1
|
Nannan L, Gsell W, Belderbos S, Gallet C, Wouters J, Brassart-Pasco S, Himmelreich U, Brassart B. A multimodal imaging study to highlight elastin-derived peptide pro-tumoral effect in a pancreatic xenograft model. Br J Cancer 2023; 128:2000-2012. [PMID: 37002342 PMCID: PMC10206107 DOI: 10.1038/s41416-023-02242-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is highly malignant with a very poor prognosis due to its silent development and metastatic profile with a 5-year survival rate below 10%. PDAC is characterised by an abundant desmoplastic stroma modulation that influences cancer development by extracellular matrix/cell interactions. Elastin is a key element of the extracellular matrix. Elastin degradation products (EDPs) regulate numerous biological processes such as cell proliferation, migration and invasion. The aim of the present study was to characterise for the first time the effect of two EDPs with consensus sequences "GxxPG" and "GxPGxGxG" (VG-6 and AG-9) on PDAC development. The ribosomal protein SA (RPSA) has been discovered recently, acting as a new receptor of EDPs on the surface of tumour cells, contributing to poor prognosis. METHODS Six week-old female Swiss nude nu/nu (Nu(Ico)-Foxn1nu) mice were subcutaneously injected with human PDAC MIA PaCa-2/eGFP-FLuc+ cells, transduced with a purpose-made lentiviral vector, encoding green fluorescent protein (GFP) and Photinus pyralis (firefly) luciferase (FLuc). Animals were treated three times per week with AG-9 (n = 4), VG-6 (n = 5) or PBS (n = 5). The influence of EDP on PDAC was examined by multimodal imaging (bioluminescence imaging (BLI), fluorescence imaging (FLI) and magnetic resonance imaging (MRI). Tumour volumes were also measured using a caliper. Finally, immunohistology was performed at the end of the in vivo study. RESULTS After in vitro validation of MIA PaCa-2 cells by optical imaging, we demonstrated that EDPs exacerbate tumour growth in the PDAC mouse model. While VG-6 stimulated tumour growth to some extent, AG-9 had greater impact on tumour growth. We showed that the expression of the RPSA correlates with a possible effect of EDPs in the PDAC model. Multimodal imaging allowed for longitudinal in vivo follow-up of tumour development. In all groups, we showed mature vessels ending in close vicinity of the tumour, except for the AG-9 group where mature vessels are penetrating the tumour reflecting an increase of vascularisation. CONCLUSIONS Our results suggest that AG-9 strongly increases PDAC progression through an increase in tumour vascularisation.
Collapse
Affiliation(s)
- Lise Nannan
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
- Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Willy Gsell
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
| | - Sarah Belderbos
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
| | - Célia Gallet
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
- Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Jens Wouters
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
| | - Sylvie Brassart-Pasco
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
- Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Uwe Himmelreich
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
| | - Bertrand Brassart
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique Cellulaire, Reims, France.
- Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
| |
Collapse
|
2
|
Li J, Xu X, Jiang Y, Hansbro NG, Hansbro PM, Xu J, Liu G. Elastin is a key factor of tumor development in colorectal cancer. BMC Cancer 2020; 20:217. [PMID: 32171282 PMCID: PMC7071655 DOI: 10.1186/s12885-020-6686-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common cancer and a leading cause of death worldwide. Extracellular matrix (ECM) proteins regulate tumor growth and development in CRC. Elastin (ELN) is a component of ECM proteins involved in the tumor microenvironment. However, the role of ELN in CRC remains unclear. METHODS In this study, we analyzed ELN gene expression in tumors from CRC patients and adjacent non-tumor colon tissues and healthy controls from two existing microarray datasets. ELN protein was measured in human normal colon cells and colon cancer epithelial cells and tumor development was assessed in colon epithelial cells cultured in medium with or without ELN peptide on plates coated with ELN recombinant protein. Control plates were coated with PBS only. RESULTS We found ELN gene expression was increased in tumors from CRC patients compared to adjacent non-tumor tissues and healthy controls. ELN protein was increased in cancer cells compared to normal colon epithelial cells. Transforming growth factor beta (TGF-β) was a key cytokine to induce production of ECM proteins, but it did not induce ELN expression in colon cancer cells. Matrix metalloproteinase 9 (MMP9) gene expression was increased, but that of MMP12 (elastase) did not change between CRC patients and control. Tissue inhibitor of metalloproteinases 3 (TIMP3) gene expression was decreased in colon tissues from CRC patients compared to healthy controls. However, MMP9, MMP12 and TIMP3 proteins were increased in colon cancer cells. ELN recombinant protein increased proliferation and wound healing in colon cancer epithelial cells. This had further increased in cancer cells incubated in plates coated with recombinant ELN coated plate and in culture media containing ELN peptide. A potential mechanism was that ELN induced epithelial mesenchymal transition with increased alpha-smooth muscle actin and vimentin proteins but decreased E-cadherin protein. Tumor necrosis factor alpha (TNF) mRNA was also increased in CRC patients compared to controls. ELN recombinant protein induced further increases in TNF protein in mouse bone marrow derived macrophages after lipopolysaccharide stimulation. CONCLUSIONS These data suggest ELN regulates tumor development and the microenvironment in CRC.
Collapse
Affiliation(s)
- Jinzhi Li
- School of Nursing, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaoyue Xu
- Faculty of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Yanyan Jiang
- School of Anatomy, Bengbu Medical College, Bengbu, Anhui, China
| | - Nicole G Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, New South Wales, Australia.,Priority Research Centre for Health Lungs, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Philip M Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, New South Wales, Australia.,Priority Research Centre for Health Lungs, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Jincheng Xu
- Stomatology Department, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China. .,School of Dental Medicine, Bengbu Medical College, Bengbu, Anhui, China.
| | - Gang Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia. .,Centre for Inflammation, Centenary Institute, Camperdown, New South Wales, Australia.
| |
Collapse
|
3
|
Tumour cell blebbing and extracellular vesicle shedding: key role of matrikines and ribosomal protein SA. Br J Cancer 2019; 120:453-465. [PMID: 30739912 PMCID: PMC6461924 DOI: 10.1038/s41416-019-0382-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Carcinogenesis occurs in elastin-rich tissues and leads to local inflammation and elastolytic proteinase release. This contributes to bioactive matrix fragment (Matrikine) accumulation like elastin degradation products (EDP) stimulating tumour cell invasive and metastatic properties. We previously demonstrate that EDPs exert protumoural activities through Hsp90 secretion to stabilised extracellular proteinases. METHODS EDP influence on cancer cell blebbing and extracellular vesicle shedding were examined with a videomicroscope coupled with confocal Yokogawa spinning disk, by transmission electron microscopy, scanning electron microscopy and confocal microscopy. The ribosomal protein SA (RPSA) elastin receptor was identified after affinity chromatography by western blotting and cell immunolocalisation. mRNA expression was studied using real-time PCR. SiRNA were used to confirm the essential role of RPSA. RESULTS We demonstrate that extracellular matrix degradation products like EDPs induce tumour amoeboid phenotype with cell membrane blebbing and shedding of extracellular vesicle containing Hsp90 and proteinases in the extracellular space. EDPs influence intracellular calcium influx and cytoskeleton reorganisation. Among matrikines, VGVAPG and AGVPGLGVG peptides reproduced EDP effects through RPSA binding. CONCLUSIONS Our data suggests that matrikines induce cancer cell blebbing and extracellular vesicle release through RPSA binding, favouring dissemination, cell-to-cell communication and growth of cancer cells in metastatic sites.
Collapse
|
4
|
Scandolera A, Odoul L, Salesse S, Guillot A, Blaise S, Kawecki C, Maurice P, El Btaouri H, Romier-Crouzet B, Martiny L, Debelle L, Duca L. The Elastin Receptor Complex: A Unique Matricellular Receptor with High Anti-tumoral Potential. Front Pharmacol 2016; 7:32. [PMID: 26973522 PMCID: PMC4777733 DOI: 10.3389/fphar.2016.00032] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
Elastin, one of the longest-lived proteins, confers elasticity to tissues with high mechanical constraints. During aging or pathophysiological conditions such as cancer progression, this insoluble polymer of tropoelastin undergoes an important degradation leading to the release of bioactive elastin-derived peptides (EDPs), named elastokines. EDP exhibit several biological functions able to drive tumor development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix metalloproteinase expression in various tumor and stromal cells. Although, several receptors have been suggested to bind elastokines (αvβ3 and αvβ5 integrins, galectin-3), their main receptor remains the elastin receptor complex (ERC). This heterotrimer comprises a peripheral subunit, named elastin binding protein (EBP), associated to the protective protein/cathepsin A (PPCA). The latter is bound to a membrane-associated protein called Neuraminidase-1 (Neu-1). The pro-tumoral effects of elastokines have been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer progression, the ERC also regulates diabetes outcome and thrombosis, an important risk factor for cancer development and a vascular process highly increased in patients suffering from cancer. In this review, we will describe ERC and elastokines involvement in cancer development suggesting that this unique receptor would be a promising therapeutic target. We will also discuss the pharmacological concepts aiming at blocking its pro-tumoral activities. Finally, its emerging role in cancer-associated complications and pathologies such as diabetes and thrombotic events will be also considered.
Collapse
Affiliation(s)
- Amandine Scandolera
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Ludivine Odoul
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Stéphanie Salesse
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Alexandre Guillot
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Sébastien Blaise
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Charlotte Kawecki
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Pascal Maurice
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Hassan El Btaouri
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Béatrice Romier-Crouzet
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Laurent Martiny
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Laurent Debelle
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Laurent Duca
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| |
Collapse
|
5
|
He J, Turino GM, Lin YY. Characterization of peptide fragments from lung elastin degradation in chronic obstructive pulmonary disease. Exp Lung Res 2011; 36:548-57. [PMID: 20815658 DOI: 10.3109/01902148.2010.489143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study presents a method for detecting and characterizing peptides of elastin that result from lung matrix injury in chronic obstructive pulmonary disease (COPD). Lung elastin degradation was studied by two representative in vivo elastases, human neutrophil elastase (HNE) and macrophage metalloproteinase (MMP12). The resulting peptide mixtures were analyzed by high-performance liquid chromatography/electrospray tandem mass spectrometry (LC/MSMS) to characterize 40 elastin-derived peptides (EDPs), 24 from HNE and 16 from MMP12 digestions. The peptides constitute major EDPs that are solubilized by the enzymatic digestion. Using the selected reaction monitoring (SRM) from LC/MSMS analysis, the transition ions of the peptides were used to investigate the presence of the peptides in selected body fluids of chronic obstructive pulmonary disease (COPD) patients. Four peptides, GYPI, APGVGV, GLGAFPA, and VGVLPGVPT, were detected in plasma or sputum of some COPD patients but not in normal controls. A hexapeptide VGVAPG, which had been widely studied for its chemotactic activity for a possible pathogenic role in COPD, was not detected in lung EDPs by HNE or MMP12 digestion, but only by porcine pancreatic elastase (PPE) digestion. This study demonstrates a practical methodology to study peptides from matrix degradations in pulmonary disease and a means of investigating their pathogenesis.
Collapse
Affiliation(s)
- Jiangtao He
- Department of Medicine, St. Luke's Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, New York 10019, USA
| | | | | |
Collapse
|
6
|
Elastin-derived peptides enhance melanoma growth in vivo by upregulating the activation of Mcol-A (MMP-1) collagenase. Br J Cancer 2010; 103:1562-70. [PMID: 20959825 PMCID: PMC2990576 DOI: 10.1038/sj.bjc.6605926] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Elastin peptides possess several biological activities and in vitro data suggest they could be involved in the early phase of melanoma growth. Methods: Using diverse in vitro and in vivo techniques (cell proliferation, invasion and migration assays, zymography, western blots, collagen degradation assay, reverse transcription PCR, melanoma allographs and immunohistochemistry), we analysed the effect of elastin-derived peptides (EDPs) on B16F1 melanoma growth and invasion, as well as on the proteolytic systems involved. Results: We found that EDPs dramatically promote in vivo tumour development of B16F1 melanoma, as well as their in vitro migration and invasion. The inhibition of serine proteases and matrix metalloproteinases (MMPs) activities, by aprotinin and galardin, respectively, demonstrated that these enzymes were involved in these processes. However, we found that EDPs did not increase urokinase-type plasminogen activator, tissue-type plasminogen activator or MMP-2 expression and/or activation, neither in vitro nor in vivo. Nevertheless, we observed a strong increase of pro-MMP-9 secretion in EDPs-treated tumours and, more importantly, an increase in the expression and activation of the murine counterpart of MMP-1, named murine collagenase-A (Mcol-A). Moreover, we show that plasminogen system inhibition decreases collagen degradation by this enzyme. Finally, the use of a specific blocking antibody against Mcol-A abolished EDP-induced B16F1 invasion in vitro, showing that this MMP was directly involved in this process. Conclusion: Our data show that in vivo, EDPs are involved in melanoma growth and invasion and reinforced the concept of elastin fragmentation as a predictive factor.
Collapse
|
7
|
Coquerel B, Poyer F, Torossian F, Dulong V, Bellon G, Dubus I, Reber A, Vannier JP. Elastin-derived peptides: matrikines critical for glioblastoma cell aggressiveness in a 3-D system. Glia 2010; 57:1716-26. [PMID: 19373935 DOI: 10.1002/glia.20884] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the most common primary brain tumors, malignant glioma cells invade the extracellular matrix (ECM) and proliferate rapidly in the cerebral tissue, which is mainly composed of hyaluronan (HA) along with the elastin present in the basement membrane of blood vessels. To determine the role of ECM components in the invasive capacity of glioma cell lines, we developed a 3-D cell-culture system, based on a hydrogel in which HA can be coreticulated with kappa-elastin (HA-kappaE). Using this system, the invasiveness of cells from four glioma cell lines was dramatically increased by the presence of kappaE and a related, specific peptide (VGVAPG)(3). In addition, MMP-2 secretion increased and MMP-12 synthesis occurred. Extracellular injections of kappaE or (VGVAPG)(3) provoked a pronounced and dose-dependent increase in [Ca(2+)](i). kappaE significantly enhanced the expression of the genes encoding elastin-receptor and tropoelastin. We propose the existence of a positive feedback loop in which degradation of elastin generates fragments that stimulate synthesis of tropoelastin followed by further degradation as well as migration and proliferation of the very cells responsible for degradation. All steps in this ECM-based loop could be blocked by the addition of either of the EBP antagonists, lactose, and V-14 peptide, suggesting that the loop itself should be considered as a new therapeutic target.
Collapse
Affiliation(s)
- Bérénice Coquerel
- Groupe de Recherche, Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Maeda I, Mizoiri N, Briones MPP, Okamoto K. Induction of macrophage migration through lactose-insensitive receptor by elastin-derived nonapeptides and their analog. J Pept Sci 2007; 13:263-8. [PMID: 17394124 DOI: 10.1002/psc.845] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elastin, one of the extracellular matrix components, is present in tissues requiring extensibility and resilience such as the aorta, lungs, ligaments and skin. Degradation of elastin is observed in diseases such as atherosclerosis, emphysema and metastasis. It has been suggested that degraded elastin-derived peptides interact with a variety of cell types and are involved in development of diseases. Two nonapeptides, Ala-Gly-Val-Pro-Gly-Leu-Gly-Val-Gly (AGVPGFGVG) and Ala-Gly-Val-Pro-Gly-Phe-Gly-Val-Gly (AGVPGFGVG), exist in hydrophobic regions of elastin. In this paper, we characterized these elastin-derived nonapeptides by macrophage migration assay. Both nonapeptides induced a maximal migration at 10(-8) M and elicited the same degree of responsiveness. To investigate the role of the sixth residue of the nonapeptides, seven analog peptides in which Leu or Phe is substituted by Ile, Val, Ala, Gly, Pro, Lys or Glu were synthesized and their macrophage migration activity tested. Among the nonapeptide analogs, only Ala-Gly-Val-Pro-Gly-Ile-Gly-Val-Gly induced the migration of macrophages at the optimal concentration of 10(-9) M and its responsiveness was the same as that of parent nonapeptide AGVPGFGVG. Results of the deactivation tests and the effect of lactose on macrophage migration showed that a lactose-insensitive receptor which mainly recognizes Ala-Gly-Val-Pro-Gly-Ile-Gly-Val-Gly is presumably present on the membrane of macrophages in addition to the elastin-binding protein (EBP) sensitive to lactose. These results suggest that Leu, Phe and Ile residues at the sixth position of elastin-derived nonapeptides are crucial for inducing macrophage migration and in particular, Ile residue is important for the recognition by receptor insensitive to lactose.
Collapse
Affiliation(s)
- Iori Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| | | | | | | |
Collapse
|
9
|
Lombard C, Arzel L, Bouchu D, Wallach J, Saulnier J. Human leukocyte elastase hydrolysis of peptides derived from human elastin exon 24. Biochimie 2006; 88:1915-21. [PMID: 16945464 DOI: 10.1016/j.biochi.2006.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 07/13/2006] [Indexed: 11/22/2022]
Abstract
In normal and pathological tissues, polymorphonuclear leukocyte proteases (elastase, cathepsin G and proteinase 3) may generate soluble peptides through limited proteolysis of elastin, the main component of mature elastic fibres. Elastin-derived peptides display diverse biological activities including cell migration, differentiation, proliferation, chemotaxis, tumor progression and up-regulation of metalloproteinases. To be biologically active, their structures must adopt a beta-turn conformation which accommodates to the cell surface-located elastin binding protein. In this study, we established that human elastin exon 24-derived peptides are hydrolysed by leukocyte elastase, when the active site is fully occupied (from S(5) to S'(3)). As shown by mass spectrometry analyses, a major cleavage site was demonstrated at a Val-Ala bond and a minor one at Gly-Val bond. For longer peptides, the hydrolysed fragments could themselves be re-hydrolysed. If the shortest fragments do not contain the GxxPG sequence known to stimulate cellular effects, some of the intermediates together with hydrolysis fragments generated by other proteases such as proteinase 3, may possess this motif.
Collapse
Affiliation(s)
- C Lombard
- Laboratoire de Biochimie Analytique et Synthèse Bioorganique, UFR Chimie-Biochimie, Bâtiment Chevreul, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | | | | | | | | |
Collapse
|
10
|
Maquart FX, Bellon G, Pasco S, Monboisse JC. Matrikines in the regulation of extracellular matrix degradation. Biochimie 2005; 87:353-60. [PMID: 15781322 DOI: 10.1016/j.biochi.2004.10.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 10/08/2004] [Indexed: 01/18/2023]
Abstract
The term "matrikines" was coined for designating peptides liberated by partial proteolysis of extracellular matrix macromolecules, which are able to regulate cell activities. Among these peptides, some of them may modulate proliferation, migration, protease production, or apoptosis. In this review, we summarize the activity of matrikines derived from elastin and interstitial or basement membrane collagens on the regulation of matrix metalloproteinases expression and/or activation, and on the plasminogen/plasmin system. Due to their activity, matrikines may play a significant role in physiological or pathological processes such as wound healing or tumor invasion.
Collapse
Affiliation(s)
- F X Maquart
- Laboratory of Biochemistry and Molecular Biology, CNRS UMR 6198, IFR 53, Faculté de Médecine, Reims, France.
| | | | | | | |
Collapse
|
11
|
Robinet A, Fahem A, Cauchard JH, Huet E, Vincent L, Lorimier S, Antonicelli F, Soria C, Crepin M, Hornebeck W, Bellon G. Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP. J Cell Sci 2005; 118:343-56. [PMID: 15632106 DOI: 10.1242/jcs.01613] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Elastin-derived peptides display a wide range of biological activities in a number of normal and transformed cells but their involvement in angiogenesis has not been reported. In the present study, we show that kappa-elastin and VGVAPG hexapeptide elastin motif accelerated angiogenesis in the chick chorio-allantoic membrane in an in vivo model. They also stimulated pseudotube formation from human vascular and microvascular endothelial cells in the matrigel and collagen models as well as cell migration in an in vitro wound healing assay. Confocal and scanning electron microscopy analyses revealed the main reorganization of actin filaments mediated by elastin-derived peptides and changes in cell shape that correlated with a decrease of the cell form factor determined by computerized image analysis. Such elastin-derived peptide effects were attributed to upregulation of proMT1-MMP and proMMP-2 expression and activation at both the mRNA and protein levels. Batimastat, an inhibitor of furin convertase and TIMP-2, but not TIMP-1, totally abolished the influence of elastin-derived peptides (EDPs) on cell migration and tubulogenesis, thus favoring the involvement of MT1-MMP in such processes. To assess its contribution to EDP-mediated angiogenesis further, we used a small interfering RNA (siRNA) approach for specifically silencing MT1-MMP in human microvascular endothelial cells. Four sets of 21 bp siRNA duplexes targeting MT1-MMP mRNA were synthesized by in vitro transcription. Two of them proved to inhibit MT1-MMP expression efficiently but did not affect MT2-, MT3- and MT5-MMP expression. Seventy-two hours after transfection with 25 nM siRNAs EDP-induced MT1-MMP expression at the mRNA and protein levels was decreased fourfold. In parallel, proMMP-2 activation was inhibited. A scrambled siRNA, used as a negative control, had no effect. Finally, the effect of elastin peptides on pseudotube formation in MT1-MMP-siRNA transfected cells was totally abolished. These data emphasise the crucial role of MT1-MMP in the elastin-induced angiogenic phenotype of endothelial cells.
Collapse
Affiliation(s)
- Arnaud Robinet
- Laboratoire de Biochimie et Biologie Moléculaire, CNRS UMR 6198, IFR 53 Biomolécules, Faculté de Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51095 Reims CEDEX, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The fact that elastin peptides, the degradation products of the extracellular matrix protein elastin, are chemotactic for numerous cell types, promote cell cycle progression and induce release of proteolytic enzymes by stromal and cancer cells, strongly suggests that their presence in tissues could contribute to tumour progression. Thus, elastin peptides qualify as matrikines, i.e. peptides originating from the fragmentation of matrix proteins and presenting biological activities. After a brief description of their origin, the biological activities of these peptides are reviewed, emphasising their potential role in cancer. The nature of their receptor and the signalling events it controls are also discussed. Finally, the structural selectivity of the elastin complex receptor is presented, leading to the concept of elastokine (matrikine originating from elastin fragmentation) and morpho-elastokine, i.e. peptides presenting a conformation similar to that of bioactive elastin peptides and mimicking their effects.
Collapse
Affiliation(s)
- Laurent Duca
- Université de Reims Champagne Ardenne, IFR53 Biomolécules, UFR Sciences Exactes et Naturelles, FRE CNRS 2534, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | | | | | | | | |
Collapse
|
13
|
Ntayi C, Labrousse AL, Debret R, Birembaut P, Bellon G, Antonicelli F, Hornebeck W, Bernard P. Elastin-Derived Peptides Upregulate Matrix Metalloproteinase-2-ediated Melanoma Cell Invasion Through Elastin-Binding Protein. J Invest Dermatol 2004; 122:256-65. [PMID: 15009703 DOI: 10.1046/j.0022-202x.2004.22228.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type I collagen mediates melanoma cells invasion through upregulation of matrix metalloproteinases-1 and -2 (MMP-1 and -2) expression and activation. We investigated here the contribution of elastin-derived peptides (ED), degradation products of elastin, the main component of elastic fibers in melanoma cells invasion and MMP-1 and -2 expression. Our results evidenced fragmentation of elastin at the invasive front of melanoma, particularly in the most invasive tumors where those fibers nearly totally vanished. By electron microscopy, elastolysis was found to occur mainly at the periphery of melanoma cells, where close contact between elastic fibers and cells could be noticed. Therefore, we showed in vitro that plating melanoma cells high tumorigenic potential on ED-coated dishes, selectively enhanced MMP-2, as membrane-type MMP-1 (MT1-MMP) production and activation. Nevertheless, pro-MMP-2 activation was not observed owing to the parallel increase in tissue inhibitor of metalloproteinase (TIMP)-2 expression. The effects of ED on melanoma cells were found to be mediated by splicing form of beta-galactosidase (S-Gal) occupancy, as being suppressed by lactose. Supplementing collagen lattices with ED led to consistent activation of MMP-2 that can be attributed to TIMP-2 downregulation. Upregulation of MMP-2 activation by ED led to enhanced melanoma cells invasion through S-Gal occupancy. Immunohistochemistry studies, confirmed that S-Gal expression was more prominent at the melanoma invasion site associated with a strong expression of MMP-2 and MT1-MMP. We hypothesize that ED following interactions with S-Gal elastin receptor can favor melanoma cells invasion through a three-dimensional type I collagen matrix by upregulating MMP-2 activation.
Collapse
Affiliation(s)
- Carole Ntayi
- Department of Dermatology, CNRS FRE 2534, Faculty of Medicine, University of Reims, Champagne-Ardenne, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Data from the literature now indicate that cancer cells can specifically interact with the unique extracellular matrix protein, elastin. The interaction is mediated by two elastin-binding proteins (EBP), S-gal/EBP (organized into the elasin receptor/elastonectin complex) and galectin-3, components of two laminin receptors. Studies revealed that the expression of both EBPs is closely associated to the invasive/metastatic potential of various cancer types. This is due to the fact that elastin-ligation of S-gal/EBP induces motogenic, as well as mitogenic signals and releases various elastases from cancer cells and the induction depends on the metastatic potential. Studies also demonstrated that certain cancer cells can synthesize elastin and express lysyl oxydase, providing explanation for frequent appearance of elastic tissue in tumors such as breast or gastric cancers. Clinico-pathological data suggest some correlation with tumor progression of the presence of the elastic tumor stroma. Since elastic tissue may be a significant reservoir of angiostatic molecule(s) this extracellular matrix protein can also have a role in tumor-induced angiogenesis. Soluble elastin as well as elastin peptides are potent inhibitors of the metastatic process in experimental tumor models. On the other hand, elastin peptides can also be used to design targeted therapies exploiting the unique physicochemical nature of this matrix protein. Altogether, these data suggest a significant role for tumor cell-elastin interactions in tumor progression.
Collapse
Affiliation(s)
- Károly Lapis
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, H-1085, Hungary
| | | |
Collapse
|
15
|
Feinmesser M, Schachter JM, Tobar A, Sulkes J, Gutman H, Kruk N, Okon E. Relationship of tumorigenic malignant melanomas to dermal elastin: an expression of tumor/stromal interaction that may be related to prognosis. Am J Dermatopathol 2002; 24:108-17. [PMID: 11979070 DOI: 10.1097/00000372-200204000-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malignant melanomas, which produce a large number of substances active in connective tissue modulation, must contend with the dermis to grow and propagate. We studied the morphologic interactions between tumorigenic malignant melanomas and dermal elastin. Formalin-fixed and paraffin-embedded tissues of 108 tumorigenic malignant melanomas were stained for elastic tissue with the Verhoeff-van Gieson method. Various aspects of the relationship between malignant melanoma and dermal elastin were analyzed in relation to the histologic and clinical data using univariate and multivariate analyses. Tumor thickness, mitotic rate, and the presence of elastin remnants within the tumors were found to be independent negative prognostic factors, the latter with borderline significance. Tumors with more remnants of elastin were associated with higher stage of disease and lymph node and distant metastases. Tumor infiltration between the elastic fibers in the tumor depth was associated with high Clark level, greater tumor thickness, high stage of disease, and lymph node metastases. At least partial preservation of elastic fibers in the tumor depth was a relatively good prognostic factor whereas complete absence of elastin was an adverse factor. Focal or multifocal absence of elastin in the midst of the tumors or in their depth was usually associated with lymphocytic infiltrates. We suggest that tumors with remnants of elastic fibers and/or invasion between elastic fibers in their depth may be fast growing and highly invasive. The absence of elastin within tumors and at their advancing edge may be related to the elaboration of elastin-degrading substances by melanoma cells or various inflammatory cells. Our findings indicate that the relationship between malignant melanomas and dermal connective tissue components, specifically elastin, may have prognostic significance.
Collapse
Affiliation(s)
- Meora Feinmesser
- Department of Pathology, Rabin Medical Center, Beilinson Campus, Petah Tiqva, Israel.
| | | | | | | | | | | | | |
Collapse
|
16
|
Brassart B, Fuchs P, Huet E, Alix AJ, Wallach J, Tamburro AM, Delacoux F, Haye B, Emonard H, Hornebeck W, Debelle L. Conformational dependence of collagenase (matrix metalloproteinase-1) up-regulation by elastin peptides in cultured fibroblasts. J Biol Chem 2001; 276:5222-7. [PMID: 11084020 DOI: 10.1074/jbc.m003642200] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have established that treatment of cultured human skin fibroblasts with tropoelastin or with heterogenic peptides, obtained after organo-alkaline or leukocyte elastase hydrolysis of insoluble elastin, induces a high expression of pro-collagenase-1 (pro-matrix metalloproteinase-1 (pro-MMP-1)). The identical effect was achieved after stimulation with a VGVAPG synthetic peptide, reflecting the elastin-derived domain known to bind to the 67-kDa elastin-binding protein. This clearly indicated involvement of this receptor in the described phenomenon. This notion was further reinforced by the fact that elastin peptides-dependent MMP-1 up-regulation has not been demonstrated in cultures preincubated with 1 mm lactose, which causes shedding of the elastin-binding protein and with pertussis toxin, which blocks the elastin-binding protein-dependent signaling pathway involving G protein, phospholipase C, and protein kinase C. Moreover, we demonstrated that diverse peptides maintaining GXXPG sequences can also induce similar cellular effects as a "principal" VGVAPG ligand of the elastin receptor. Results of our biophysical studies suggest that this peculiar consensus sequence stabilizes a type VIII beta-turn in several similar, but not identical, peptides that maintain a sufficient conformation to be recognized by the elastin receptor. We have also established that GXXPG elastin-derived peptides, in addition to pro-MMP-1, cause up-regulation of pro-matrix metalloproteinase-3 (pro-stromelysin 1). Furthermore, we found that the presence of plasmin in the culture medium activated these MMP proenzymes, leading to a consequent degradation of collagen substrate. Our results may be, therefore, relevant to pathobiology of inflammation, in which elastin-derived peptides bearing the GXXPG conformation (created after leukocyte-dependent proteolysis) bind to the elastin receptor of local fibroblasts and trigger signals leading to expression and activation of MMP-1 and MMP-3, which in turn exacerbate local connective tissue damage.
Collapse
Affiliation(s)
- B Brassart
- UPRES-A CNRS 6021, IFR53 Biomolécules, Faculties of Sciences and Medicine, IFR53 Biomolécules, Faculty of Sciences, University of Reims, 51687 Reims, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jung S, Hinek A, Tsugu A, Hubbard SL, Ackerley C, Becker LE, Rutka JT. Astrocytoma cell interaction with elastin substrates: implications for astrocytoma invasive potential. Glia 1999; 25:179-89. [PMID: 9890632 DOI: 10.1002/(sici)1098-1136(19990115)25:2<179::aid-glia8>3.0.co;2-b] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elastin has been identified within the meninges and the microvasculature of the normal human brain. However, the role that elastin plays in either facilitating astrocytoma cell attachment to these structures or modulating astrocytoma invasion has not been previously characterized. We have recently shown that astrocytoma cell lines and specimens produce tropoelastin, and express the 67 kDa elastin binding protein (EBP). In the present report, we have established that astrocytoma cells attach to elastin as a substrate in vitro. The U87 MG astrocytoma cell line demonstrated the greatest degree of adhesion. In addition, all astrocytoma cell lines examined were capable of penetrating and migrating through an intact elastin membrane, and of degrading tritiated-elastin, a process that could be prevented by the pre-incubation of astrocytoma cells with EDTA, but not with alpha1-antitrypsin. Astrocytoma cells were also capable of penetrating 1 mm sections of human brain tissue maintained as organotypic cultures. Interestingly, the invasive potential of cultured astrocytoma cells plated on organotypic cultures of human brain was significantly increased after exposure to elastin degradation products (kappa-elastin), which interact with astrocytoma cell surface EBP. Our data show that astrocytoma cells express a functional 67 kDa EBP, enabling them to potentially recognize and attach to elastin as a substrate. These data also suggest that this elastin receptor may be involved in processes which regulate regional astrocytoma invasion.
Collapse
Affiliation(s)
- S Jung
- Sonia and Arthur Labatt Brain Tumor Research Center, Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Zaizen Y, Taniguchi S, Suita S. The role of cellular motility in the invasion of human neuroblastoma cells with or without N-myc amplification and expression. J Pediatr Surg 1998; 33:1765-70. [PMID: 9869047 DOI: 10.1016/s0022-3468(98)90281-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND/PURPOSE Patients who have neuroblastomas with N-myc amplification that are extremely invasive and result in distant metastases tend to have a very poor prognosis. The authors reported previously that N-mycamplification and expression might be closely related to the invasiveness of human neuroblastoma cells. However, the role of cellular motility has not yet been clarified in the invasion of neuroblastoma cells. The aim of this study was, therefore, to elucidate the role of cellular motility in the invasion of neuroblastoma cells. METHODS Six human neuroblastoma cell lines were used for an invasion assay in vitro using polycarbonate filters coated with basement membrane Matrigel. The amplification and expression of N-myc oncogene was examined by Southern and Northern blotting, respectively. The cellular motility was quantified by computerized image analysis on the morphology of cultured cells. RESULTS IMR-32, GOTO, and DZ, all of which had N-myc amplification, showed a high degree of invasiveness and a high cellular motility, whereas NB-69 and SK-N-SH without N-myc amplification showed an extremely low degree of invasiveness and cellular motility. ST without N-myc amplification, which was established from an aggressive tumor, showed an exceptionally high degree of motility and invasiveness. A transcriptional reduction of the N-myc gene by retinoic acid (RA) decreased the motility, which thus resulted in a marked decline of invasiveness in IMR-32 and GOTO. CONCLUSION The cellular motility correlated with the invasive capacity of human neuroblastoma cells, which thus indicated that cellular motility may play an important role in invasion.
Collapse
Affiliation(s)
- Y Zaizen
- Department of Pediatric Surgery, Faculty of Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
19
|
Brassart B, Randoux A, Hornebeck W, Emonard H. Regulation of matrix metalloproteinase-2 (gelatinase A, MMP-2), membrane-type matrix metalloproteinase-1 (MT1-MMP) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression by elastin-derived peptides in human HT-1080 fibrosarcoma cell line. Clin Exp Metastasis 1998; 16:489-500. [PMID: 9872597 DOI: 10.1023/a:1006550503612] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Soluble kappa-elastin peptides were shown to stimulate the expression of MMP-2 (but not MMP-9) by human fibrosarcoma HT-1080 cells, both at the protein and mRNA levels; maximal effect being observed at a concentration of 25 microg/ml of kappa-elastin. The stimulatory effect could be reproduced using Val-Gly-Val-Ala-Pro-Gly (VGVAPG) peptide, an elastin-derived hydrophobic hexapeptide which represented the elastin receptor binding sequence of tropoelastin. Furthermore, treatment of cells with lactose (30 mM), which dissociated 67-kDa elastin binding protein (EBP) from cell surfaces, completely abolished this effect, suggesting that the elastin receptor could mediate such a response. Using a specific monoclonal antibody, 67-kDa EBP was detected in HT-1080 membrane preparations by Western immunoblotting. Following treatment with 25 microg/ml kappa-elastin or 200 microg/ml VGVAPG, increased levels of the active 62-kDa form of MMP-2 were found in HT-1080 cell extracts. Stimulation of MT1-MMP mRNA expression by treatment with elastin-derived peptides (EDPs) was shown by competitive polymerase chain reaction (PCR). A reverse zymography analysis revealed that EDPs also stimulated TIMP-2 (but not TIMP-1) production by HT-1080 cells. Competitive PCR confirmed increased TIMP-2 mRNA expression by such treatment. These results suggest that occupancy of the 67-kDa elastin receptor by elastin-derived peptides enhanced both expression and activation of proMMP-2 and consequently, could promote the invasive/metastatic ability of tumor cells expressing this receptor.
Collapse
Affiliation(s)
- B Brassart
- Laboratoire de Biochimie, CNRS, Upresa 6021, IFR 53-BiomoPéailes, Faculté de Médecine, Reims, France
| | | | | | | |
Collapse
|
20
|
Rodriguez E, Boudard F, Mallié M, Bastide JM, Bastide M. Murine macrophage elastolytic activity induced by Aspergillus fumigatusstrains in vitro: evidence of the expression of two macrophage-induced protease genes. Can J Microbiol 1997; 43:649-57. [PMID: 9246742 DOI: 10.1139/m97-092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The interaction between Aspergillus fumigatus conidia and murine macrophages of various origins was investigated. Cocultures were carried out between A. fumigatus strains and freshly isolated murine pulmonary alveolar macrophages or two murine macrophage cell-lines: murine alveolar cell-line MALU and murine astrocytoma cell-line J774. By measuring the variation of elastolytic activity in the coculture supernatants with two elastin substrates, we demonstrated that either viable or fixed A. fumigatus or C. albicans yeasts or nonspecific particles induced significant macrophage elastolytic activity. The effect of A. fumigatus supernatant or the purified A. fumigatus galactomannan suggested also the possible involvement of this polysaccharide in macrophage-protease gene expression, release, and activity in invasive aspergillosis. The effect of inhibitory compounds demonstrated the potential implication of a macrophagic metalloprotease and a macrophagic cysteine protease. RNA analysis allowed us to demonstrate the induction of expression of two macrophagic protease genes in stimulated macrophages. Two distinctive mechanisms appeared to be implicated in macrophage protease induction: nonspecific phagocytosis in the earliest times of the coculture and (or) specific galactomannan recognition after its gradual release by the mycelium.
Collapse
Affiliation(s)
- E Rodriguez
- Laboratoire d'immunologie et parasitologie, Faculté de pharmacie, Montpellier, France
| | | | | | | | | |
Collapse
|
21
|
Teicher BA. A systems approach to cancer therapy. (Antioncogenics + standard cytotoxics-->mechanism(s) of interaction). Cancer Metastasis Rev 1996; 15:247-72. [PMID: 8842498 DOI: 10.1007/bf00437479] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- B A Teicher
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
22
|
|
23
|
Affiliation(s)
- B A Teicher
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
24
|
Reddy VY, Zhang QY, Weiss SJ. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc Natl Acad Sci U S A 1995; 92:3849-53. [PMID: 7731994 PMCID: PMC42059 DOI: 10.1073/pnas.92.9.3849] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human macrophages are believed to damage host tissues in chronic inflammatory disease states, but these cells have been reported to express only modest degradative activity in vitro. However, while examining the ability of human monocytes to degrade the extracellular matrix component elastin, we identified culture conditions under which the cells matured into a macrophage population that displayed a degradative phenotype hundreds of times more destructive than that previously ascribed to any other cell population. The monocyte-derived macrophages synthesized elastinolytic matrix metalloproteinases (i.e., gelatinase B and matrilysin) as well as cysteine proteinases (i.e., cathepsins B, L, and S), but only the cathepsins were detected in the extracellular milieu as fully processed, mature enzymes by either vital fluorescence or active-site labeling. Consistent with these observations, macrophage-mediated elastinolytic activity was not affected by matrix metalloproteinase inhibitors but could be almost completely abrogated by inhibiting cathepsins L and S. These data demonstrate that human macrophages mobilize cysteine proteinases to arm themselves with a powerful effector mechanism that can participate in the pathophysiologic remodeling of the extracellular matrix.
Collapse
Affiliation(s)
- V Y Reddy
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
25
|
Hall CL, Wang C, Lange LA, Turley EA. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Biophys Biochem Cytol 1994; 126:575-88. [PMID: 7518470 PMCID: PMC2200030 DOI: 10.1083/jcb.126.2.575] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is critical for cell locomotion.
Collapse
Affiliation(s)
- C L Hall
- Department of Pediatrics, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
26
|
Hinek A. Nature and the multiple functions of the 67-kD elastin-/laminin binding protein. CELL ADHESION AND COMMUNICATION 1994; 2:185-93. [PMID: 7827955 DOI: 10.3109/15419069409004436] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Numerous cell types, including fibroblasts, vascular smooth muscle cells, chondroblasts, monocytes, neutrophils, and several tumor cells express the 67-kD galactolectin, homologous to the alternatively spliced variant of beta-galactosidase. The 67-kD protein resides on the cell surfaces and is capable of interacting with elastin, laminin and collagen type IV. This peripheral membrane protein binds its matrix ligands but only in the absence of galactosugars, whereas binding of galactosugar-containing moieties to its lectin site changes its molecular folding which causes discharge of the ligand and release of the receptor from the cell surface. This review will address the functional significance of the single receptor that interacts with multiple matrix proteins and can be shed from cell surfaces by galactosugars. I will emphasize the role of the 67-kD protein in divergent cellular processes, such as cell-matrix attachment, matrix assembly, cellular chemotaxis, and active migration through the vascular walls.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Cell Movement/physiology
- Chemotaxis, Leukocyte/physiology
- Elastic Tissue/physiology
- Elastin/metabolism
- Humans
- Molecular Sequence Data
- Molecular Weight
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Laminin/chemistry
- Receptors, Laminin/genetics
- Receptors, Laminin/physiology
- Tropoelastin/metabolism
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- A Hinek
- Division of Cardiovascular Research, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
27
|
Affiliation(s)
- S Aznavoorian
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
28
|
Abstract
The role of dermatologists in the diagnosis and treatment of skin cancer continues to increase. Consequently, they will more frequently be involved in the diagnosis, treatment, and management of patients with metastatic or potentially metastatic tumors. Squamous cell carcinomas and malignant melanomas are frequently seen in dermatologic practices and have the capability to metastasize. Metastases are the result of a complex process that is characterized by a sequence of steps, each of which requires acquisition by the malignant cell of key biologic properties. The metastatic sequence can be conceptualized as detachment from the primary tumor followed by invasion, intravasation into a vessel, circulation, stasis within a vessel, extravasation, invasion of the recipient tissue bed, and ultimately proliferation. The basic steps of the metastatic sequence are described as well as how these steps and other tumor cell adaptations can affect the clinical patterns of metastasis. Finally, practical applications of the understanding of these principles of metastasis are discussed.
Collapse
Affiliation(s)
- D G Brodland
- Department of Dermatology, Mayo Clinic, Rochester, MN 55905
| | | |
Collapse
|
29
|
|
30
|
Condeelis J, Jones J, Segall JE. Chemotaxis of metastatic tumor cells: clues to mechanisms from the Dictyostelium paradigm. Cancer Metastasis Rev 1992; 11:55-68. [PMID: 1511497 DOI: 10.1007/bf00047603] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amoeboid movement, and in some cases, amoeboid chemotaxis, is a key step in tumor metastasis. The high degree of conservation in signal transduction pathways and motile machinery in eukaryotic cells suggests that insights and molecular probes developed from the study of these processes in easily manipulated experimental model systems will be applicable directly to experimentally intractable tumor cells. One such model system, Dictyostelium discoideum, is discussed in terms of the molecular events involved in amoeboid chemotaxis. The application of insights and assays developed with Dictyostelium to early events in the chemotaxis of Lewis lung carcinoma cells is reviewed.
Collapse
Affiliation(s)
- J Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | | | | |
Collapse
|
31
|
Zetter BR, Chackal-Roy M, Smith R. The cellular basis for prostate cancer metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 324:39-43. [PMID: 1492626 DOI: 10.1007/978-1-4615-3398-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- B R Zetter
- Department of Surgery Children's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
32
|
Jones JG, Segall J, Condeelis J. Molecular analysis of amoeboid chemotaxis: parallel observations in amoeboid phagocytes and metastatic tumor cells. EXS 1991; 59:1-16. [PMID: 1833224 DOI: 10.1007/978-3-0348-7494-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metastasis is a multistep process in which amoeboid chemotaxis plays a key role in the movement of tumor cells into and out of vessels. On a molecular level, much of what is known about amoeboid chemotaxis has been learned through work with Dictyostelium discoideum, a lower eukaryotic amoeboid phagocyte. One of the first and most crucial events to occur in the actin cytoskeleton following chemotactic stimulation is activation of actin nucleation. This is followed by incorporation of specific actin cross-linking proteins into the cytoskeleton, proteins which are implicated in the extension of pseudopods and filopods. Together, these events have been termed the Cortical Expansion Model for amoeboid chemotaxis. Detailed biochemical analysis has implicated a new actin-capping protein and has shown that one of the cross-linking proteins is Elongation Factor 1a, suggesting a link between chemotaxis and growth control. Preliminary data from parallel studies on neoplastic cells are presented.
Collapse
Affiliation(s)
- J G Jones
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
33
|
Affiliation(s)
- B R Zetter
- Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
34
|
Affiliation(s)
- B R Zetter
- Department of Cellular and Molecular Physiology, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115
| |
Collapse
|