1
|
Guizzardi R, Zamuner A, Brun P, Dettin M, Natalello A, Cipolla L. Thymosin‐β4, and Human Vitronectin peptides Grafted to Collagen Tune Adhesion or VEGF Gene Expression in Human Cell Lines**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Guizzardi
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
- Present address: Tecnoservizi ambientali s.r.l
| | - Annj Zamuner
- Dept. of Industrial Engineering University of Padova Via Marzolo, 9 35131 Padova Italy
| | - Paola Brun
- Dept. of Molecular Medicine University of Padova Via Gabelli, 63 35121 Padova Italy
| | - Monica Dettin
- Dept. of Industrial Engineering University of Padova Via Marzolo, 9 35131 Padova Italy
| | - Antonino Natalello
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
| | - Laura Cipolla
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
| |
Collapse
|
2
|
Lecarpentier Y, Kindler V, Bochaton-Piallat ML, Sakic A, Claes V, Hébert JL, Vallée A, Schussler O. Tripeptide Arg-Gly-Asp (RGD) modifies the molecular mechanical properties of the non-muscle myosin IIA in human bone marrow-derived myofibroblasts seeded in a collagen scaffold. PLoS One 2019; 14:e0222683. [PMID: 31574082 PMCID: PMC6772000 DOI: 10.1371/journal.pone.0222683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs) were obtained from human bone marrow and amplified in cultures supplemented with human platelet lysate in order to generate myofibroblasts. When MSCs were seeded in solid collagen scaffolds, they differentiated into myofibroblasts that were observed to strongly bind to the substrate, forming a 3D cell scaffold network that developed tension and shortening after KCl stimulation. Moreover, MSC-laden scaffolds recapitulated the Frank-Starling mechanism so that active tension increased in response to increases in the initial length of the contractile system. This constituted a bioengineering tissue that exhibited the contractile properties observed in both striated and smooth muscles. By using the A. F. Huxley formalism, we determined the myosin crossbridge (CB) kinetics of attachment (f1) and detachment (g1 and g2), maximum myosin ATPase activity, molar myosin concentration, unitary CB force and maximum CB efficiency. CB kinetics were dramatically slow, characterizing the non-muscle myosin type IIA (NMMIIA) present in myofibroblasts. When MSCs were seeded in solid collagen scaffolds functionalized with Arg-Gly-Asp (RGD), contractility increased and CB kinetics were modified, whereas the unitary NMMIIA-CB force and maximum CB efficiency did not change. In conclusion, we provided a non-muscle bioengineering tissue whose molecular mechanical characteristics of NMMIIA were very close to those of a non-muscle contractile tissue such as the human placenta.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien, Meaux, France
- * E-mail:
| | - Vincent Kindler
- Department of Specialties in Medicine, Hematology Service, Geneva University Hospital, Switzerland Faculty of Medicine, Geneva, Switzerland
| | - Marie-Luce Bochaton-Piallat
- Department of Pathology and Immunology, Centre Médical Universitaire Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Antonija Sakic
- Department of Pathology and Immunology, Centre Médical Universitaire Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Victor Claes
- Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jean-Louis Hébert
- Institut de Cardiologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Alexandre Vallée
- Paris-Descartes University, Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hôtel-Dieu Hospital, Paris, France
- DRCI (Délégation à la Recherche Clinique et Industrielle) Hôpital Foch, Suresnes, France
| | - Olivier Schussler
- Department of Cardiovascular Surgery, Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
3
|
Kaczmarek B, Sionkowska A. Chitosan/collagen blends with inorganic and organic additive-A review. ADVANCES IN POLYMER TECHNOLOGY 2017. [DOI: 10.1002/adv.21912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- B. Kaczmarek
- Department of Chemistry of Biomaterials and Cosmetics; Faculty of Chemistry; Nicolaus Copernicus University in Toruń; Toruń Poland
| | - A. Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics; Faculty of Chemistry; Nicolaus Copernicus University in Toruń; Toruń Poland
| |
Collapse
|
4
|
J A, Kuttappan S, Keyan KS, Nair MB. Evaluation of osteoinductive and endothelial differentiation potential of Platelet-Rich Plasma incorporated Gelatin-Nanohydroxyapatite Fibrous Matrix. J Biomed Mater Res B Appl Biomater 2016; 104:771-81. [DOI: 10.1002/jbm.b.33605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/22/2015] [Accepted: 12/03/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Anjana J
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Amrita Vishwa Vidyapeetham University; Kochi 682041 Kerala India
| | - Shruthy Kuttappan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Amrita Vishwa Vidyapeetham University; Kochi 682041 Kerala India
| | - Kripa S. Keyan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Amrita Vishwa Vidyapeetham University; Kochi 682041 Kerala India
| | - Manitha B. Nair
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Amrita Vishwa Vidyapeetham University; Kochi 682041 Kerala India
| |
Collapse
|
5
|
Weston LA, Bauer KM, Skube SB, Hummon AB. Selective, bead-based global peptide capture using a bifunctional cross-linker. Anal Chem 2013; 85:10675-9. [PMID: 24117407 DOI: 10.1021/ac401825m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peptides are important species for a variety of biological functions. Detection and analysis of these molecules can be complicated by the presence of background matrix or contaminants. Therefore, a selective method to capture peptides could provide researchers with an option to isolate these remarkable species. Our goal was to perform a set of experiments that would validate the concept of a novel, selective peptide capture, whereby peptides are isolated on functionalized magnetic beads through the use of the heterobifunctional cross-linker, Sulfo-LC-SPDP. Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to monitor mass changes associated with the cross-linking reaction. MALDI-TOF MS was then used to monitor conjugation between the cross-linked peptides and sulfhydryl magnetic beads by analyzing supernatant solutions for the presence or absence of cross-linked peptide. Through these experiments, we have proof of concept data confirming that peptides can be isolated on sulfhydryl magnetic beads by using Sulfo-LC-SPDP. This method is a suitable selective global peptide isolation strategy to separate the molecules from contaminating species or sample matrix. This novel method has a variety of potential applications and detection methods.
Collapse
Affiliation(s)
- Leigh A Weston
- Department of Chemistry and Biochemistry, University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | | | | | | |
Collapse
|
6
|
Widhe M, Johansson U, Hillerdahl CO, Hedhammar M. Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials 2013; 34:8223-34. [PMID: 23916396 DOI: 10.1016/j.biomaterials.2013.07.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022]
Abstract
Silk matrices have previously been shown to possess general properties governing cell viability. However, many cell types also require specific adhesion sites for successful in vitro culture. Herein, we have shown that cell binding motifs can be genetically fused to a partial spider silk protein, 4RepCT, without affecting its ability to self-assemble into stable matrices directly in a physiological-like buffer. The incorporated motifs were exposed in the formed matrices, and available for binding of integrins. Four different human primary cell types; fibroblasts, keratinocytes, endothelial cells and Schwann cells, were applied to the matrices and investigated under serum-free culture conditions. Silk matrices with cell binding motifs, especially RGD, were shown to promote early adherence of cells, which formed stress fibers and distinct focal adhesion points. Schwann cells acquired most spread-out morphology on silk matrices with IKVAV, where significantly more viable cells were found, also when compared to wells coated with laminin. This strategy is thus suitable for development of matrices that allow screening of various cell binding motifs and their effect on different cell types.
Collapse
Affiliation(s)
- Mona Widhe
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, S-75123 Uppsala, Sweden
| | | | | | | |
Collapse
|
7
|
Collagen scaffolds with or without the addition of RGD peptides support cardiomyogenesis after aggregation of mouse embryonic stem cells. In Vitro Cell Dev Biol Anim 2011; 47:653-64. [PMID: 21938587 DOI: 10.1007/s11626-011-9453-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023]
Abstract
Embryonic stem (ES) cell-based cardiac muscle repair using tissue-engineered scaffolds is an attractive prospective treatment option for patients suffering from heart disease. In this study, our aim was to characterize mouse ES cell-derived cardiomyocytes growing on collagen I/III scaffolds, modified with the adhesion peptides arginine-glycine-aspartic acid (RGD). Mouse ES-derived embryoid bodies (EBs) differentiated efficiently into beating cardiomyocytes on the collagen scaffolds. QPCR analysis and immunofluorescent staining showed that cardiomyocytes expressed cardiac muscle-related transcripts and proteins. Analysis of cardiomyocytes by electron microscopy identified muscle fiber bundles and Z bands, typical of ES-derived cardiomyocytes. No differences were detected between the collagen + RGD and collagen control scaffolds. ES cells that were not differentiated as EBs prior to seeding on the scaffold, did not differentiate into cardiomyocytes. These results indicate that a collagen I/III scaffold supports cardiac muscle development and function after EB formation, and that this scaffold appears suitable for future in vivo testing. The addition of the RGD domain to the collagen scaffold did not improve cardiomyocyte development or viability, indicating that RGD signaling to integrins was not a rate-limiting event for cardiomyogenesis from EBs seeded on a collagen scaffold.
Collapse
|
8
|
Abstract
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
9
|
Dickinson LE, Kusuma S, Gerecht S. Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol Biosci 2010; 11:36-49. [PMID: 20967797 DOI: 10.1002/mabi.201000245] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/30/2010] [Indexed: 01/14/2023]
Abstract
The biochemical cues and topographical architecture of the extracellular environment extensively influence ES cell fate. The microenvironment surrounding the developing embryo presents these instructive cues in a complex and interactive manner in order to guide cell fate decisions. Current stem cell research aims to reconstruct this multifaceted embryonic niche to recapitulate development in vitro. This review focuses on 2D and 3D differentiation niches created from natural and synthetic biomaterials to guide the differentiation of ES cells toward specific lineages. Biomaterials engineered to present specific physical constraints are also reviewed for their role in differentiation.
Collapse
Affiliation(s)
- Laura E Dickinson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, 3400 North Charles Street, Baltimore, MD 21210, USA
| | | | | |
Collapse
|
10
|
Abstract
We present many examples of surface engineered polymeric biomaterials with nanosize modified layers, controlled protein adsorption, and cellular interactions potentially applicable for tissue and/or blood contacting devices, scaffolds for cell culture and tissue engineering, biosensors, biological microchips as well as approaches to their preparation.
Collapse
|
11
|
Immobilization of decellularized valve scaffolds with Arg-Gly-Asp-containing peptide to promote myofibroblast adhesion. ACTA ACUST UNITED AC 2009; 29:503-7. [DOI: 10.1007/s11596-009-0422-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Indexed: 11/26/2022]
|
12
|
Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nat Rev Cardiol 2009; 6:240-9. [PMID: 19234502 DOI: 10.1038/ncpcardio1451] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/06/2009] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cardiac tissue engineering might be useful in treatment of diseased myocardium or cardiac malformations. The creation of functional, biocompatible contractile tissues, however, remains challenging. We hypothesized that coupling of arginine-glycine-aspartic acid-serine (RGD+) adhesion peptides would improve cardiomyocyte viability and differentiation and contractile performance of collagen-cell scaffolds. METHODS Clinically approved collagen scaffolds were functionalized with RGD+ cells and seeded with cardiomyocytes. Contractile performance, cardiomyocyte viability and differentiation were analyzed at days 1 and 8 and/or after culture for 1 month. RESULTS The method used for the RGD+ cell-collagen scaffold coupling enabled the following features: high coupling yields and complete washout of excess reagent and by-products with no need for chromatography; spectroscopic quantification of RGD+ coupling; a spacer arm of 36 A, a length reported as optimal for RGD+-peptide presentation and favorable for integrin-receptor clustering and subsequent activation. Isotonic and isometric mechanical parameters, either spontaneous or electrostimulated, exhibited good performance in RGD+ constructs. Cell number and viability was increased in RGD+ scaffolds, and we saw good organization of cell contractile apparatus with occurrence of cross-striation. CONCLUSIONS We report a novel method of engineering a highly effective collagen-cell scaffold based on RGD+ peptides cross-linked to a clinically approved collagen matrix. The main advantages were cell contractile performance, cardiomyocyte viability and differentiation.
Collapse
|
13
|
Hiraoka M, Kato K, Nakaji-Hirabayashi T, Iwata H. Enhanced Survival of Neural Cells Embedded in Hydrogels Composed of Collagen and Laminin-Derived Cell Adhesive Peptide. Bioconjug Chem 2009; 20:976-83. [DOI: 10.1021/bc9000068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Makiko Hiraoka
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichi Kato
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tadashi Nakaji-Hirabayashi
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroo Iwata
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
14
|
Monteiro GA, Fernandes AV, Sundararaghavan HG, Shreiber DI. Positively and negatively modulating cell adhesion to type I collagen via peptide grafting. Tissue Eng Part A 2009; 17:1663-73. [PMID: 19196133 DOI: 10.1089/ten.tea.2008.0346] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The biophysical interactions between cells and type I collagen are controlled by the level of cell adhesion, which is dictated primarily by the density of ligands on collagen and the density of integrin receptors on cells. The native adhesivity of collagen was modulated by covalently grafting glycine-arginine-glycine-aspartic acid-serine (GRGDS), which includes the bioactive RGD sequence, or glycine-arginine-aspartic acid-glycine-serine (GRDGS), which includes the scrambled RDG sequence, to collagen with the hetero-bifunctional coupling agent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The peptide-grafted collagen self-assembled into a fibrillar gel with negligible changes in gel structure and rheology. Rat dermal fibroblasts (RDFs) and human smooth muscle cells demonstrated increased levels of adhesion on gels prepared from RGD-grafted collagen, and decreased levels of adhesion on RDG-grafted collagen. Both cell types demonstrated an increased ability to compact free-floating RGD-grafted collagen gels, and an impaired ability to compact RDG-grafted gels. RDF migration on and within collagen was increased with RDG-grafted collagen and decreased with RGD-grafted collagen, and dose-response experiments indicated a biphasic response of RDF migration to adhesion. Smooth muscle cells demonstrated similar, though not statistically significant, trends. The ability to both positively and negatively modulate cell adhesion to collagen increases the versatility of this natural biomaterial for regenerative therapies.
Collapse
Affiliation(s)
- Gary A Monteiro
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
15
|
Dong N, Shi J, Hu P, Chen S, Hong H. Current progress on scaffolds of tissue engineering heart valves. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11684-008-0043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Wang AY, Foss CA, Leong S, Mo X, Pomper MG, Yu SM. Spatio-temporal modification of collagen scaffolds mediated by triple helical propensity. Biomacromolecules 2008; 9:1755-63. [PMID: 18547103 PMCID: PMC3095440 DOI: 10.1021/bm701378k] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Functionalized collagen that incorporates exogenous compounds may offer new and improved biomaterials applications, especially in drug-delivery, multifunctional implants, and tissue engineering. To that end, we developed a specific and reversible collagen modification technique utilizing associative chain interactions between synthetic collagen mimetic peptide (CMP) [(ProHypGly) chi; Hyp = hydroxyproline] and type I collagen. Here we show temperature-dependent collagen binding and subsequent release of a series of CMPs with varying chain lengths indicating a triple helical propensity driven binding mechanism. The binding took place when melted, single-strand CMPs were allowed to fold while in contact with reconstituted type I collagens. The binding affinity is highly specific to collagen as labeled CMP bound to nanometer scale periodic positions on type I collagen fibers and could be used to selectively image collagens in ex vivo human liver tissue. When heated to physiological temperature, bound CMPs discharged from the collagen at a sustained rate that correlated with CMP's triple helical propensity, suggesting that sustainability is mediated by dynamic collagen-CMP interactions. We also report on the spatially defined modification of collagen film with linear and multi-arm poly(ethylene glycol)-CMP conjugates; at 37 degrees C, these PEG-CMP conjugates exhibited temporary cell repelling activity lasting up to 9 days. These results demonstrate new opportunities for targeting pathologic collagens for diagnostic or therapeutic applications and for fabricating multifunctional collagen coatings and scaffolds that can temporally and spatially control the behavior of cells associated with the collagen matrices.
Collapse
Affiliation(s)
- Allen Y. Wang
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Catherine A. Foss
- Department of Radiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Shirley Leong
- Department of Biomolecular and Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Xiao Mo
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Martin G. Pomper
- Department of Radiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Seungju M. Yu
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomolecular and Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
17
|
Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A. Peptide-based Biopolymers in Biomedicine and Biotechnology. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2008; 62:125-155. [PMID: 19122836 PMCID: PMC2575411 DOI: 10.1016/j.mser.2008.04.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Peptides are emerging as a new class of biomaterials due to their unique chemical, physical, and biological properties. The development of peptide-based biomaterials is driven by the convergence of protein engineering and macromolecular self-assembly. This review covers the basic principles, applications, and prospects of peptide-based biomaterials. We focus on both chemically synthesized and genetically encoded peptides, including poly-amino acids, elastin-like polypeptides, silk-like polymers and other biopolymers based on repetitive peptide motifs. Applications of these engineered biomolecules in protein purification, controlled drug delivery, tissue engineering, and biosurface engineering are discussed.
Collapse
Affiliation(s)
- Dominic Chow
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281
- Center for Biologically Inspired Materials and Materials Systems, Duke University, Durham, NC
| | - Michelle L. Nunalee
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC
| | - Dong Woo Lim
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC
| | - Andrew J. Simnick
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281
- Center for Biologically Inspired Materials and Materials Systems, Duke University, Durham, NC
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC
| |
Collapse
|
18
|
Chung HJ, Park TG. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 2007; 59:249-62. [PMID: 17482310 DOI: 10.1016/j.addr.2007.03.015] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 03/28/2007] [Indexed: 01/08/2023]
Abstract
A wide range of polymeric scaffolds have been intensively studied for use as implantable and temporal devices in tissue engineering. Biodegradable and biocompatible scaffolds having a highly open porous structure and good mechanical strength are needed to provide an optimal microenvironment for cell proliferation, migration, and differentiation, and guidance for cellular in-growth from host tissue. A variety of natural and synthetic polymeric scaffolds can be fabricated in the form of a solid foam, nanofibrous matrix, microsphere, or hydrogel. Biodegradable porous scaffolds can be surface engineered to provide an extracellular matrix mimicking environment for better cell adhesion and tissue in-growth. Furthermore, scaffolds can be designed to release bioactive molecules, such as growth factors, DNA, or drugs, in a sustained manner to facilitate tissue regeneration. This paper reviews the current status of surface engineered and drug releasing scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | |
Collapse
|
19
|
Kipper MJ, Kleinman HK, Wang FW. Covalent surface chemistry gradients for presenting bioactive peptides. Anal Biochem 2007; 363:175-84. [PMID: 17339030 DOI: 10.1016/j.ab.2007.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/18/2022]
Abstract
The activation of surfaces by covalent attachment of bioactive moieties is an important strategy for improving the performance of biomedical materials. Such techniques have also been used as tools to study cellular responses to particular chemistries of interest. The creation of gradients of covalently bound chemistries is a logical extension of this technique. Gradient surfaces may permit the rapid screening of a large range of concentrations in a single experiment. In addition, the biological response to the gradient itself may provide new information on receptor requirements and cell signaling. The current work describes a rapid and flexible technique for the covalent addition of bioactive peptide gradients to a surface or gel and a simple fluorescence technique for assaying the gradient. In this technique, bioactive peptides with a terminal cysteine are bound via a heterobifunctional coupling agent to primary amine-containing surfaces and gels. A gradient in the coupling agent is created on the surfaces or gels by varying the residence time of the coupling agent across the surface or gel, thereby controlling the extent of reaction. We demonstrate this technique using poly(l-lysine)-coated glass surfaces and fibrin gels. Once the surface or gel has been activated by the addition of the coupling agent gradient, the bioactive peptide is added. Quantitation of the gradient is achieved by measuring the reaction kinetics of the coupling agent with the surface or gel of interest. This can be done either by fluorescently labeling the coupling agent (in the case of surfaces) or by spectrophotometrically detecting the release of pyridine-2-thione, which is produced when the thiol-reactive portion of the coupling agent reacts. By these methods, we can obtain reasonably precise estimates for the peptide gradients without using expensive spectroscopic or radiolabeling techniques. Validation with changes in fibroblast cell migration behavior across a bioactive peptide gradient illustrates preservation of peptide function as well as the usefulness of this technique.
Collapse
Affiliation(s)
- Matt J Kipper
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
20
|
Jou CH, Lin SM, Yun L, Hwang MC, Yu DG, Chou WL, Lee JS, Yang MC. Biofunctional properties of polyester fibers grafted with chitosan and collagen. POLYM ADVAN TECHNOL 2007. [DOI: 10.1002/pat.866] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Pallu S, Bourget C, Bareille R, Labrugère C, Dard M, Sewing A, Jonczyk A, Vernizeau M, Christine Durrieu M, Amédée-Vilamitjana J. The effect of cyclo-DfKRG peptide immobilization on titanium on the adhesion and differentiation of human osteoprogenitor cells. Biomaterials 2005; 26:6932-40. [PMID: 15950276 DOI: 10.1016/j.biomaterials.2005.04.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 04/20/2005] [Indexed: 11/30/2022]
Abstract
This study takes place in the field of development of a bioactive surface of titanium alloys. In this paper, titanium was functionalized with cyclo-DfKRG peptide by coating or grafting using different anchors (thiol or phosphonate) as spacers between the surface and the peptide. Cell adhesion, and differentiation of human osteoprogenitor (HOP) cells arising from human bone marrow were investigated. Our results seem to demonstrate that cyclo-DfKRG peptide coating with a phosphonate anchor and grafting procedure contributes to higher cell adhesion and a strong ALP and Cbfa1 mRNA expression, after 10 days of cell seeding. At the contrary, this peptide coated with a thiol anchor stimulates differentiation of HOP within 3 days of culture.
Collapse
Affiliation(s)
- Stéphane Pallu
- INSERM, U577, Université Victor Segalen, Bordeaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang L, Hum M, Wang M, Li Y, Chen H, Chu C, Jiang H. Evaluation of modifying collagen matrix with RGD peptide through periodate oxidation. J Biomed Mater Res A 2005; 73:468-75. [PMID: 15900609 DOI: 10.1002/jbm.a.30363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the study is to evaluate the effect of modifying collagen matrices with Arg-Gly-Asp (RGD) peptide through periodate oxidation. The collagen matrices were modified with RGD peptide, by periodate activation. The modified collagen matrices and unmodified matrices were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and electron spectroscopy for chemical analysis (ESCA). Mesenchymal stem cells (MSCs) were used to evaluate the cell compatibility of collagen matrices. In terms of cell growth, the MSCs attached much better on the modified matrix than on the unmodified one. But there was no significant difference between two groups regarding the MSC proliferation. Compared to the unmodified matrices, the mechanical strength of the modified matrix decreased sharply, and its 3D structure was destroyed. Introducing specific RGD receptor-mediated adhesion sites on matrices obviously enhanced the MSC adhesion on collagen matrices, but the coupled method of periodate oxidation would likely result in the declination of the mechanical strength of the matrix, as well as the destruction of the matrix structure. This would affect the cell growth on the matrix, and decrease the histocompatibility of the matrices.
Collapse
Affiliation(s)
- Lihai Zhang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang AY, Mo X, Chen CS, Yu SM. Facile Modification of Collagen Directed by Collagen Mimetic Peptides. J Am Chem Soc 2005; 127:4130-1. [PMID: 15783169 DOI: 10.1021/ja0431915] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent widespread interest in the development of engineered tissue and organ replacement therapies has prompted demand for new approaches to immobilize exogenous components to natural collagen. Chemical coupling of synthetic moieties to amino acid side chains has been commonly practiced for such purposes; however, such coupling reactions are difficult to control on large proteins and are generally not conducive to modifying integrated collagen scaffolds that contain live cells and tissues. As an alternative to the conventional "covalent" modification method, we have developed a novel "physical" modification technique that is based on collagen's native ability to associate into a triple-helical molecular architecture. Here, we present a finding that collagen mimetic peptides (CMPs) of sequence -(Pro-Hyp-Gly)x- exhibit strong affinity to both native and gelatinized type I collagen under controlled thermal conditions. We also show that the cell adhesion characteristics of collagen can be readily altered by applying a poly(ethylene glycol)-CMP conjugate to a prefabricated collagen film.
Collapse
Affiliation(s)
- Allen Y Wang
- Department of Materials Science and Engineering, Biomedical Engineering, and Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
24
|
Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood vessel: The Holy Grail of peripheral vascular surgery. J Vasc Surg 2005; 41:349-54. [PMID: 15768021 DOI: 10.1016/j.jvs.2004.12.026] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Artificial blood vessels composed of viable tissue represent the ideal vascular graft. Compliance, lack of thrombogenicity, and resistance to infections as well as the ability to heal, remodel, contract, and secrete normal blood vessel products are theoretical advantages of such grafts. Three basic elements are generally required for the construction of an artificial vessel: a structural scaffold, made either of collagen or a biodegradable polymer; vascular cells, and a nurturing environment. Mechanical properties of the artificial vessels are enhanced by bioreactors that mimic the in vivo environment of the vascular cells by producing pulsatile flow. Alternative approaches include the production of fibrocollagenous tubes within the recipient's own body (subcutaneous tissue or peritoneal cavity) and the construction of an artificial vessel from acellular native tissues, such as decellularized small intestine submucosa, ureter, and allogeneic or xenogeneic arteries. This review details the most recent developments on vascular tissue engineering, summarizes the results of initial experiments on animals and humans, and outlines the current status and the challenges for the future.
Collapse
Affiliation(s)
- John D Kakisis
- Department of Vascular Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
25
|
Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003; 24:4385-415. [PMID: 12922151 DOI: 10.1016/s0142-9612(03)00343-0] [Citation(s) in RCA: 1750] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since RGD peptides (R: arginine; G: glycine; D: aspartic acid) have been found to promote cell adhesion in 1984 (Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature 309 (1984) 30), numerous materials have been RGD functionalized for academic studies or medical applications. This review gives an overview of RGD modified polymers, that have been used for cell adhesion, and provides information about technical aspects of RGD immobilization on polymers. The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed.
Collapse
Affiliation(s)
- Ulrich Hersel
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany
| | | | | |
Collapse
|
26
|
Wang YC, Lin MC, Wang DM, Hsieh HJ. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 2003; 24:1047-57. [PMID: 12504527 DOI: 10.1016/s0142-9612(02)00434-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Polyglycolide (PGA) and chitosan mixture solution was prepared using solvents of low toxicity to create novel, porous, biocompatible, degradable, and modifiable hybrid matrices for biomedical applications. The porosity of these PGA-chitosan hybrid matrices (P/C matrices) was created by a thermally induced phase separation method. Two types of the P/C hybrid matrices containing 70 wt% PGA (P/C-1 matrix) and 30 wt% PGA (P/C-2 matrix) were fabricated. Chitosan matrix was also prepared for comparison. A 35-day in vitro degradation revealed that the weight losses for the P/C-1 and P/C-2 matrices were similar ( approximately 61%), but the releases of glycolic acid from the P/C-1 and P/C-2 matrices were 95% and 60%, respectively. The P/C-1 matrix had higher porosity and higher mechanical strength than the P/C-2 and chitosan matrices. Fibroblast cells cultivated in these matrices proliferated well and the cell density was the highest in the P/C-1 matrix, followed by the chitosan and P/C-2 matrices, suggesting good biocompatibility for the P/C-1 matrix. We thereby concluded that the P/C-1 matrix, due to its high strength, porosity, biocompatibility and degradability, is a promising biomaterial. The presence of chitosan in the P/C matrices provides many amino groups for further modifications such as biomolecule conjugation and thus enhances the application potential of the P/C hybrid matrices in tissue engineering.
Collapse
Affiliation(s)
- Yu Chi Wang
- Department of Chemical Engineering, National Taiwan University, 106, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
27
|
Abstract
Tissue engineering will potentially change the practice of plastic surgery more than any other clinical specialty. It is an interdisciplinary field that promises new methods of tissue repair. There has been more than $3.5 billion invested in this field since 1990. Relevant areas of progress include advanced computing, biomaterials, cell technology, growth factor fabrication and delivery, and gene manipulation. Beneficial clinical techniques will emerge from continued investigation in each of these areas. Techniques that are developed must be scaled up to industry with products cleared by regulatory agencies and acceptable to clinicians and patients. A goal of tissue engineering is to change clinical practice, yielding improved patient outcomes and lower costs of care.
Collapse
Affiliation(s)
- Michael J Miller
- Department of Plastic Surgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 443, Houston, TX 77030, USA.
| | | |
Collapse
|
28
|
Ishihara M, Sato M, Hattori H, Saito Y, Yura H, Ono K, Masuoka K, Kikuchi M, Fujikawa K, Kurita A. Heparin-carrying polystyrene (HCPS)-bound collagen substratum to immobilize heparin-binding growth factors and to enhance cellular growth. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 56:536-44. [PMID: 11400131 DOI: 10.1002/1097-4636(20010915)56:4<536::aid-jbm1125>3.0.co;2-#] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heparin-carrying polystyrene (HCPS), consisting of low molecular weight heparin chains linked to a synthetic polystyrene core, is able to attach to polymeric surfaces. In this study, HCPS has efficiently bound to collagen-coated micro-plates and collagen membranes thereby retaining the binding of heparin-binding growth factors, such as vascular endothelial growth factor (VEGF)(165) or fibroblast growth factor (FGF)-2. Both human skin fibroblast cells and human umbilical vein endothelial cells have shown a good adherence to both collagen- and HCPS-bound collagen substrata. The growth rate of the fibroblast cells on the HCPS-bound collagen substratum in the presence of low concentrations of FGF-2 is higher than on a collagen surface. The fibroblast cells grow at a significantly higher rate on the HCPS-bound collagen substratum retained with FGF-2. Similarly, the growth rate of the endothelial cells on the HCPS-bound collagen substrata in the presence of low concentrations of either FGF-2 or VEGF(165) is higher than on collagen. The endothelial cells also grow at a significantly higher rate on the HCPS-bound collagen substratum retained with either FGF-2 or VEGF(165). These results indicate that HCPS-bound collagen substrata with various bioactive heparin-binding molecules may provide novel biomaterials controlling cellular activities such as growth and differentiation.
Collapse
Affiliation(s)
- M Ishihara
- National Defense Medical College, Research Institute, Division of Biomedical Engineering, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Tissue engineering is an interdisciplinary field that will yield new sources of tissue for clinical and research purposes in oncology. Bone is under intense investigation by this field. Relevant areas of progress are in advanced computing, biomaterials, cell technology, growth factor fabrication and delivery, and gene manipulation. Clinical techniques will emerge from continued investigation in each of these areas. Techniques that are developed must be scaled up to industry with products cleared by regulatory agencies and acceptable to clinicians and patients. The goals of tissue engineering in oncology are improved tissue models for basic cancer research and a change in clinical practice. Semin. Surg. Oncol. 19:294-301, 2000.
Collapse
Affiliation(s)
- M J Miller
- Department of Plastic Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|