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/29/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
|
14
|
Failure analysis of sandwich-type ceramic-on-ceramic hip joints: A spectroscopic investigation into the role of the polyethylene shell component. J Mech Behav Biomed Mater 2014; 31:55-67. [DOI: 10.1016/j.jmbbm.2013.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/14/2013] [Indexed: 11/23/2022]
|