1
|
A comparison of stress reactivity between BTBR and C57BL/6J mice: an impact of early-life stress. Exp Brain Res 2023; 241:687-698. [PMID: 36670311 DOI: 10.1007/s00221-022-06541-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023]
Abstract
Early-life stress (ELS) is associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and can increase the risk of psychiatric disorders later in life. The aim of this study was to investigate the influence of ELS on baseline HPA axis functioning and on the response to additional stress in adolescent male mice of strains C57BL/6J and BTBR. As a model of ELS, prolonged separation of pups from their mothers (for 3 h once a day: maternal separation [MS]) was implemented. To evaluate HPA axis activity, we assessed serum corticosterone levels and mRNA expression of corticotropin-releasing hormone (Crh) in the hypothalamus, of steroidogenesis genes in adrenal glands, and of an immediate early gene (c-Fos) in both tissues at baseline and immediately after 1 h of restraint stress. HPA axis activity at baseline did not depend on the history of ELS in mice of both strains. After the exposure to the acute restraint stress, C57BL/6J-MS mice showed less pronounced upregulation of Crh and of corticosterone concentration as compared to the control, indicating a decrease in stress reactivity. By contrast, BTBR-MS mice showed stronger upregulation of c-Fos in the hypothalamus and adrenal glands as compared to controls, thus pointing to greater activation of these organs in response to the acute restraint stress. In addition, we noted that BTBR mice are more stress reactive (than C57BL/6J mice) because they exhibited greater upregulation of corticosterone, c-Fos, and Cyp11a1 in response to the acute restraint stress. Taken together, these results indicate strain-specific and situation-dependent effects of ELS on HPA axis functioning and on c-Fos expression.
Collapse
|
2
|
Khantakova JN, Bondar NP, Sapronova AA, Reshetnikov VV. Delayed effects of neonatal immune activation on brain neurochemistry and hypothalamic-pituitary-adrenal axis functioning. Eur J Neurosci 2022; 56:5931-5951. [PMID: 36156830 DOI: 10.1111/ejn.15831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022]
Abstract
During the postnatal period, the brain is highly sensitive to stress and inflammation, which are hazardous to normal growth and development. There is increasing evidence that inflammatory processes in the early postnatal period increase the risk of psychopathologies and cognitive impairment later in life. On the other hand, there are few studies on the ability of infectious agents to cause long-term neuroinflammation, leading to changes in the hypothalamic-pituitary-adrenal axis functioning and an imbalance in the neurotransmitter system. In this review, we examine short- and long-term effects of neonatal-induced inflammation in rodents on glutamatergic, GABAergic and monoaminergic systems and on hypothalamic-pituitary-adrenal axis activity.
Collapse
Affiliation(s)
- Julia N Khantakova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' (RIFCI), Novosibirsk, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anna A Sapronova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
3
|
Kraimi N, Lormant F, Calandreau L, Kempf F, Zemb O, Lemarchand J, Constantin P, Parias C, Germain K, Rabot S, Philippe C, Foury A, Moisan MP, Carvalho AV, Coustham V, Dardente H, Velge P, Chaumeil T, Leterrier C. Microbiota and stress: a loop that impacts memory. Psychoneuroendocrinology 2022; 136:105594. [PMID: 34875421 DOI: 10.1016/j.psyneuen.2021.105594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022]
Abstract
Chronic stress and the gut microbiota appear to comprise a feed-forward loop, which contributes to the development of depressive disorders. Evidence suggests that memory can also be impaired by either chronic stress or microbiota imbalance. However, it remains to be established whether these could be a part of an integrated loop model and be responsible for memory impairments. To shed light on this, we used a two-pronged approach in Japanese quail: first stress-induced alterations in gut microbiota were characterized, then we tested whether this altered microbiota could affect brain and memory function when transferred to a germ-free host. The cecal microbiota of chronically stressed quails was found to be significantly different from that of unstressed individuals with lower α and β diversities and increased Bacteroidetes abundance largely represented by the Alistipes genus, a well-known stress target in rodents and humans. The transfer of this altered microbiota into germ-free quails decreased their spatial and cue-based memory abilities as previously demonstrated in the stressed donors. The recipients also displayed increased anxiety-like behavior, reduced basal plasma corticosterone levels and differential gene expression in the brain. Furthermore, cecal microbiota transfer from a chronically stressed individual was sufficient to mimic the adverse impact of chronic stress on memory in recipient hosts and this action may be related to the Alistipes genus. Our results provide evidence of a feed-forward loop system linking the microbiota-gut-brain axis to stress and memory function and suggest that maintaining a healthy microbiota could help alleviate memory impairments linked to chronic stress.
Collapse
Affiliation(s)
- Narjis Kraimi
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Flore Lormant
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | | | - Florent Kempf
- INRAE, ISP, Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Olivier Zemb
- INRAE-INPT-ENSAT, Université de Toulouse, GenPhySE, 31326 Castanet-Tolosan, France
| | - Julie Lemarchand
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Paul Constantin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Céline Parias
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Karine Germain
- INRAE, UE1206 Systèmes d'Elevage Avicoles Alternatifs, Le Magneraud, 17700 Surgères, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Aline Foury
- INRAE, UMR 1286, Université de Bordeaux, Nutrition et Neurobiologie Intégrée, 33076 Bordeaux, France
| | - Marie-Pierre Moisan
- INRAE, UMR 1286, Université de Bordeaux, Nutrition et Neurobiologie Intégrée, 33076 Bordeaux, France
| | | | | | - Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Philippe Velge
- INRAE, ISP, Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Thierry Chaumeil
- INRAE, UE Plate-Forme d'Infectiologie Expérimentale, 37380 Nouzilly, France
| | | |
Collapse
|
4
|
Bian Y, Ma Y, Ma Q, Yang L, Zhu Q, Li W, Meng L. Prolonged Maternal Separation Induces the Depression-Like Behavior Susceptibility to Chronic Unpredictable Mild Stress Exposure in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6681397. [PMID: 34368355 PMCID: PMC8342142 DOI: 10.1155/2021/6681397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Early life stress is an important determinant for developing depression later in life. It is reported that maternal separation (MS) could trigger stress sensitivity in adulthood when exposed to stress again. However, it could also result in resilience to stress-induced depression. The conclusions are contradictory. To address this issue, C57BL/6N newborn pups were exposed to either daily short MS (MS for 15 min per day; MS15) or prolonged MS (MS for 180 min per day; MS180) from the first day postpartum (PD1) to PD21. Adult mice were then subjected to chronic unpredictable mild stress (CUMS) exposure from PD64 to PD105. The behavior tests such as the forced swimming test (FST), tail suspension test (TST), and open-field test were performed once a week during this time. Besides, the hippocampal neurosteroids, serum stress hormones, and hippocampal monoamine neurotransmitters were measured at PD106. We found that mice in the MS180 group displayed the reduced struggling time and the increased latency to immobility in both FST and TST. However, there was no significant difference in the MS15 group. The levels of hippocampal neurosteroids (progesterone and allopregnanolone) were decreased, and the serum levels of corticosterone, corticotropin-releasing hormone, and adrenocorticotropic hormone were overexpressed in the MS180 group. Besides, the expressions of monoamine neurotransmitters such as 5-hydroxytryptamine and 5-hydroxy indole acetic acid significantly decreased in the MS180 group, but not in the MS15 group. All findings revealed that prolonged MS, rather than short MS, could increase the susceptibility to depression-like behavior when reexposed to stress in adulthood. However, future studies are warranted to identify the underlying neuromolecular mechanism of the MS experience on the susceptibility to adult stress reexposure.
Collapse
Affiliation(s)
- Yaoyao Bian
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- TCM Nursing Intervention Laboratory of Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanting Ma
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qian Ma
- Department of Nursing, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinmei Zhu
- School of Medicine, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Wenlin Li
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lingdong Meng
- Department of Nephrology, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou 225002, China
| |
Collapse
|
5
|
Repeated and single maternal separation specifically alter microglial morphology in the prefrontal cortex and neurogenesis in the hippocampus of 15-day-old male mice. Neuroreport 2020; 31:1256-1264. [DOI: 10.1097/wnr.0000000000001544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Maternal Separation Early in Life Alters the Expression of Genes Npas4 and Nr1d1 in Adult Female Mice: Correlation with Social Behavior. Behav Neurol 2020; 2020:7830469. [PMID: 32190129 PMCID: PMC7072106 DOI: 10.1155/2020/7830469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Early-life stress affects neuronal plasticity of the brain regions participating in the implementation of social behavior. Our previous studies have shown that brief and prolonged separation of pups from their mothers leads to enhanced social behavior in adult female mice. The goal of the present study was to characterize the expression of genes (which are engaged in synaptic plasticity) Egr1, Npas4, Arc, and Homer1 in the prefrontal cortex and dorsal hippocampus of adult female mice with a history of early-life stress. In addition, we evaluated the expression of stress-related genes: glucocorticoid and mineralocorticoid receptors (Nr3c1 and Nr3c2) and Nr1d1, which encodes a transcription factor (also known as REVERBα) modulating sociability and anxiety-related behavior. C57Bl/6 mice were exposed to either maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal days 2 through 14. In adulthood, the behavior of female mice was analyzed by some behavioral tests, and on the day after the testing of social behavior, we measured the gene expression. We found increased Npas4 expression only in the prefrontal cortex and higher Nr1d1 expression in both the prefrontal cortex and dorsal hippocampus of adult female mice with a history of MS. The expression of the studied genes did not change in HD female mice. The expression of stress-related genes Nr3c1 and Nr3c2 was unaltered in both groups. We propose that the upregulation of Npas4 and Nr1d1 in females with a history of early-life stress and the corresponding enhancement of social behavior may be regarded as an adaptation mechanism reversing possible aberrations caused by early-life stress.
Collapse
|
7
|
Newhouse DJ, Barcelo-Serra M, Tuttle EM, Gonser RA, Balakrishnan CN. Parent and offspring genotypes influence gene expression in early life. Mol Ecol 2019; 28:4166-4180. [PMID: 31421010 DOI: 10.1111/mec.15205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Parents can have profound effects on offspring fitness. Little, however, is known about the mechanisms through which parental genetic variation influences offspring physiology in natural systems. White-throated sparrows (Zonotrichia albicollis, WTSP) exist in two genetic morphs, tan and white, controlled by a large polymorphic supergene. Morphs mate disassortatively, resulting in two pair types: tan male × white female (T × W) pairs, which provide biparental care and white male × tan female (W × T) pairs, which provide female-biased care. To investigate how parental composition impacts offspring, we performed RNA-seq on whole blood of WTSP nestlings sampled from nests of both pair types. Parental pair type had a large effect on nestling gene expression, with 881 genes differentially expressed (DE) and seven correlated gene coexpression modules. The DE genes and modules expressed at higher levels in W × T nests with female-biased parental care function in metabolism and stress-related pathways resulting from the overrepresentation of proteolysis and stress-response genes (e.g., SOD2, NR3C1). These results show that parental genotypes and/or associated behaviours influence nestling physiology, and highlight avenues of further research investigating the ultimate implications for the maintenance of this polymorphism. Nestlings also exhibited morph-specific gene expression, with 92 differentially expressed genes, comprising immunity genes and genes encompassed by the supergene. Remarkably, we identified the same regulatory hub genes in these blood-derived expression networks as were previously identified in adult WTSP brains (EPM2A, BPNT1, TAF5L). These hub genes were located within the supergene, highlighting the importance of this gene complex in structuring regulatory networks across diverse tissues.
Collapse
Affiliation(s)
- Daniel J Newhouse
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | |
Collapse
|
8
|
Bondar NP, Reshetnikov VV, Burdeeva KV, Merkulova TI. Effect of neonatal dexamethasone treatment on cognitive abilities of adult male mice and gene expression in the hypothalamus. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The early postnatal period is critical for the development of the nervous system. Stress during this period causes negative long-term effects, which are manifested at both behavioral and molecular levels. To simulate the elevated glucocorticoid levels characteristic of early-life stress, in our study we used the administration of dexamethasone, an agonist of glucocorticoid receptors, at decreasing doses at the first three days of life (0.5, 0.3, 0.1 mg/kg, s.c.). In adult male mice with neonatal dexamethasone treatment, an increase in the relative weight of the adrenal glands and a decrease in body weight were observed, while the basal level of corticosterone remained unchanged. Dexamethasone treatment in early life had a negative impact on the learning and spatial memory of adult mice in the Morris water maze. We analyzed the effect of elevated glucocorticoid levels in early life on the expression of the Crh, Avp, Gr, and Mr genes involved in the regulation of the HPA axis in the hypothalami of adult mice. The expression level of the mineralocorticoid receptor gene (Mr) was significantly downregulated, and the glucocorticoid receptor gene (Gr) showed a tendency towards decreased expression (p = 0.058) in male mice neonatally treated with dexamethasone, as compared with saline administration. The expression level of the Crh gene encoding corticotropin-releasing hormone was unchanged, while the expression of the vasopressin gene (Avp) was increased in response to neonatal administration of dexamethasone. The obtained results demonstrate a disruption of negative feedback regulation of the HPA axis, which involves glucocorticoid and mineralocorticoid receptors, at the level of the hypothalamus. Malfunction of the HPA axis as a result of activation of the glucocorticoid system in early life may cause the development of cognitive impairment in the adult mice.
Collapse
Affiliation(s)
- N. P. Bondar
- Institute of Cytology and Genetics, SB RAS;
Novosibirsk State University
| | | | | | - T. I. Merkulova
- Institute of Cytology and Genetics, SB RAS;
Novosibirsk State University
| |
Collapse
|
9
|
Reshetnikov VV, Ryabushkina YA, Bondar NP. Impact of mothers’ experience and early‐life stress on aggression and cognition in adult male mice. Dev Psychobiol 2019; 62:36-49. [DOI: 10.1002/dev.21887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Vasiliy V. Reshetnikov
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
| | - Yulia A. Ryabushkina
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk State University Novosibirsk Russia
| | - Natalia P. Bondar
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk State University Novosibirsk Russia
| |
Collapse
|
10
|
Reshetnikov VV, Kovner AV, Lepeshko AA, Pavlov KS, Grinkevich LN, Bondar NP. Stress early in life leads to cognitive impairments, reduced numbers of CA3 neurons and altered maternal behavior in adult female mice. GENES BRAIN AND BEHAVIOR 2018; 19:e12541. [DOI: 10.1111/gbb.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Vasiliy V. Reshetnikov
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
| | - Anna V. Kovner
- Laboratory of Molecular Mechanisms of Pathological ProcessesInstitute of Cytology and Genetics, SB RAS Novosibirsk Russia
| | - Arina A. Lepeshko
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk National Research State University Novosibirsk Russia
| | - Konstantin S. Pavlov
- Laboratory of Experimental Models of Emotional PathologiesInstitute of Physiology and Basic Medicine Novosibirsk Russia
| | - Larisa N. Grinkevich
- Laboratory of Regulation of Functions of Brain NeuronsPavlov Institute of Physiology, RAS St. Petersburg Russia
| | - Natalya P. Bondar
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk National Research State University Novosibirsk Russia
| |
Collapse
|