1
|
Liang X, Yu B, Ye L, Lin D, Zhang W, Zhong HJ, He J. Recent Advances in Quaternary Ammonium Monomers for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:345. [PMID: 38255513 PMCID: PMC10820831 DOI: 10.3390/ma17020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Resin-based dental materials have been one of the ideal choices among various materials in the treatment of dental caries. However, resin-based dental materials still have some drawbacks, such as the lack of inherent antibacterial activity. Extensive research has been conducted on the use of novel quaternary ammonium monomers (QAMs) to impart antibacterial activity to dental materials. This review provides a comprehensive overview of the recent advances in quaternary ammonium monomers (QAMs) for dental applications. The current progress and limitations of QAMs are discussed based on the evolution of their structures. The functional diversification and enhancement of QAMs are presented. QAMs have the potential to provide long-term antibacterial activity in dental resin composites, thereby prolonging their service life. However, there is a need to balance antibacterial performance with other material properties and the potential impact on the oral microbiome and general health. Finally, the necessity for further scientific progress in the development of novel quaternary ammonium monomers and the optimization of dental resin formulations is emphasized.
Collapse
Affiliation(s)
- Xiaoxu Liang
- Foundation Department, Guangzhou Maritime University, Guangzhou 510725, China;
| | - Biao Yu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Liuqi Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Danlei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Wen Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Jingwei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
Aliakbari E, Nural Y, Zamiri RE, Yabalak E, Mahdavi M, Yousefi V. Design and synthesis of silver nanoparticle anchored poly(ionic liquid)s mesoporous for controlled anticancer drug delivery with antimicrobial effect. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:90-102. [PMID: 36201749 DOI: 10.1080/09603123.2022.2131743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Owing to the importance of drug delivery, the synthesis of advanced nanomaterials for targeted drug delivery plays a considerable role in medical treatment. One of the most prominent nanomaterials is PIL, which is used as controlled anticancer drug delivery and significantly improves the half-life and antitumor effect. In this study, a stable and effective drug carrier containing silver nanoparticles was reported for the drug delivery with an antimicrobial effect, and the capability of the drug carrier . PILP was synthesized by radical polymerization, and silver nanoparticles were anchored into PIL voids by in-situ reduction, which developed the adsorption antimicrobial effect and capability of the drug carrier. The synthesized nanocomposite was characterized. The Ag-PILP nanocomposite showed antibacterial activityagainst both E. coli and S. aureus with a MIC of 256 μg/mL, and bactericidal activity against E. coli and S. aureus strains with a MBC of 256 and 512 μg/mL, respectively.
Collapse
Affiliation(s)
- Ehsan Aliakbari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Reza Eghdam Zamiri
- Department of Radiation Oncology, Shahid Madani Hospital, Tabriz University of Medical Science, Tabriz, Iran
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey
| | - Mehri Mahdavi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Yousefi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Gupta S, Puttaiahgowda YM, Parambil AM, Kulal A. Fabrication of crosslinked piperazine polymer coating: Synthesis, characterization and its activity towards microorganisms. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Recent advances in development of poly (dimethylaminoethyl methacrylate) antimicrobial polymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Renganath Rao R, Sathish M, Raghava Rao J. Research advances in the fabrication of biosafety and functional leather: A way-forward for effective management of COVID-19 outbreak. JOURNAL OF CLEANER PRODUCTION 2021; 310:127464. [PMID: 35475140 PMCID: PMC9023137 DOI: 10.1016/j.jclepro.2021.127464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/07/2021] [Accepted: 05/08/2021] [Indexed: 06/14/2023]
Abstract
With the recent events following the pandemic COVID-19, global awareness about the use of biosafety materials has been in raise. Leather industry being a major commodity-driven sector, its role in addressing the issues concerning the safe use of leather products has become inevitable for the sustainability of the industry. A significant number of researches have been conducted to fabricate bio-safe leather by incorporating different types of antimicrobial agents during leather manufacturing. Besides, the increasing diversity in the development of synthetic materials and the impact of COVID-19 outbreak on automotive industry may create more demand from customers for incorporating different functionalities in leather without losing its inherent properties. Some of the key functionalities discussed include resistance to microbial growth, self-cleaning through superhydrophobicity and photocatalysis, thermal regulation, flame retardance and scented leather. This review focusses on the fabrication of such advanced functional leather materials over the past decade with special emphasis on antimicrobial leather. Some of the key factors elaborated in the review include the state of art approaches for the preparation of functional materials, mode of incorporation of the same into the leather matrix, the mechanism behind with a perspective on the challenges involved in fabrication for real-world applications. A major outcome of this review is that even though several kinds of cutting edge researches are happening in the field of leather manufacturing, most of them were not validated for its practical applicability and sustainability of the proposed solution. This could be majorly attributed to the cost involved in fabrication of such materials, which forms a crucial factor when it comes to a mass production industry such as leather. Also, the researchers should concentrate on the toxicity of the fabricated materials which can impede the process of adopting such emerging and need of the hour technologies in the near future. Knowledge obtained from this review on fabrication of bio-safety leather against bacteria, mold and fungi would help further to integrate the antiviral property into the same which is a global need. Also, fabrication of functionalized leather would open new avenues for leather manufactures to venture into the development of advanced leather products such as flexible electronics, radiation shielding and fire fighting garments etc.
Collapse
Affiliation(s)
- Ramesh Renganath Rao
- Leather Process Technology Department, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, 600020, Tamil Nadu, India
| | - Murali Sathish
- Regional Centre for Extension and Development, CSIR-Central Leather Research Institute, Kolkata, 700046, West Bengal, India
| | - Jonnalagadda Raghava Rao
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| |
Collapse
|
6
|
Jalageri MD, Nagaraja A, Puttaiahgowda YM. Piperazine based antimicrobial polymers: a review. RSC Adv 2021; 11:15213-15230. [PMID: 35424074 PMCID: PMC8698587 DOI: 10.1039/d1ra00341k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial infections are a life threatening concern in several areas, which include the biomedical sector, healthcare products, water purification systems, and food packaging. Polymers with low molecular weight bioactive agents or disinfectants help the scientific community to reduce the lethality rate caused by pathogenic microbes. Antimicrobial polymeric approach is one of the advanced approaches made by researchers in concern with the problems associated with small molecules that restrict their applications in broad spectrum. History reveals the synthesis of numerous antimicrobial polymers using various antimicrobial agents but lacks the use of piperazine molecule, which is of pharmaceutical importance. This review gives an insight into the current and future perspective for the development of piperazine-based antimicrobial polymers.
Collapse
Affiliation(s)
- Manohara Dhulappa Jalageri
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576 104 India
| | - Akshatha Nagaraja
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576 104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576 104 India
| |
Collapse
|
7
|
Koufakis E, Manouras T, Anastasiadis SH, Vamvakaki M. Film Properties and Antimicrobial Efficacy of Quaternized PDMAEMA Brushes: Short vs Long Alkyl Chain Length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3482-3493. [PMID: 32168453 DOI: 10.1021/acs.langmuir.9b03266] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes bearing quaternary ammonium groups of different alkyl chain lengths (ACLs) were prepared and assessed as biocidal coatings. For the synthesis of the antimicrobial brushes, first well-defined PDMAEMA chains were grown by surface-initiated atom transfer radical polymerization on glass and silicon substrates. Next, the tertiary amine groups of the polymer brushes were modified via a quaternization reaction, using alkyl halides, to obtain the cationic polymers. The polymer films were characterized by Fourier-transform infrared spectroscopy, ellipsometry, atomic force microscopy, and water contact angle measurements. The effect of the ACL of the quaternary ammonium groups on the physicochemical properties of the films as well as the contact killing efficiency of the surfaces against representative Gram-positive and Gram-negative bacteria was investigated. A hydrophilic to hydrophobic transition of the surfaces and a significant decrease of the degree of quaternization of the DMAEMA moieties was found upon increasing the ACL of the quaternization agent above six carbon atoms, allowing the wettability, the thickness, and the pH-response of the brushes to be tuned via a facile postpolymerization, quaternization reaction. At the same time, antimicrobial tests revealed that the hydrophilic polymer brushes exhibited enhanced bactericidal activity against Escherichia coli and Bacillus cereus, whereas the hydrophobic surfaces showed a significant deterioration of the in vitro bactericidal performance. Our results elucidate the antimicrobial action of quaternized polymer brushes, dictating the appropriate choice of the ACL of the quaternization agent for the development of coatings that effectively inhibit biofilm formation on surfaces.
Collapse
Affiliation(s)
- Eleftherios Koufakis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Theodore Manouras
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
| | - Spiros H Anastasiadis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Chemistry, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Crete, Greece
| |
Collapse
|
8
|
Guan Y, Zhang H, Zheng A, Wei D, Hu J, Wang Z, Xu X. Permanent antimicrobial silicone rubber based on bonding guanidine polymers. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Guan
- School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and Technology Shanghai China 200237
| | - Huanyao Zhang
- School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and Technology Shanghai China 200237
| | - Anna Zheng
- School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and Technology Shanghai China 200237
| | - Dafu Wei
- School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and Technology Shanghai China 200237
| | - Jian Hu
- School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and Technology Shanghai China 200237
| | - Zhenzhen Wang
- School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and Technology Shanghai China 200237
| | - Xiang Xu
- School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and Technology Shanghai China 200237
| |
Collapse
|
9
|
Jing Z, Xiu K, Sun Y. Amide-Based Cationic Polymeric N-Halamines: Synthesis, Characterization, and Antimicrobial and Biofilm-Binding Properties. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ze Jing
- Department of Chemistry University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Kemao Xiu
- Department of Chemistry University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Yuyu Sun
- Department of Chemistry University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
10
|
Mulas K, Stefanowicz Z, Oledzka E, Sobczak M. Current state of the polymeric delivery systems of fluoroquinolones – A review. J Control Release 2019; 294:195-215. [DOI: 10.1016/j.jconrel.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/29/2023]
|
11
|
He M, Zhou Y, Nie S, Lu P, Xiao H, Tong Y, Liao Q, Wang R. Synthesis of Amphiphilic Copolymers Containing Ciprofloxacin and Amine Groups and Their Antimicrobial Performances As Revealed by Confocal Laser-Scanning Microscopy and Atomic-Force Microscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8406-8414. [PMID: 30016099 DOI: 10.1021/acs.jafc.8b01759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two series of amphiphilic antimicrobial copolymers containing ciprofloxacin (CPF) and amine functional groups have been synthesized via free-radical copolymerization. The chemical structures of the different amine groups and the copolymer compositions have been systematically varied to study how the structure of the copolymer exerts an influence on the antibacterial activity. The viability of Escherichia coli in the presence of antimicrobial copolymers was observed by confocal laser-scanning microscopy (CLSM). CLSM as well as atomic-force microscopy (AFM) were applied to visualize changes in morphology of bacteria treated with antimicrobial copolymers and elucidate the antimicrobial mechanism of the antimicrobial copolymers. Morphological changes of bacteria observed via AFM and CLSM demonstrated that the antibacterial mechanism was due to the disruption of the bacterial membrane. The destruction of the cell membrane was also confirmed by the leakage of intracellular components, which had a strong absorbance at 260 nm. The inhibitory process was monitored by UV absorption dynamically.
Collapse
Affiliation(s)
- Man He
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Shuangxi Nie
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , China
| | - Huining Xiao
- Department of Chemical Engineering and Limerick Pulp and Paper Centre , University of New Brunswick , Fredericton , NB E3B 5A3 , Canada
| | - Yuan Tong
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Qiang Liao
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Ruili Wang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
12
|
Jing Z, Xiu K, Ren X, Sun Y. Cationic polymeric N-halamines bind onto biofilms and inactivate adherent bacteria. Colloids Surf B Biointerfaces 2018; 166:210-217. [DOI: 10.1016/j.colsurfb.2018.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/10/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
13
|
Molavi H, Joukani FA, Shojaei A. Ethylenediamine Grafting to Functionalized NH2–UiO-66 Using Green Aza-Michael Addition Reaction to Improve CO2/CH4 Adsorption Selectivity. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00372] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hossein Molavi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 11155-8630 Tehran, Iran
| | - Farhad Ahmadi Joukani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 11155-8630 Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| |
Collapse
|
14
|
van de Lagemaat M, Grotenhuis A, van de Belt-Gritter B, Roest S, Loontjens TJ, Busscher HJ, van der Mei HC, Ren Y. Comparison of methods to evaluate bacterial contact-killing materials. Acta Biomater 2017; 59:139-147. [PMID: 28666886 DOI: 10.1016/j.actbio.2017.06.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022]
Abstract
Cationic surfaces with alkylated quaternary-ammonium groups kill adhering bacteria upon contact by membrane disruption and are considered increasingly promising as a non-antibiotic based way to eradicate bacteria adhering to surfaces. However, reliable in vitro evaluation methods for bacterial contact-killing surfaces do not yet exist. More importantly, results of different evaluation methods are often conflicting. Therefore, we compared five methods to evaluate contact-killing surfaces. To this end, we have copolymerized quaternary-ammonium groups into diurethane dimethacrylate/glycerol dimethacrylate (UDMA/GDMA) and determined contact-killing efficacies against five different Gram-positive and Gram-negative strains. Spray-coating bacteria from an aerosol onto contact-killing surfaces followed by air-drying as well as ASTM E2149-13a (American Society for Testing and Materials) were found unsuitable, while the Petrifilm® system and JIS Z 2801 (Japanese Industrial Standards) were found to be excellent methods to evaluate bacterial contact-killing surfaces. It is recommended however, that these methods be used in combination with a zone of inhibition on agar assay to exclude that leakage of antimicrobials from the material interferes with the contact-killing ability of the surface. STATEMENT OF SIGNIFICANCE Bacterial adhesion to surfaces of biomaterials implants can be life-threatening. Antimicrobials to treat biomaterial-associated infections often fail due to the bacterial biofilm-mode-of-growth or are ineffective due to antibiotic-resistance of causative organisms. Positively-charged, quaternized surfaces can kill bacteria upon contact and are promising as a non-antibiotic-based treatment of biomaterial-associated infections. Reliable methods to determine efficacies of contact-killing surfaces are lacking, however. Here, we show that three out of five methods compared, including an established ASTM, are unsuitable. Methods found suitable should be used in combination with a zone-of-inhibition-assay to establish absence of antimicrobial leaching, potentially interfering with contact-killing. Identification of suitable assays for evaluating bacterial contact-killing will greatly assist this emerging field as an alternative for antibiotic-based treatment of biomaterial-associated-infections.
Collapse
|
15
|
Teratanatorn P, Hoskins R, Swift T, Douglas CWI, Shepherd J, Rimmer S. Binding of Bacteria to Poly(N-isopropylacrylamide) Modified with Vancomycin: Comparison of Behavior of Linear and Highly Branched Polymers. Biomacromolecules 2017; 18:2887-2899. [PMID: 28731679 DOI: 10.1021/acs.biomac.7b00800] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The behavior of a linear copolymer of N-isopropylacrylamide with pendant vancomycin functionality was compared to an analogous highly branched copolymer with vancomycin functionality at the chain ends. Highly branched poly(N-isopropylacrylamide) modified with vancomycin (HB-PNIPAM-van) was synthesized by functionalization of the HB-PNIPAM, prepared using reversible addition-fragmentation chain transfer polymerization. Linear PNIPAM with pendant vancomycin functionality (L-PNIPAM-van) was synthesized by functionalization of poly(N-isopropylacrylamide-co-vinyl benzoic acid). HB-PNIPAM-van aggregated S. aureus effectively, whereas the L-PNIPAM-van polymer did not. It was found that when the HB-PNIPAM-van was incubated with S. aureus the resultant phase transition provided an increase in the intensity of fluorescence of a solvatochromic dye, nile red, added to the system. In contrast, a significantly lower increase in fluorescence intensity was obtained when L-PNIPAM-van was incubated with S. aureus. These data showed that the degree of desolvation of HB-PNIPAM-van was much greater than the desolvation of the linear version. Using microcalorimetry, it was shown that there were no significant differences in the affinities of the polymer ligands for d-Ala-d-Ala and therefore differences in the interactions with bacteria were associated with changes in the probability of access of the polymer bound ligands to the d-Ala-d-Ala dipeptide. The data support the hypothesis that generation of polymer systems that respond to cellular targets, for applications such as cell targeting, detection of pathogens etc., requires the use of branched polymers with ligands situated at the chain ends.
Collapse
Affiliation(s)
- Pavintorn Teratanatorn
- Dental School, University of Sheffield , 19 Claremont Crescent, Sheffield, South Yorkshire, U.K. , S10 2TA
| | - Richard Hoskins
- School of Chemistry and Biosciences, University of Bradford , Bradford, West Yorkshire, U.K. , BD1 1DP
| | - Thomas Swift
- School of Chemistry and Biosciences, University of Bradford , Bradford, West Yorkshire, U.K. , BD1 1DP
| | - C W Ian Douglas
- Dental School, University of Sheffield , 19 Claremont Crescent, Sheffield, South Yorkshire, U.K. , S10 2TA
| | - Joanna Shepherd
- Dental School, University of Sheffield , 19 Claremont Crescent, Sheffield, South Yorkshire, U.K. , S10 2TA
| | - Stephen Rimmer
- School of Chemistry and Biosciences, University of Bradford , Bradford, West Yorkshire, U.K. , BD1 1DP
| |
Collapse
|
16
|
Watson E, Tatara AM, Kontoyiannis DP, Mikos AG. Inherently Antimicrobial Biodegradable Polymers in Tissue Engineering. ACS Biomater Sci Eng 2016; 3:1207-1220. [PMID: 33440510 DOI: 10.1021/acsbiomaterials.6b00501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many of the strategies currently being explored in the field of tissue engineering involve the combination of cells and degradable engineered scaffolds for the regeneration of biological tissues. However, infection of the wound or the scaffold itself results in failure of healing. Therefore, a new area of development in the field is the synthesis of polymer-based scaffolds that inherently have the ability to resist microbial infection as degradation occurs and new tissue replaces the scaffold. These scaffolds, defined as inherently antimicrobial biodegradable polymers (IABPs), can be classified based on their monomeric components as follows: (1) traditional antimicrobials (such as beta-lactams, fluoroquinolones, glycopeptides, and aminoglycosides), (2) naturally derived compounds (such as extracellular matrix components, chitosan, and antimicrobial peptides), and (3) novel synthetic antimicrobials. After validation of chemical synthesis as well as physicochemical characterization of a newly created IABP, thorough in vitro and in vivo assays must be conducted to ensure antimicrobial efficacy as well as biocompatibility as a tissue-engineered scaffold system. In this review, we will introduce existing IABPs, discuss the current platforms that have been developed for the synthesis of IABPs, and highlight future directions as well as challenges in the field.
Collapse
Affiliation(s)
- Emma Watson
- Department of Bioengineering, Rice University, Houston, Texas 77005, Unites States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Alexander M Tatara
- Department of Bioengineering, Rice University, Houston, Texas 77005, Unites States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas 77005, Unites States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, Unites States
| |
Collapse
|
17
|
He M, Zhou Y, Xiao H, Lu P. Amphiphilic cationic copolymers with ciprofloxacin: preparation and antimicrobial activities. NEW J CHEM 2016. [DOI: 10.1039/c5nj02145f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic copolymers with ciprofloxacin and primary amine salt copolymers applied to cellulose fibers showed excellent antimicrobial activities.
Collapse
Affiliation(s)
- Man He
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
- Department of Chemical Engineering & Limerick Pulp and Paper Centre
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory
| | - Huining Xiao
- Department of Chemical Engineering & Limerick Pulp and Paper Centre
- University of New Brunswick
- Fredericton
- Canada
| | - Peng Lu
- Department of Chemical Engineering & Limerick Pulp and Paper Centre
- University of New Brunswick
- Fredericton
- Canada
| |
Collapse
|
18
|
Antibacterial/Antiviral Property and Mechanism of Dual-Functional Quaternized Pyridinium-type Copolymer. Polymers (Basel) 2015. [DOI: 10.3390/polym7111514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Xue Y, Xiao H, Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci 2015; 16:3626-55. [PMID: 25667977 PMCID: PMC4346917 DOI: 10.3390/ijms16023626] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 01/22/2023] Open
Abstract
Polymeric materials containing quaternary ammonium and/or phosphonium salts have been extensively studied and applied to a variety of antimicrobial-relevant areas. With various architectures, polymeric quaternary ammonium/phosphonium salts were prepared using different approaches, exhibiting different antimicrobial activities and potential applications. This review focuses on the state of the art of antimicrobial polymers with quaternary ammonium/phosphonium salts. In particular, it discusses the structure and synthesis method, mechanisms of antimicrobial action, and the comparison of antimicrobial performance between these two kinds of polymers.
Collapse
Affiliation(s)
- Yan Xue
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Yi Zhang
- School of Environment Science & Engineering, North China Electric Power University, Baoding 071003, China.
| |
Collapse
|
20
|
He M, Xiao H, Zhou Y, Lu P. Synthesis, characterization and antimicrobial activities of water-soluble amphiphilic copolymers containing ciprofloxacin and quaternary ammonium salts. J Mater Chem B 2015; 3:3704-3713. [DOI: 10.1039/c5tb00029g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel water-soluble amphiphilic copolymers with ciprofloxacin are prepared by copolymerization of methacrylate monomers containing ciprofloxacin and quaternary ammonium salt monomers.
Collapse
Affiliation(s)
- Man He
- Department of Chemical Engineering & Limerick Pulp and Paper Centre
- University of New Brunswick
- Fredericton
- Canada
- School of Chemistry and Chemical Engineering
| | - Huining Xiao
- Department of Chemical Engineering & Limerick Pulp and Paper Centre
- University of New Brunswick
- Fredericton
- Canada
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory
| | - Peng Lu
- Department of Chemical Engineering & Limerick Pulp and Paper Centre
- University of New Brunswick
- Fredericton
- Canada
| |
Collapse
|
21
|
Ni H, Jiang T, Hu P, Han Z, Lu X, Ye P. Self-decontaminating properties of fluorinated copolymers integrated with ciprofloxacin for synergistically inhibiting the growth ofEscherichia coli. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1920-45. [DOI: 10.1080/09205063.2014.960696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Qiu T, Zhang L, Xing XD. Synthesis and antibacterial activities of novel polymerizable Gemini quaternary ammonium monomers. Des Monomers Polym 2014. [DOI: 10.1080/15685551.2014.918010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Ting Qiu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lu Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiao-Dong Xing
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
23
|
Xue Y, Pan Y, Xiao H, Zhao Y. Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Adv 2014. [DOI: 10.1039/c4ra08634a] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A novel quaternary phosphonium-type cationic polyacrylamide, which can kill bacteria by destroying the cell membrane, as well as inactivate adenovirus by blocking the viral entry, is developed.
Collapse
Affiliation(s)
- Yan Xue
- Department of Chemical Engineering
- University of New Brunswick
- Fredericton, Canada
| | - Yuanfeng Pan
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning, China
| | - Huining Xiao
- Department of Chemical Engineering
- University of New Brunswick
- Fredericton, Canada
| | - Yi Zhao
- School of Environmental Sci & Eng
- North China Electric Power University
- Baoding, China
| |
Collapse
|