1
|
Alves P, Luzio D, de Sá K, Correia I, Ferreira P. Preparation of Gel Forming Polymer-Based Sprays for First Aid Care of Skin Injuries. Gels 2024; 10:297. [PMID: 38786214 PMCID: PMC11121244 DOI: 10.3390/gels10050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the lesions, which can lead to further bleeding and tissue damage upon removal. In the present study, the development of a polymer-based gel that can be applied as a spray provides a new vision in injury protection, respecting the requirements of safety, ease, and quickness of both applicability and removal. The following polymeric sprays were developed to further obtain gels based on different polymers: hydroxypropyl cellulose (HPC), polyvinyl pyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) using polyethylene glycol (PEG) as a plasticizer. The developed sprays revealed suitable properties for use in topical injuries. A protective film was obtained when sprayed on a surface through a casting mechanism. The obtained films adhered to the surface of biological tissue (pig muscle), turning into a gel when the exudate was absorbed, and proved to be washable with saline solution and contribute to the clotting process. Moreover, biocompatibility results showed that all materials were biocompatible, as cell viability was over 90% for all the materials.
Collapse
Affiliation(s)
- Patrícia Alves
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
| | - Diana Luzio
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
| | - Kevin de Sá
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal;
| | - Ilídio Correia
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal;
| | - Paula Ferreira
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
- Applied Research Institute, Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| |
Collapse
|
2
|
Sultana T, Fahad MAA, Park M, Kwon SH, Lee BT. Physicochemical, in vitro and in vivo evaluation of VEGF loaded PCL-mPEG and PDGF loaded PCL-Chitosan dual layered vascular grafts. J Biomed Mater Res B Appl Biomater 2024; 112:e35325. [PMID: 37675952 DOI: 10.1002/jbm.b.35325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The present study has attempted to evaluate the endothelialization and smooth muscle regeneration efficiency of a novel dual-layer small-diameter vascular graft. Two types of layers (PCL-mPEG-VEGF and PCL-Chitosan-PDGF) were fabricated to find out the best layer giving endothelialization support for the lumen and unique contractile function for outer layer of blood vessels. Platelet-derived growth factor (PDGF) and chitosan were immobilized onto PCL surface by aminolysis-based surface modification technique. Besides, Poly (ethylene glycol) methyl ether (mPEG) and vascular endothelial growth factor (VEGF) were directly blended with PCL. Morphological analysis of membranes ensured consistency of average fibers diameter with native extracellular matrix. A favorable interaction of PCL-mPEG-VEGF with cow pulmonary endothelial cells (CPAEs) and PCL-Chitosan-PDGF with rat bone marrow mesenchymal stem cells (RBMSCs) was obtained during in vitro study. Controlled growth factor release patterns were found from both layers. Further, PCL-mPEG-VEGF exhibited endothelial markers expression properties from RBMSCs. Up-regulation of SMCs markers expression was significantly ensured by the PCL-Chitosan-PDGF membrane. Thus, PCL-mPEG-VEGF and PCL-Chitosan-PDGF were preferred as inner and outer layers respectively of a finally prepared tubular hybrid tissue engineered small diameter vascular graft. Finally, the dual-layer vascular graft was implanted onto a rat abdominal aorta model for 2 months. The extracted samples exhibited the presence of endothelial marker (ICAM 1) in the inner layer and smooth muscle cell marker (αSMA) in the outer layer as well as substantial amount of collagen deposition was observed in the both layers.
Collapse
Affiliation(s)
- Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Soon Ha Kwon
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Zhang A, Sun W, Liang X, Chen X, Li Y, Liu X, Chen H. The role of carboxylic groups in heparin-mimicking polymer-functionalized surfaces for blood compatibility: Enhanced vascular cell selectivity. Colloids Surf B Biointerfaces 2021; 201:111653. [PMID: 33667866 DOI: 10.1016/j.colsurfb.2021.111653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Blood compatibility is an eternal topic of biomedical materials. The effect of heparin-mimicking polymers (HMPs) on blood compatibility has been well studied, especially the synergistic effect of sugar unit and sulfonate/sulfate unit. However, carboxylic groups also play an important role in HMPs. In this work, copolymers of sodium 4-vinyl-benzenesulfonate (SS) and 2-methacrylamido glucopyranose (MAG) (poly(SS-co-MAG)) and poly(acrylate acid) (PAA) were self-assembled on Au surfaces with different feed ratios. When self-assembly of poly(SS-co-MAG) alone, the optimized feed ratio of SS and MAG for vascular cell selectivity was 1:1 (PS1M1); at this ratio the Au-PS1M1 surface showed the highest human umbilical vein endothelial cells (HUVECs) density and the lowest human umbilical vein smooth muscle cells (HUVSMCs) density. When self-assembly of PAA alone (surface designated as Au-PAA), the proliferation of both HUVECs and HUVSMCs was inhibited. Compared with either PS1M1 or PAA alone, the surfaces modified with both PAA and PS1M1 at the feed ratio of 1:1 (material designated as Au-PSM/PAA-2) showed enhanced promoting effect on HUVECs as well as enhanced inhibiting effect on HUVSMCs, indicating stronger vascular cell selectivity of carboxylic groups in the presence of sugar and sulfonate units.
Collapse
Affiliation(s)
- Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| |
Collapse
|
4
|
Cernadas T, Morgado S, Alves P, Gonçalves FAMM, Correia TR, Correia IJ, Ferreira P. Preparation of functionalized poly(caprolactone diol)/castor oils blends to be applied as photocrosslinkable tissue adhesives. J Appl Polym Sci 2020. [DOI: 10.1002/app.49092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Teresa Cernadas
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| | - Stacy Morgado
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| | - Patrícia Alves
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| | | | - Tiago R. Correia
- CICS‐UBI, Health Sciences Research CenterUniversity of Beira Interior Covilhã Portugal
| | - Ilídio J. Correia
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
- CICS‐UBI, Health Sciences Research CenterUniversity of Beira Interior Covilhã Portugal
| | - Paula Ferreira
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| |
Collapse
|
5
|
Cernadas T, Santos M, Gonçalves F, Alves P, Correia T, Correia I, Ferreira P. Functionalized polyester-based materials as UV curable adhesives. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
|
7
|
Development of UV cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering. Int J Biol Macromol 2016; 93:1539-1548. [DOI: 10.1016/j.ijbiomac.2016.05.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/19/2022]
|
8
|
Synthesis, functionalization and characterization of UV-curable lactic acid based oligomers to be used as surgical adhesives. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Ahmed AF, Zakaria KM. Synthesis, characterization, and biocompatibility of poly (acrylic acid/methyl methacrylate)-grafted-poly (ethylene-co-tetrafluoroethylene) film for prosthetic cardiac valves. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3383-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Alves P, Cardoso R, Correia T, Antunes B, Correia I, Ferreira P. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Colloids Surf B Biointerfaces 2014; 113:25-32. [DOI: 10.1016/j.colsurfb.2013.08.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 12/27/2022]
|
11
|
Burel F, Poussard L, Tabrizian M, Merhi Y, Bunel C. The influence of isocyanurate content on the bioperformance of hydrocarbon-based polyurethanes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 19:525-40. [DOI: 10.1163/156856208783719518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- F. Burel
- a UMR 6522 CNRS – Polymères Biopolymères Membranes, L2M, INSA de Rouen, 76131 Mont-Saint-Aignan cedex, France
| | - L. Poussard
- b UMR 6522 CNRS – Polymères Biopolymères Membranes, L2M, INSA de Rouen, 76131 Mont-Saint-Aignan cedex, France
| | - M. Tabrizian
- c Department of Biomedical Engineering, McGill University, Montreal, QC, Canada H3A 2B4
| | - Y. Merhi
- d Laboratory of experimental Pathology, Montreal Heart Institute, Université de Montréal, 5000 rue Belanger Est, Montreal, QC, Canada H1T 1C8
| | - C. Bunel
- e UMR 6522 CNRS – Polymères Biopolymères Membranes, L2M, INSA de Rouen, 76131 Mont-Saint-Aignan cedex, France
| |
Collapse
|
12
|
Alibeik S, Sheardown H, Rizkalla AS, Mequanint K. Protein adsorption and platelet adhesion onto ion-containing polyurethanes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:1195-210. [DOI: 10.1163/156856207781554055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Sara Alibeik
- a Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, Canada N6A 5B9
| | - Heather Sheardown
- b Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Amin S. Rizkalla
- c Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, Canada N6A 5B9; Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, Canada N6A 5B9; Division of Biomaterials Science, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Kibret Mequanint
- d Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, Canada N6A 5B9; Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, Canada N6A 5B9
| |
Collapse
|
13
|
Kuo WH, Wang MJ, Chien HW, Wei TC, Lee C, Tsai WB. Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation. Biomacromolecules 2011; 12:4348-56. [DOI: 10.1021/bm2013185] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei-Hsuan Kuo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Rd.,
Sec. 4, Taipei 106, Taiwan
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Rd.,
Sec. 4, Taipei 106, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106,
Taiwan
| | - Ta-Chin Wei
- Department of Chemical
Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li 320, Taiwan
| | - Chiapyng Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Rd.,
Sec. 4, Taipei 106, Taiwan
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106,
Taiwan
| |
Collapse
|
14
|
Shih MF, Shau MD, Hsieh CC, Cherng JY. Synthesis and evaluation of poly(hexamethylene-urethane) and PEG-poly(hexamethylene-urethane) and their cholesteryl oleyl carbonate composites for human blood biocompatibility. Molecules 2011; 16:8181-97. [PMID: 21959293 PMCID: PMC6264746 DOI: 10.3390/molecules16108181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 11/16/2022] Open
Abstract
Two new urethane-based acrylates (UAA and PEG-UAA) were synthesized as polymer blocks. The chemical composition of the two monomers was confirmed by IR and NMR. After cross-linking these blockers by radical polymerization, “hexamethylene PU” [poly(hexamethylene-urethane)] and “PEG-hexamethylene PU” [PEG-poly(hexa-methylene-urethane)] were obtained. The platelet adhesion and platelet activation of these polymers were evaluated in the presence of Platelet Rich Plasma (PRP) blood. The relative blood clotting indexes of the polymers were determined to measure their capability of reducing thrombogenicity. The hemolysis of red blood cells was also assessed to examine the haemocompatibility of the polymers. The hexamethylene PU and PEG-hexamethylene PU showed less platelet adhesion, platelet activation, blood clotting and hemolysis than a commercial PU (Tecoflex). The liquid crystal molecule, cholesteryl oleyl carbonate (COC), showed further improved biocompatibility to human blood, after COC was embedded in the PU polymers. PEG-hexamethylene PU + 10% COC demonstrated the best activity in reducing thrombogenicity and the best haemocompatibility. The inclusion of PEG segments into the PEG-UAA structure increased its hydrophilicity. The methylene bis(cyclohexyl) segments in Tecoflex PU decreased haemocompatibility. These observations are in good agreement with performed contact angle measurements. The PEG-hexamethylene PU loaded with COC might be a promising material for applications in bioengineering.
Collapse
Affiliation(s)
- Mei Fen Shih
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Rd., Sec. 1,Tainan 717, Taiwan
| | - Min Da Shau
- Department of Life Science, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Rd., Sec. 1, Tainan 717, Taiwan
| | - Cheng Chih Hsieh
- Department of Pharmacy Practice, Tri-service General Hospital, Taipei 114, Taiwan
| | - Jong Yuh Cherng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Rd., Chia-Yi 621, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-5-272-0411, ext.: 66416; Fax: +886-05-272-1040
| |
Collapse
|
15
|
Luo YL, Zhang CH, Xu F, Chen YS. Novel THTPBA/PEG-derived highly branched polyurethane scaffolds with improved mechanical property and biocompatibility. POLYM ADVAN TECHNOL 2011. [DOI: 10.1002/pat.1916] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodríguez JV, Quintana P, Bartolo-Pérez P. Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 2010; 6:2035-44. [PMID: 20004749 DOI: 10.1016/j.actbio.2009.12.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 10/30/2009] [Accepted: 12/04/2009] [Indexed: 11/27/2022]
Abstract
Biodegradable segmented polyurethanes (BSPUs) were prepared with poly(caprolactone) as a soft segment, 4,4'-methylene bis (cyclohexyl isocyanate) and either butanediol (BSPU1) or dithioerythritol (BSPU2) as a chain extender. BSPU samples were characterized in terms of their physicochemical properties and their hemocompatibility. Polymers were then degraded in acidic (HCl 2N), alkaline (NaOH 5M) and oxidative (H(2)O(2) 30wt.%) media and characterized by their mass loss, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Undegraded BSPU1 and BSPU2 exhibited different properties, such as the glass transition temperature T(g) of the soft segment (-25 vs. 4 degrees C), mechanical properties (600% vs. 900% strain to break) and blood coagulating properties (clotting time=11.46 vs. 8.13min). After acidic and alkaline degradation, the disappearance of the 1728cm(-1) band of polycaprolactone (PCL) on both types of BSPU was detected by FTIR. However, the oxidative environment did not affect the soft segment severely as the presence of PCL crystalline domains were observed both by DSC (melting temperature T(m)=52.8 degrees C) and XRD (2theta=21.3 degrees and 23.7 degrees ). By TGA three decomposition temperatures were recorded for both BSPU samples, but the higher decomposition temperature was enhanced after acidic and alkaline degradation. The formation of the porous structure on BSPU1 was observed by SEM, while a granular surface was observed on BSPU2 after alkaline degradation.
Collapse
Affiliation(s)
- L H Chan-Chan
- Centro de Investigación Científica de Yucatán, A.C., Calle 43 # 130 Col. Chuburná de Hidalgo, Mérida, Yucatán, Mexico
| | | | | | | | | | | | | |
Collapse
|
17
|
Ferreira P, Coelho JFJ, Gil MH. Development of a new photocrosslinkable biodegradable bioadhesive. Int J Pharm 2007; 352:172-81. [PMID: 18065171 DOI: 10.1016/j.ijpharm.2007.10.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/15/2007] [Accepted: 10/22/2007] [Indexed: 11/25/2022]
Abstract
Adhesives provide a needle-free method of wound closure and do not require local anaesthetics. Polymeric adhesives have been used for about 3 decades for joining several tissues of the organism. Also, they can accomplish other tasks, such as haemostasis and the ability to seal air leakages and have the potential to serve as delivery systems. PCL was modified with 2-isocyanatoethylmethacrylate to form a macromer that was crosslinked via UV irradiation using Irgacure 2959 by CIBA as the photoinitiating agent. The characterization of the materials was accomplished by: attenuated total reflectance-Fourier transform infrared (ATR-FTIR), swelling capacity determination, evaluation of adhesive capacity (by reaction with aminated substrates) and determination of surface energy by contact angle measurement. Thermal characterization of the adhesive was performed by dynamical mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The morphology of PCL networks was observed using scanning electron microscopy (SEM) both after crosslinking process and following biodegradation in human plasma. The haemocompatibility of the membranes was also evaluated by thrombosis and haemolysis tests.
Collapse
Affiliation(s)
- P Ferreira
- Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal.
| | | | | |
Collapse
|
18
|
Alibeik S, Rizkalla AS, Mequanint K. The effect of thiolation on the mechanical and protein adsorption properties of polyurethanes. Eur Polym J 2007. [DOI: 10.1016/j.eurpolymj.2006.12.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|