1
|
Fang Z, Lai A, Dongmei Cai, Chunlin Li, Carmieli R, Chen J, Wang X, Rudich Y. Secondary Organic Aerosol Generated from Biomass Burning Emitted Phenolic Compounds: Oxidative Potential, Reactive Oxygen Species, and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8194-8206. [PMID: 38683689 PMCID: PMC11097630 DOI: 10.1021/acs.est.3c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Phenolic compounds are largely emitted from biomass burning (BB) and have a significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of water-soluble components of their SOA generated under different photochemical ages and NOx levels were investigated. Phenolic compounds contribute greatly to the oxidative potential (OP) of biomass-burning SOA. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular reactive oxygen species (ROS), possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA. Combining different acellular and cellular assays can provide a comprehensive understanding of aerosol toxicological properties.
Collapse
Affiliation(s)
- Zheng Fang
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Alexandra Lai
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Dongmei Cai
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP
3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
- College
of Environmental Science and Engineering, Tongji University, Shanghai 200072, China
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Jianmin Chen
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP
3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xinming Wang
- State
Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory
of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Xu T, Nie W, Xu Z, Yan C, Liu Y, Zha Q, Wang R, Li Y, Wang L, Ge D, Chen L, Qi X, Chi X, Ding A. Investigation on the budget of peroxyacetyl nitrate (PAN) in the Yangtze River Delta: Unravelling local photochemistry and regional impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170373. [PMID: 38286297 DOI: 10.1016/j.scitotenv.2024.170373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Peroxyacetyl nitrate (PAN) is a significant indicator of atmospheric photochemical pollution, which can influence the regional distribution of ozone (O3) and hydroxyl radical (OH) through long-range transport. However, investigations of PAN incorporating comprehensive measurement and explicit modeling analysis are limited, hindering complete understandings of its temporal behavior, sources, and impacts on photochemistry. Here we conducted a 1-year continuous observation of PAN and relative atmospheric species in Nanjing located in Yangtze River Delta (YRD). The annual mean concentration of PAN was 0.62 ± 0.49 ppbv and showed a bimodal monthly variation, peaking in April-June and November-January, respectively. This pattern is different from the typical pattern of photochemistry, suggesting important contributions of other non-photochemical processes. We further analyzed the PAN budget using an observation-based model, by which, PAN from local photochemical production and regional source could be decoupled. Our results revealed that local photochemical production of PAN is the sole contributor to PAN in summer, whereas about half of the total PAN concentration is attributed to regional source in winter. Although the formation of PAN can suppress the atmospheric oxidation capacity by consuming the peroxyacetyl radical and nitrogen dioxide (NO2), our analyses suggested this effect is minor at our station (-3.2 ± 1.1 % in summer and - 7.2 ± 2.8 % in winter for O3 formation). However, it has the potential to enhance O3 and OH formation by 14.16 % and 5.93 %, if transported to cleaner environments with air pollutants halved. Overall, our study highlights the importance of both local photochemistry and regional process in PAN budget and provides a useful evaluation on the impact of PAN on atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Tao Xu
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China.
| | - Zheng Xu
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China; Jiangsu Provincial Environmental Monitoring Center, Nanjing, Jiangsu 210036, China.
| | - Chao Yan
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Yuliang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Qiaozhi Zha
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Ruoxian Wang
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Yuanyuan Li
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Lei Wang
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Dafeng Ge
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Liangduo Chen
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Ximeng Qi
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Xuguang Chi
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
He X, Zhang C, Liu P, Zhang G, Wu H, Peng Y, Liu J, Liu C, Mu Y. A novel photochemical conversion technique for reliable calibration of peroxyacetyl nitrate (PAN) analyzers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162164. [PMID: 36775161 DOI: 10.1016/j.scitotenv.2023.162164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Photochemical synthesis of peroxyacetyl nitrate (PAN) through irradiating air mixtures of NO and acetone is prevailingly adopted for calibrating PAN analyzers, but few users of PAN analyzers provide evidence to certify the calibration reliability. Here we report a nonnegligible variation (up to ~50 %) of PAN synthesized in the calibration unit of a commercial PAN analyzer, whereas PAN synthesized in the two custom-made reactors could achieve stable values with variations of <2.5 %. Compared with a straight quartz tube flow reactor (SQTFR), PAN synthesized by a coiled quartz tube flow reactor (CQTFR) could achieve more stable (relative standard deviation: <0.66 % versus 2.49 %) and larger (PANCQTFR/PANSQTFR: 1.04-1.10) values. The residence time and reaction temperature of photochemical mixtures in CQTFR were found to be the key factors affecting PAN synthesis, with their optimal values of 30-60 s and 30-35 °C for achieving the highest PAN levels. The photochemical conversion efficiencies of NO to PAN in CQTFR under the optimal conditions were successfully measured to be 98.5 ± 0.5 % based on the alkaline-absorption method. Therefore, CQTFR is suggested to be adopted for calibrating PAN analyzers to reduce calibration uncertainties.
Collapse
Affiliation(s)
- Xiaowei He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration (CMA), Chinese Academy of Meteorological Sciences (CAMS), Beijing 100081, China
| | - Hai Wu
- National Institute of Metrology of China, Beijing 100013, China
| | - Yuexiang Peng
- Beijing University of Technology, College of Applied Sciences, Beijing 100124, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Zhang J, Guo Y, Qu Y, Chen Y, Yu R, Xue C, Yang R, Zhang Q, Liu X, Mu Y, Wang J, Ye C, Zhao H, Sun Q, Wang Z, An J. Effect of potential HONO sources on peroxyacetyl nitrate (PAN) formation in eastern China in winter. J Environ Sci (China) 2020; 94:81-87. [PMID: 32563490 DOI: 10.1016/j.jes.2020.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
As an important secondary photochemical pollutant, peroxyacetyl nitrate (PAN) has been studied over decades, yet its simulations usually underestimate the corresponding observations, especially in polluted areas. Recent observations in north China found unusually high concentrations of PAN during wintertime heavy haze events, but the current model still cannot reproduce the observations, and researchers speculated that nitrous acid (HONO) played a key role in PAN formation. For the first time we systematically assessed the impact of potential HONO sources on PAN formation mechanisms in eastern China using the Weather Research and Forecasting/Chemistry (WRF-Chem) model in February of 2017. The results showed that the potential HONO sources significantly improved the PAN simulations, remarkably accelerated the ROx (sum of hydroxyl, hydroperoxyl, and organic peroxy radicals) cycles, and resulted in 80%-150% enhancements of PAN near the ground in the coastal areas of eastern China and 10%-50% enhancements in the areas around 35-40°N within 3 km during a heavy haze period. The direct precursors of PAN were aldehyde and methylglyoxal, and the primary precursors of PAN were alkenes with C > 3, xylenes, propene and toluene. The above results suggest that the potential HONO sources should be considered in regional and global chemical transport models when conducting PAN studies.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yitian Guo
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Ruipeng Yu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoyang Xue
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Yang
- Guangzhou Meteorological Observatory, Guangzhou 511430, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China; Collaborative Innovation Center for Regional Environmental Quality, Beijing, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yujing Mu
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Can Ye
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haihan Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qiangqiang Sun
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ziwen Wang
- Qinghai Climate Center, Qinghai Meteorological Bureau, Xining, Qinghai 810001, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Zhang B, Zhao B, Zuo P, Huang Z, Zhang J. Influencing factors and prediction of ambient Peroxyacetyl nitrate concentration in Beijing, China. J Environ Sci (China) 2019; 77:189-197. [PMID: 30573082 DOI: 10.1016/j.jes.2018.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 06/09/2023]
Abstract
Peroxyacyl nitrates (PANs) are important secondary pollutants in ground-level atmosphere. Accurate prediction of atmospheric pollutant concentrations is crucial to guide effective precautions for before and during specific pollution events. In this study, four models based on the back-propagation (BP) artificial neural network (ANN) and multiple linear regression (MLR) methods were used to predict the hourly average PAN concentrations at Peking University, Beijing, in 2014. The model inputs were atmospheric pollutant data and meteorological parameters. Model 3 using a BP-ANN based on the original variables achieved the best prediction results among the four models, with a correlation coefficient (R) of 0.7089, mean bias error of -0.0043 ppb, mean absolute error of 0.4836 ppb, root mean squared error of 0.5320 ppb, and Willmott's index of agreement of 0.8214. Based on a comparison of the performance indices of the MLR and BP-ANN models, we concluded that the BP-ANN model was able to capture the highly non-linear relationships between PAN concentration and the conventional atmospheric pollutant and meteorological parameters, providing more accurate results than the traditional MLR models did, with a markedly higher goodness of R. The selected meteorological and atmospheric pollutant parameters described a sufficient amount of PAN variation, and thus provided satisfactory prediction results. More specifically, the BP-ANN model performed very well for capturing the variation pattern when PAN concentrations were low. The findings of this study address some of the existing knowledge gaps in this research field and provide a theoretical basis for future regional air pollution control.
Collapse
Affiliation(s)
- Boya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bu Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianbo Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
O’Sullivan D, McLaughlin RP, Clemitshaw KC, Sodeau JR. Cold-Surface Photochemistry of Selected Organic Nitrates. J Phys Chem A 2014; 118:9890-900. [DOI: 10.1021/jp5065424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ryan P. McLaughlin
- Department
of Chemistry, Seattle University, 901 12th Avenue, Seattle, Washington 98122, United States
| | - Kevin C. Clemitshaw
- Department
of Earth Sciences, Royal Holloway, University of London Egham, Surrey TW20 0EX, U.K
| | - John R. Sodeau
- Department
of Chemistry, Centre for Research into Atmospheric Chemistry, University College, Cork, Ireland
| |
Collapse
|
7
|
Perraud V, Bruns EA, Ezell MJ, Johnson SN, Greaves J, Finlayson-Pitts BJ. Identification of organic nitrates in the NO3 radical initiated oxidation of alpha-pinene by atmospheric pressure chemical ionization mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5887-5893. [PMID: 20608721 DOI: 10.1021/es1005658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The gas-phase reactions of nitrate radicals (NO3) with biogenic organic compounds are a major sink for these organics during night-time. These reactions form secondary organic aerosols, including organic nitrates that can undergo long-range transport, releasing NOx downwind. We report here studies of the reaction of NO3 with alpha-pinene at 1 atm in dry synthetic air (relative humidity approximately 3%) and at 298 K using atmospheric pressure chemical ionization triple quadrupole mass spectrometry (APCI-MS) to identify gaseous and particulate products. The emphasis is on the identification of individual organic nitrates in the particle phase that were obtained by passing the product mixture through a denuder to remove gas-phase reactants and products prior to entering the source region of the mass spectrometer. Filter extracts were also analyzed by GC-MS and by APCI time-of-flight mass spectrometry (APCI-ToF-MS) with methanol as the proton source. In addition to pinonaldehyde and pinonic acid, five organic nitrates were identified in the particles as well as in the gas phase: 3-oxopinane-2-nitrate, 2-hydroxypinane-3-nitrate, pinonaldehyde-PAN, norpinonaldehyde-PAN, and (3-acetyl-2,2-dimethyl-3-nitrooxycyclobutyl)acetaldehyde. Furthermore, there was an additional first-generation organic nitrate product tentatively identified as a carbonyl hydroxynitrate with a molecular mass of 229. These studies suggest that a variety of organic nitrates would partition between the gas phase and particles in the atmosphere, and serve as a reservoir for NOx.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California Irvine, California 92697-2025, USA
| | | | | | | | | | | |
Collapse
|
8
|
Huey LG. Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and future directions. MASS SPECTROMETRY REVIEWS 2007; 26:166-84. [PMID: 17243143 DOI: 10.1002/mas.20118] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chemical ionization mass spectrometry (CIMS) has proven to be a powerful method for sensitive, fast time response (t approximately 1 sec) measurements of various atmospheric compounds with limits of detection (LOD) of the order of tens of pptv and lower. The rapid time response of CIMS is particularly well suited for airborne measurements and its application has largely grown out of airborne measurements in the stratosphere and upper troposphere. This work reviews some of the advances in CIMS technology that have occurred in the past decade. In particular, CIMS methods for selective measurement of reactive nitrogen species (e.g., HNO3, HO2NO2, PAN, and NH3) in the lower atmosphere (altitudes approximately 0-8 km) are described. In addition, recent developments in CIMS technology for the selective measurement of gas-phase hydroperoxides and aerosol chemical composition are briefly described.
Collapse
Affiliation(s)
- L Gregory Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
9
|
Hill KA, Shepson PB, Galbavy ES, Anastasio C. Measurement of wet deposition of inorganic and organic nitrogen in a forest environment. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005jg000030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kimberly A. Hill
- Department of Earth and Atmospheric Science; Purdue University; West Lafayette Indiana USA
| | - Paul B. Shepson
- Department of Earth and Atmospheric Science; Purdue University; West Lafayette Indiana USA
| | - Edward S. Galbavy
- Department of Land, Air, and Water Resources; University of California, Davis; Davis California USA
| | - Cort Anastasio
- Department of Land, Air, and Water Resources; University of California, Davis; Davis California USA
| |
Collapse
|
10
|
Wei WM, Tan W, Zheng RH, He TJ, Chen DM, Liu FC. Ab initio studies of isomerization and dissociation reactions of peroxyacetyl nitrate (PAN). Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
McFadyen GG, Cape JN. Peroxyacetyl nitrate in eastern Scotland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2005; 337:213-222. [PMID: 15626392 DOI: 10.1016/j.scitotenv.2004.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 06/07/2004] [Accepted: 06/12/2004] [Indexed: 05/24/2023]
Abstract
Peroxyacetyl nitrate (PAN) concentrations in air were sampled hourly from 1994 to 1998 at a rural site 15 km south-west of Edinburgh, in eastern Scotland. Annual average concentrations were between 0.1 and 0.15 nl l(-1), with episodes up to 3 nl l(-1) in long-range transported polluted air. PAN concentrations were approximately log-normally distributed. The concentrations measured are the result of a balance between photochemical production rates and removal by thermal decomposition and dry deposition. In general, there was a poor correlation between PAN and ozone concentrations at this rural site except during episodes of photochemical pollution, when the PAN/O(3) volume ratio exceeded 0.01. The PAN/NO(x) volume ratio had a median value of 0.015 but ranged up to 0.25. There was a pronounced seasonal maximum in PAN concentrations in late spring, and a strong diurnal cycle only in April-June, with a maximum at 1700 h. Individual episodes, with concentrations up to 3 nl l(-1), could be traced over distances of ca. 1000 km, with rapid changes in concentration as the prevailing winds advected polluted air masses across the site.
Collapse
Affiliation(s)
- G G McFadyen
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | | |
Collapse
|
12
|
Claxton LD, Matthews PP, Warren SH. The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2004; 567:347-99. [PMID: 15572287 DOI: 10.1016/j.mrrev.2004.08.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 08/25/2004] [Accepted: 08/25/2004] [Indexed: 10/26/2022]
Abstract
Mutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used for large, multi-site, and/or time series studies, for bioassay-directed fractionation studies, for identifying the presence of specific classes of mutagens, and for doing site- or source-comparisons for relative levels of airborne mutagens. Early research recognized that although carcinogenic PAHs were present in air samples they could not account for the majority of the mutagenic activity detected. The mutagenicity of airborne particulate organics is due to at least 500 identified compounds from varying chemical classes. Bioassay-directed fractionation studies for identifying toxicants are difficult to compare because they do not identify all of the mutagens present, and both the analytical and bioassay protocols vary from study to study. However, these studies show that the majority of mutagenicity is usually associated with moderately polar/highly polar classes of compounds that tend to contain nitroaromatic compounds, aromatic amines, and aromatic ketones. Smog chamber studies have shown that mutagenic aliphatic and aromatic nitrogen-containing compounds are produced in the atmosphere when organic compounds (even non-mutagenic compounds) are exposed to nitrogen oxides and sunlight. Reactions that occur in the atmosphere, therefore, can have a profound effect on the genotoxic burden of ambient air. This review illustrates that the mutagenesis protocol and tester strains should be selected based on the design and purpose of the study and that the correlation with animal cancer bioassay results depends upon chemical class. Future emphasis needs to be placed on volatile and semi-volatile genotoxicants, and on multi-national studies that identify, quantify, and apportion mutagenicity. Initial efforts at replacing the Salmonella assay for ambient air studies with some emerging technology should be initiated.
Collapse
Affiliation(s)
- Larry D Claxton
- Cellular Toxicology Branch, Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
13
|
Finlayson-Pitts BJ. The Tropospheric Chemistry of Sea Salt: A Molecular-Level View of the Chemistry of NaCl and NaBr. Chem Rev 2003; 103:4801-22. [PMID: 14664634 DOI: 10.1021/cr020653t] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- B J Finlayson-Pitts
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| |
Collapse
|
14
|
Cape JN. Effects of airborne volatile organic compounds on plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2003; 122:145-57. [PMID: 12535603 DOI: 10.1016/s0269-7491(02)00273-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in tissue may also be a problem. There is little evidence of the direct effects of oxygenated hydrocarbons on plants. Plants are a significant emission source of short-chain alcohols, aldehydes and ketones. Peroxyacetyl nitrate (PAN) has a well-documented history as damaging to vegetation. There have been few long-term experimental studies despite the field evidence for damaging effects. Early studies in California have been followed by more recent data from east Asia, but there is still a dearth of information on the potential for effects of PAN and related peroxyacyl nitrates on vegetation typical of regions around tropical and sub-tropical cities where PAN pollution is increasingly important. The lack of long-term measurements, coupled with the available evidence that effects are not linearly related to 'dose' measured as the product of exposure concentration and time, means that the possibility of adverse effects of VOCs on vegetation cannot be safely rejected, particularly in urban and industrial areas. Although reproductive processes (flowering, seed production) appear to be most sensitive, there have been no experimental studies on subsequent seed viability and the consequences at the ecosystem level of changes to plant phenology. The potential for VOC metabolites to accumulate in plant tissue has been demonstrated, but any subsequent effects on herbivores and phytophagous insects have yet to be investigated.
Collapse
Affiliation(s)
- J N Cape
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK.
| |
Collapse
|
15
|
Sumner AL, Shepson PB, Couch TL, Thornberry T, Carroll MA, Sillman S, Pippin M, Bertman S, Tan D, Faloona I, Brune W, Young V, Cooper O, Moody J, Stockwell W. A study of formaldehyde chemistry above a forest canopy. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900761] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Pippin M, Bertman S, Thornberry T, Town M, Carroll MA, Sillman S. Seasonal variations of PAN, PPN, and O3at the upper Midwest PROPHET site. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jd900222] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
DeMarini DM, Shelton ML, Kohan MJ, Hudgens EE, Kleindienst TE, Ball LM, Walsh D, de Boer JG, Lewis-Bevan L, Rabinowitz JR, Claxton LD, Lewtas J. Mutagenicity in lung of big Blue((R)) mice and induction of tandem-base substitutions in Salmonella by the air pollutant peroxyacetyl nitrate (PAN): predicted formation of intrastrand cross-links. Mutat Res 2000; 457:41-55. [PMID: 11106797 DOI: 10.1016/s0027-5107(00)00121-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peroxyacetyl nitrate (PAN) is a ubiquitous air pollutant formed from NO(2) reacting with acetoxy radicals generated from ambient aldehydes in the presence of sunlight and ozone. It contributes to eye irritation associated with photochemical smog and is present in most urban air. PAN was generated in a chamber containing open petri dishes of Salmonella TA100 (gas-phase exposure). After subtraction of the background mutation spectrum, the spectrum of PAN-induced mutants selected at 3.1-fold above the background mutant yield was 59% GC-->TA, 29% GC-->AT, 2% GC-->CG, and 10% multiple mutations - primarily GG-->TT tandem-base substitutions. Using computational molecular modeling methods, a mechanism was developed for producing this unusual tandem-base substitution. The mechanism depends on the protonation of PAN near the polyanionic DNA to release NO(2)(+) resulting in intrastrand dimer formation. Insertion of AA opposite the dimerized GG would account for the tandem GG-->TT transversions. Nose-only exposure of Big Blue((R)) mice to PAN at 78ppm (near the MTD) was mutagenic at the lacI gene in the lung (mutant frequency +/-S.E. of 6.16+/-0.58/10(5) for controls versus 8.24+/-0.30/10(5) for PAN, P=0.016). No tandem-base mutations were detected among the 40 lacI mutants sequenced. Dosimetry with 3H-PAN showed that 24h after exposure, 3.9% of the radiolabel was in the nasal tissue, and only 0.3% was in the lung. However, based on the molecular modeling considerations, the labeled portion of the molecule would not have been expected to have been bound covalently to DNA. Our results indicate that PAN is weakly mutagenic in the lungs of mice and in Salmonella and that PAN produces a unique signature mutation (a tandem GG-->TT transversion) in Salmonella that is likely due to a GG intrastrand cross-link. Thus, PAN may pose a mutagenic and possible carcinogenic risk to humans, especially at the high concentrations at which it is present in some urban environments.
Collapse
Affiliation(s)
- D M DeMarini
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, 27711, Research Triangle Park, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Clemitshaw KC, Carpenter LJ, Penkett SA, Jenkin ME. A calibrated peroxy radical chemical amplifier for ground-based tropospheric measurements. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97jd01902] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Mazely TL, Friedl RR, Sander SP. Quantum Yield of NO3 from Peroxyacetyl Nitrate Photolysis. J Phys Chem A 1997. [DOI: 10.1021/jp971298r] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Troy L. Mazely
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109
| | - Randall R. Friedl
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109
| | - Stanley P. Sander
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109
| |
Collapse
|
20
|
Zhang R, Leu MT. Heterogeneous interaction of peroxyacetyl nitrate with liquid sulfuric acid. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97jd00131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Seefeld S, Kinnison DJ, Kerr JA. Relative Rate Study of the Reactions of Acetylperoxy Radicals with NO and NO2: Peroxyacetyl Nitrate Formation under Laboratory Conditions Related to the Troposphere. J Phys Chem A 1997. [DOI: 10.1021/jp962266r] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephan Seefeld
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, ETH Zürich, CH-8600 Dübendorf, Switzerland
| | - David J. Kinnison
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, ETH Zürich, CH-8600 Dübendorf, Switzerland
| | - J. Alistair Kerr
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, ETH Zürich, CH-8600 Dübendorf, Switzerland
| |
Collapse
|