1
|
Avcibas R, Vermul A, Gluhovic V, Boback N, Arroyo R, Kingma P, Isasi-Campillo M, Garcia-Ortega L, Griese M, Kuebler WM, Ochs M, Lauster D, Lopez-Rodriguez E. Multivalent, calcium-independent binding of surfactant protein A and D to sulfated glycosaminoglycans of the alveolar epithelial glycocalyx. Am J Physiol Lung Cell Mol Physiol 2024; 326:L524-L538. [PMID: 38375572 PMCID: PMC11380953 DOI: 10.1152/ajplung.00283.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.
Collapse
Affiliation(s)
- Rabia Avcibas
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Vermul
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vladimir Gluhovic
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nico Boback
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Raquel Arroyo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Paul Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Miriam Isasi-Campillo
- Department of Biochemistry and Molecular Biology, Complutense University Madrid, Madrid, Spain
| | - Lucia Garcia-Ortega
- Department of Biochemistry and Molecular Biology, Complutense University Madrid, Madrid, Spain
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, German Center for Lung Research, Munich, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- German Center for Lung Research (DZL), Berlin, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- German Center for Lung Research (DZL), Berlin, Germany
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Pandey A, Kulshrestha R, Bansal SK. Dynamic role of LMW-hyaluronan fragments and Toll-like receptors 2,4 in progression of bleomycin induced lung parenchymal injury to fibrosis. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8138115 DOI: 10.1186/s43168-021-00073-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Pulmonary fibrosis (PF) is a progressive and lethal lung disease of elderly whose incidence has been increasing following the Covid-19 pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). PF immunopathogenesis involves progressive alveolar epithelial cell damage, release of damage-associated molecular patterns (DAMPs), and extracellular matrix (ECM) injury. We assessed the dynamic role of LMW-hyaluronan (LMW-HA) as DAMP in initiation of host immune TLR-2,4 responses and as determinant in progression of ECM injury to fibrosis. Male Wistar rats were divided into Group I (saline control, n = 24) and Group II (intratracheal bleomycin, 7 U/kg/animal, n = 24). Animals were euthanized on 0, 7, 14, and 28 days. The time course of release of LMW-HA, TLR-2,4 mRNA and protein levels, and NF-κB-p65 levels after bleomycin injury were correlated with the development of parenchymal inflammation, remodelling, and fibrosis. Results Acute lung injury caused by bleomycin significantly increases the pro-inflammatory LMW-HA levels and elevates TLR-2,4 levels on day 7. Subsequently, TLR-2 upregulation, TLR-4 downregulation, and NF-κB signalling follow on days 14 and 28. This results in progressive tissue inflammation, alveolar and interstitial macrophage accumulation, and fibrosis. Conclusions LMW-HA significantly increases in PF caused by non-infectious and infectious (Covid-19) etiologies. The accumulating HA fragments function as endogenous DAMPs and trigger inflammatory responses, through differential TLR2 and TLR4 signalling, thus promoting inflammation and macrophage influx. LMW-HA are reflective of the state of ongoing tissue inflammation and may be considered as a natural biosensor for fibrotic lung diseases and as potential therapeutic targets.
Collapse
|
3
|
Lierova A, Kasparova J, Pejchal J, Kubelkova K, Jelicova M, Palarcik J, Korecka L, Bilkova Z, Sinkorova Z. Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles. Front Pharmacol 2020; 11:1199. [PMID: 32903478 PMCID: PMC7435052 DOI: 10.3389/fphar.2020.01199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Therapeutic thorax irradiation as an intervention in lung cancer has its limitations due to toxic effects leading to pneumonitis and/or pulmonary fibrosis. It has already been confirmed that hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, is involved in inflammation disorders and wound healing in lung tissue. We examined the effects after gamma irradiation of hyaluronic acid nanoparticles (HANPs) applied into lung prior to that irradiation in a dose causing radiation-induced pulmonary injuries (RIPI). Materials and Methods Biocompatible HANPs were first used for viability assay conducted on the J774.2 cell line. For in vivo experiments, HANPs were administered intratracheally to C57Bl/6 mice 30 min before thoracic irradiation by 17 Gy. Molecular, cellular, and histopathological parameters were measured in lung and peripheral blood at days 113, 155, and 190, corresponding to periods of significant morphological and/or biochemical alterations of RIPI. Results Modification of linear hyaluronic acid molecule into nanoparticles structure significantly affected the physiological properties and caused long-term stability against ionizing radiation. The HANPs treatments had significant effects on the expression of the cytokines and particularly on the pro-fibrotic signaling pathway in the lung tissue. The radiation fibrosis phase was altered significantly in comparison with a solely irradiated group. Conclusions The present study provides evidence that application of HANPs caused significant changes in molecular and cellular patterns associated with RIPI. These findings suggest that HANPs could diminish detrimental radiation-induced processes in lung tissue, thereby potentially decreasing the extracellular matrix degradation leading to lung fibrosis.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Marcela Jelicova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jiri Palarcik
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
4
|
Abstract
Over 50 years after its first description, Bronchopulmonary Dysplasia (BPD) remains a devastating pulmonary complication in preterm infants with respiratory failure and develops in 30-50% of infants less than 1000-gram birth weight. It is thought to involve ventilator- and oxygen-induced damage to an immature lung that results in an inflammatory response and ends in aberrant lung development with dysregulated angiogenesis and alveolarization. Significant morbidity and mortality are associated with this most common chronic lung disease of childhood. Thus, any therapies that decrease the incidence or severity of this condition would have significant impact on morbidity, mortality, human costs, and healthcare expenditure. It is clear that an inflammatory response and the elaboration of growth factors and cytokines are associated with the development of BPD. Numerous approaches to control the inflammatory process leading to the development of BPD have been attempted. This review will examine the anti-inflammatory approaches that are established or hold promise for the prevention or treatment of BPD.
Collapse
Affiliation(s)
- Rashmin C Savani
- Center for Pulmonary & Vascular Biology, Division of Neonatal-Perinatal Medicine, The Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| |
Collapse
|
5
|
Cui Z, Liao J, Cheong N, Longoria C, Cao G, DeLisser HM, Savani RC. The Receptor for Hyaluronan-Mediated Motility (CD168) promotes inflammation and fibrosis after acute lung injury. Matrix Biol 2018; 78-79:255-271. [PMID: 30098420 PMCID: PMC6368477 DOI: 10.1016/j.matbio.2018.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/09/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
Abstract
Acute lung injury results in early inflammation and respiratory distress, and later fibrosis. The glycosaminoglycan hyaluronan (HA) and the Receptor for Hyaluronan-Mediated Motility (RHAMM, CD168) have been implicated in the response to acute lung injury. We hypothesized that, compared to wild type (WT) mice, RHAMM knockout (KO) mice would be protected from, whereas mice with macrophage-specific transgenic overexpression of RHAMM (TG) would have worse inflammation, respiratory distress and fibrosis after intratracheal (IT) bleomycin. Compared to WT mice, 10 days after IT bleomycin, RHAMM KO mice had less weight loss, less increase in respiratory rate, and fewer CD45+ cells in the lung. At day 28, compared to injured WT animals, injured RHAMM KO mice had lower M1 macrophage content, as well as decreased fibrosis as determined by trichrome staining, Ashcroft scores and lung HPO content. Four lines of transgenic mice with selective overexpression of RHAMM in macrophages were generated using the Scavenger Receptor A promoter driving a myc-tagged full length RHAMM cDNA. Baseline expression of RHAMM and CD44 was the same in WT and TG mice. By flow cytometry, TG bone marrow-derived macrophages (BMDM) had increased cell surface RHAMM and myc, but equal CD44 expression. TG BMDM also had 2-fold increases in both chemotaxis to HA and proliferation in fetal bovine serum. In TG mice, increased inflammation after thioglycollate-induced peritonitis was restricted to macrophages and not neutrophils. For lung injury studies, non-transgenic mice given bleomycin had respiratory distress with increased respiratory rates from day 7 to 21. However, TG mice had higher respiratory rates from 4 days after bleomycin and continued to increase respiratory rates up to day 21. At 21 days after IT bleomycin, TG mice had increased lung macrophage accumulation. Lavage HA concentrations were 6-fold higher in injured WT mice, but 30-fold higher in injured TG mice. At 21 days after IT bleomycin, WT mice had developed fibrosis, but TG mice showed exaggerated fibrosis with increased Ashcroft scores and HPO content. We conclude that RHAMM is a critical component of the inflammatory response, respiratory distress and fibrosis after acute lung injury. We speculate that RHAMM is a potential therapeutic target to limit the consequences of acute lung injury.
Collapse
Affiliation(s)
- Zheng Cui
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jie Liao
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naeun Cheong
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Longoria
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaoyuan Cao
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Horace M DeLisser
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Rashmin C Savani
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
The Rise and Fall of Hyaluronan in Respiratory Diseases. Int J Cell Biol 2015; 2015:712507. [PMID: 26448757 PMCID: PMC4581576 DOI: 10.1155/2015/712507] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 05/03/2015] [Indexed: 12/24/2022] Open
Abstract
In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology. During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation. These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during tissue injury and repair among a variety of respiratory diseases.
Collapse
|
7
|
Østerholt HCD, Dannevig I, Wyckoff MH, Liao J, Akgul Y, Ramgopal M, Mija DS, Cheong N, Longoria C, Mahendroo M, Nakstad B, Saugstad OD, Savani RC. Antioxidant protects against increases in low molecular weight hyaluronan and inflammation in asphyxiated newborn pigs resuscitated with 100% oxygen. PLoS One 2012; 7:e38839. [PMID: 22701723 PMCID: PMC3372475 DOI: 10.1371/journal.pone.0038839] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/11/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Newborn resuscitation with 100% oxygen is associated with oxidative-nitrative stresses and inflammation. The mechanisms are unclear. Hyaluronan (HA) is fragmented to low molecular weight (LMW) by oxidative-nitrative stresses and can promote inflammation. We examined the effects of 100% oxygen resuscitation and treatment with the antioxidant, N-acetylcysteine (NAC), on lung 3-nitrotyrosine (3-NT), LMW HA, inflammation, TNFα and IL1ß in a newborn pig model of resuscitation. METHODS & PRINCIPAL FINDINGS Newborn pigs (n = 40) were subjected to severe asphyxia, followed by 30 min ventilation with either 21% or 100% oxygen, and were observed for the subsequent 150 minutes in 21% oxygen. One 100% oxygen group was treated with NAC. Serum, bronchoalveolar lavage (BAL), lung sections, and lung tissue were obtained. Asphyxia resulted in profound hypoxia, hypercarbia and metabolic acidosis. In controls, HA staining was in airway subepithelial matrix and no 3-NT staining was seen. At the end of asphyxia, lavage HA decreased, whereas serum HA increased. At 150 minutes after resuscitation, exposure to 100% oxygen was associated with significantly higher BAL HA, increased 3NT staining, and increased fragmentation of lung HA. Lung neutrophil and macrophage contents, and serum TNFα and IL1ß were higher in animals with LMW than those with HMW HA in the lung. Treatment of 100% oxygen animals with NAC blocked nitrative stress, preserved HMW HA, and decreased inflammation. In vitro, peroxynitrite was able to fragment HA, and macrophages stimulated with LMW HA increased TNFα and IL1ß expression. CONCLUSIONS & SIGNIFICANCE Compared to 21%, resuscitation with 100% oxygen resulted in increased peroxynitrite, fragmentation of HA, inflammation, as well as TNFα and IL1ß expression. Antioxidant treatment prevented the expression of peroxynitrite, the degradation of HA, and also blocked increases in inflammation and inflammatory cytokines. These findings provide insight into potential mechanisms by which exposure to hyperoxia results in systemic inflammation.
Collapse
Affiliation(s)
- Helene C. D. Østerholt
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Ingrid Dannevig
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Myra H. Wyckoff
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jie Liao
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yucel Akgul
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mrithyunjay Ramgopal
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dan S. Mija
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Naeun Cheong
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christopher Longoria
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Britt Nakstad
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ola D. Saugstad
- Department of Pediatric Research, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Rashmin C. Savani
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Chang LM, Maheshwari P, Werth S, Schaffer L, Head SR, Kovarik C, Werth VP. Identification and molecular analysis of glycosaminoglycans in cutaneous lupus erythematosus and dermatomyositis. J Histochem Cytochem 2011; 59:336-45. [PMID: 21378287 DOI: 10.1369/0022155410398000] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs), also known histologically as dermal mucin, accumulate in several inflammatory skin conditions. Because different GAG species have distinct immunologic effects, the authors examined two GAGs, hyaluronan (HA) and chondroitin sulfate (CS), using specific stains in cutaneous lupus erythematosus (CLE) and dermatomyositis (DM). In the dermis of one CLE subtype, tumid LE (TLE), they found only increased HA, but both HA and CS were significantly elevated in another CLE subtype, discoid LE (DLE). DM lesional dermis accumulated mainly CS but not HA. The authors then used glycomic gene expression microarrays to assess the expression of HA- and CS-related genes in CLE skin. Real-time quantitative PCR confirmed significantly increased expression of HAS2, CHSY1, and C4ST1 in the combined groups of CLE lesions (n = 8) compared to healthy controls (n = 4). Thus, the increase in HA in CLE presumably results from upregulation of HAS2, whereas CHSY1 and C4ST1 appear to contribute to increased CS. Based on their known immunomodulatory effects in other systems, HA and CS may thus participate in the pathophysiology of these inflammatory skin conditions.
Collapse
Affiliation(s)
- Laura M Chang
- Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Jiang D, Liang J, Noble PW. Regulation of non-infectious lung injury, inflammation, and repair by the extracellular matrix glycosaminoglycan hyaluronan. Anat Rec (Hoboken) 2010; 293:982-5. [PMID: 20186964 DOI: 10.1002/ar.21102] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An important hallmark of tissue remodeling is the dynamic turnover of extracellular matrix (ECM). ECM performs a variety of functions in tissue repair including scaffold formation, modulation of fluid dynamics, and regulating cell behavior. During non-infectious tissue injury ECM degradation products are generated that acquire signaling functions not attributable to the native precursor molecules. Hyaluronan (HA) is a non-sulfated glycosaminoglycan which is produced in great abundance following tissue injury. It exists both in a soluble form and as side chains on proteoglycans. HA has critical roles in development as well as a variety of biological processes including wound healing, tumor growth and metastasis, and inflammation. HA fragments share structural similarities with pathogens and following tissue injury can be recognized by innate immune receptors. Elucidating the protean roles of HA in tissue injury, inflammation, and repair will generate new insights into mechanisms of diseases characterized by chronic inflammation and tissue remodeling.
Collapse
Affiliation(s)
- Dianhua Jiang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | |
Collapse
|
10
|
Dentener MA, Vernooy JHJ, Hendriks S, Wouters EFM. Enhanced levels of hyaluronan in lungs of patients with COPD: relationship with lung function and local inflammation. Thorax 2005; 60:114-9. [PMID: 15681498 PMCID: PMC1747307 DOI: 10.1136/thx.2003.020842] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Chronic inflammation and airway remodelling are characteristics of chronic obstructive pulmonary disease (COPD). Hyaluronan (HA) is an extracellular matrix compound with proinflammatory activity. HA levels in induced sputum from patients with COPD were measured and related to local inflammation. The expression of hyaluronan synthase 2 (HAS2) and hyaluronidase 2 (HYAL2) was analysed in lung tissue. METHODS Sputum was obtained from 18 patients with COPD (forced expiratory volume in 1 second (FEV(1)) 62% predicted (range 20-76)) and 14 healthy smokers. HA and inflammatory markers were measured using ELISA assays. Lung sections were obtained from five patients with severe COPD (FEV(1) <30%) and from five smokers, and mRNA levels of HAS2 and HYAL2 were analysed by polymerase chain reaction. RESULTS HA levels were significantly higher in the sputum from patients with COPD than controls. The COPD population appeared to consist of two subpopulations with either high or moderate HA levels. The subgroup of patients with high HA levels had lower FEV(1) than the moderate HA group. In addition, neutrophil influx and levels of interleukin-8, and the soluble tumour necrosis factor receptors R55 and R75 were significantly higher in patients with high HA levels than in those with moderate HA levels and controls. Semiquantitative analysis revealed enhanced expression of HYAL2 in lung tissue of patients with severe COPD compared with control subjects. CONCLUSION These data indicate a relationship between HA levels, local inflammation and severity of disease, and suggest enhanced breakdown of HA in the lungs of patients with COPD.
Collapse
Affiliation(s)
- M A Dentener
- Toxicology Research Institute Maastricht, Department of Respiratory Medicine, University Hospital Maastricht, P O Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Wilkinson TS, Potter-Perigo S, Tsoi C, Altman LC, Wight TN. Pro- and anti-inflammatory factors cooperate to control hyaluronan synthesis in lung fibroblasts. Am J Respir Cell Mol Biol 2004; 31:92-9. [PMID: 14764429 DOI: 10.1165/rcmb.2003-0380oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hyaluronan (HA) is an important constituent of the extracellular matrix and accumulates during inflammatory lung diseases like asthma. Little is known about the factors that regulate HA synthesis by lung cells. Accordingly, we investigated the effect of T-helper 1 (TH1) and 2 (TH2) cytokines and the anti-inflammatory agents fluticasone and salmeterol on HA synthesis in human lung fibroblasts. Interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF)-alpha were the most potent stimulators of HA synthesis and when combined, caused synergistic increases in HA accumulation. Time-course analysis of HA accumulation and [3H]-glucosamine incorporation into HA demonstrated continued synthesis over the 24 h of stimulation. Peak synthesis at 6-12 h coincided with an increased proportion of high molecular weight HA. Reverse transcriptase polymerase chain reaction (RT-PCR) revealed that IL-1beta and TNF-alpha induced HA synthase-2 messenger RNA (mRNA) 3 h following stimulation and remained elevated throughout the 24-h stimulation period. Fluticasone inhibited IL-1beta and TNF-alpha induced HA synthesis (44.5%) whereas salmeterol had no effect. When combined, fluticasone and salmeterol inhibited HA synthesis to a greater extent (85.2%). Further, fluticasone attenuated IL-1beta and TNF-alpha stimulated hyaluronan synthase-2 messenger RNA (mRNA), and the addition of salmeterol cooperatively enhanced this inhibition. These results indicate that enhanced synthesis of HA by the proinflammatory cytokines IL-1beta and TNF-alpha can be abrogated by specific corticosteroid and beta2 blocker combinations shown to be effective in the treatment of asthma.
Collapse
Affiliation(s)
- Thomas S Wilkinson
- Department of Vascular Biology, The Hope Heart Institute, Seattle, WA 98104-2046, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Hyal2 is one of several hyaluronidases present in vertebrates. The human gene encoding this enzyme is present on chromosome 3p.21.3, close to two additional hyaluronidase genes. cDNAs encoding Hyal2 homologues have been characterized from mouse and Xenopus laevis. These enzymes hydrolyze high molecular mass hyaluronan to intermediates of approximately 20 kDa, a finding which implies that structural domains of this size exist in this polysaccharide which was mostly thought to be a random coil. Hyal2 enzymes have an acidic pH-optimum with an activity that is considerably lower than observed for other types of hyaluronidases. Originally considered to be a typical lysosomal enzyme, more recent evidence has shown that Hyal2 proteins can also be exposed on the cell surface bound to the plasma membrane via a GPI anchor. Hyal2 is present in many tissues, one exception being the adult brain. In this tissue, the gene is silenced after birth by methylation. Current evidence about the role of Hyal2 in tumor growth, inflammation and frog embryogenesis is discussed.
Collapse
Affiliation(s)
- G Lepperdinger
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria.
| | | | | |
Collapse
|
13
|
Koslowski R, Pfeil U, Fehrenbach H, Kasper M, Skutelsky E, Wenzel KW. Changes in xylosyltransferase activity and in proteoglycan deposition in bleomycin-induced lung injury in rat. Eur Respir J 2001; 18:347-56. [PMID: 11529295 DOI: 10.1183/09031936.01.00085601] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several lines of evidence support the hypothesis of the involvement of altered proteoglycan deposition in the development of lung diseases. UDP-D-xylose: core protein beta-D-xylosyltransferase (UDP-xylosyltransferase; EC 2.4.2.26) is a key enzyme for the glycosylation of proteoglycan core proteins. This study examined the catalytic activity of UDP-xylosyltransferase in lung tissue and in isolated fibroblasts, as well as the deposition of the proteoglycans versican, biglycan and decorin in rat lung tissue during bleomycin-induced lung injury. Rats were given, endotracheally, a single dose of bleomycin. Deposition of proteoglycans in lung tissue was assessed by immunohistochemistry and the catalytic activity of xylosyltransferase was determined with an acceptor peptide of the sequence Q-E-E-E-G-S-G-G-G-Q-G-G as a substrate. The results show coincidence of increasing xylosyltransferase activities in lung tissue with accumulation of versican at alveolar entrance rings and in fibrotic regions in close proximity to alpha-smooth muscle actin-positive cells. In contrast, no changes in biglycan and decorin deposition in fibrotic lungs were observed, except for decorin in alveolar type II pneumocytes and alveolar macrophages. Bleomycin treatment of isolated rat lung fibroblasts resulted in a concentration-dependent increase of xylosyltransferase activity up to 2 mU bleomycin x mL(-1). The data suggest a participation of myofibroblasts with increased xylosyltransferase activities in accumulation of versican in fibrotic foci of injured lung tissue at the early stages of development of lung fibrosis.
Collapse
Affiliation(s)
- R Koslowski
- Institutes of Physiological Chemistry, Dresden University of Technology, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The duplex nature of the lining of the pulmonary alveolus has long been appreciated. It appears that surfactant is present at the interface with air where it prevents the collapse of the alveolus by lowering surface tension and that the surfactant rests on an aqueous subphase. This subphase has enough structure to form a smooth, continuous surface over the projections of the epithelial cells and because of its hydrophilic nature it attracts the polar heads of surfactant phospholipids. The chemical composition of the subphase has not been addressed. Type II cells in the wall of the alveolus are specialized to produce surfactant and they also secrete hyaluronan (hyaluronic acid) into the subphase. In solution, molecules of hyaluronan appear to be flexible coils which self-aggregate. The resulting solutions are quite viscous and exhibit non-Newtonian behavior. Hyaluronan binds to cell surface receptors and to proteins in the extracellular matrix. The networks formed with self-aggregated hyaluronan with or without proteins create gels whose properties depend largely upon the molecular weight of the hyaluronan and its concentration. Hyaluronan is also known to interact with phospholipids and has hydrophobic regions which could bind to the hydrophobic surfactant proteins B and C. The working hypothesis presented herein states that hyaluronan interacts with itself and with proteins in the subphase to form a hydrophilic gel. At the epithelial cell layer the components are concentrated due to tethered HA molecules and the gel smooths over cell projections. At the air interface the components are so dilute that a layer which is essentially water is present. The surfactant phospholipids spread on the water. Direct interactions of HA and surfactant phospholipids may also occur and contribute to the stability of the surfactant layer.
Collapse
Affiliation(s)
- B A Bray
- The Department of Medicine of the College of Physicians and Surgeons, Columbia University, 630 W, 168th St., New York, NY 10032, USA.
| |
Collapse
|
15
|
Baroni T, Bodo M, D'Alessandro A, Conte C, Calvitti M, Muzi G, Lumare A, Bellocchio S, Abbritti G. Silica and its antagonistic effects on transforming growth factor-beta in lung fibroblast extracellular matrix production. J Investig Med 2001; 49:146-56. [PMID: 11288755 DOI: 10.2310/6650.2001.34041] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Silicosis, a pneumoconiosis marked by interstitial pulmonary fibrosis, is caused by inhalation of free crystalline silica particles. When silica particles are injected into the lower lung, they are translocated across the epithelium into the interstitial space, where macrophage-derived growth factors affect lung fibroblast proliferation and collagen deposition. We hypothesized that silica may act directly on pulmonary fibroblasts modifying extracellular matrix (ECM) synthesis and that the effects of silica may be mediated by transforming growth factor-beta (TGFbeta) overproduction. METHODS To test this hypothesis, we studied a human lung fibroblast cell line (WI-1003) exposed to silica in vitro. We investigated cell morphology by electron microscopic procedure, cell growth, collagen production, and glycosaminoglycans (GAG) composition by radiolabeled precursors. Cytokine and growth factor synthesis were evaluated by specific enzyme-linked immunoadsorbent assay kits and Northern blotting analysis. RESULTS Pulmonary fibroblasts internalized silica particles without detectable cell damage. Silica directly stimulated collagen synthesis and decreased the amount of 3H-glucosamine-labeled GAG. Silica-treated fibroblasts secreted less TGFbeta than untreated controls, antagonized the stimulatory effect of TGFbeta on ECM synthesis, and reversed TGFbeta-induced inhibition of cell proliferation. Northern blotting analysis showed increased interleukin-1alpha (IL-1alpha) mRNA after silica treatment. IL-1alpha had no influence on collagen synthesis but increased the number of WI-1003 fibroblasts. CONCLUSIONS These results support our hypothesis that lung fibroblasts are direct silica targets. However, contradicting our hypothesis, silica antagonized TGFbeta activities through a TGFbeta downregulation and an IL-1alpha upregulation. The complex pattern of TGFbeta and IL-1alpha regulation in pulmonary fibroblasts is imbalanced by silica exposure and might play a key role in silica-mediated pulmonary fibrosis.
Collapse
Affiliation(s)
- T Baroni
- Histology Section, Faculty of Medicine, University of Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Savani RC, Hou G, Liu P, Wang C, Simons E, Grimm PC, Stern R, Greenberg AH, DeLisser HM, Khalil N. A role for hyaluronan in macrophage accumulation and collagen deposition after bleomycin-induced lung injury. Am J Respir Cell Mol Biol 2000; 23:475-84. [PMID: 11017912 DOI: 10.1165/ajrcmb.23.4.3944] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Elevated concentrations of hyaluronan (HA) are associated with the accumulation of macrophages in the lung after injury. We have investigated the role of HA in the inflammatory and fibrotic responses to lung injury using the intratracheal instillation of bleomycin in rats as a model. After bleomycin-induced lung injury, both HA content in bronchoalveolar lavage (BAL) and staining for HA in macrophages accumulating in injured areas of the lung were maximal at 4 d. Increased HA in BAL correlated with increased locomotion of isolated alveolar macrophages. HA-binding peptide was able to specifically block macrophage motility in vitro. Importantly, systemic administration of HA-binding peptide to rats before injury not only decreased alveolar macrophage motility and accumulation in the lung, but also reduced lung collagen alpha (I) messenger RNA and hydroxyproline contents. We propose a model in which HA plays a critical role in the inflammatory response and fibrotic consequences of acute lung injury.
Collapse
Affiliation(s)
- R C Savani
- Division of Neonatology, Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Johnsson H, Eriksson L, Jonzon A, Laurent TC, Sedin G. Lung hyaluronan and water content in preterm and term rabbit pups exposed to oxygen or air. Pediatr Res 1998; 44:716-22. [PMID: 9803453 DOI: 10.1203/00006450-199811000-00014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rabbit pups were delivered by cesarean section 1 or 2 d before term, or vaginally around term, and then reared in room air or exposed to intermittent or continuous hyperoxia (> 85%) for up to 9 d. Pups were killed at different ages, and lung hyaluronan (HA; microgram/g of dry lung weight) and lung water content, measured as wet/dry lung weight, were determined. Compared with the day of birth, the lung HA concentration did not change significantly on succeeding days in pups kept in air delivered 2 d (-2 d) or 1 d (-1 d) before term, whereas the water content decreased significantly. Continuous exposure to hyperoxia resulted in a significantly raised lung HA concentration 6 d postterm in both -2 d and -1 d pups, and intermittent exposure to hyperoxia resulted in a significantly raised HA concentration 6 d postterm in -1 d pups, compared with the groups exposed to room air. These increases were accompanied by significantly elevated wet/dry lung weight ratios. Microscopic examination revealed significantly increased HA staining scores in alveoli, arterioles, and bronchioli in both hyperoxia-exposed groups of -2 d pups 6 d postterm, and nonsignificantly higher scores in -1 d and vaginally delivered pups of comparable age, compared with the scores at birth. The results indicate that oxygen exposure neonatally may result in an increase in lung HA accompanied by an increase in lung water content. The increase in lung HA concentration in our study may be an effect of oxygen free radicals or of oxygen-induced stimulation of inflammatory mediators.
Collapse
Affiliation(s)
- H Johnsson
- Department of Pediatrics, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
18
|
Hill PA, Lan HY, Atkins RC, Nikolic-Paterson DJ. Ultrastructural localisation of CD44 in the rat lung in experimental Goodpasture's syndrome. Pathology 1997; 29:380-4. [PMID: 9423219 DOI: 10.1080/00313029700169355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although CD44 is known to be involved in a wide array of cell to cell and cell to matrix interactions, its role in immune-mediated disease is not well understood. Therefore, using immunogold electron microscopy we have determined the precise localisation of CD44 in the rat lung in experimental Goodpasture's (GP) syndrome, a model of immune-mediated pulmonary disease. In normal rat lung CD44 was present on the surface of alveolar macrophages but was not detectable on endothelium. In GP syndrome there was strong CD44 expression on all infiltrating inflammatory leucocytes, both adherent to endothelium and within the alveolar spaces and interstitium. However the most striking finding was the progressively strong antibody staining for CD44 on pulmonary endothelium of alveolar capillaries and larger vessels over the 21 days of GP syndrome. In situ hybridisation confirmed that the endothelial CD44 staining was due to local protein synthesis. All epithelial cell surfaces, including bronchial epithelium and type I and II alveolar epithelial cells, were negative in normal rat lung and GP syndrome. De novo CD44 expression by endothelial cells during the progression of GP syndrome may contribute to leucocyte recruitment and cell-mediated lung injury.
Collapse
Affiliation(s)
- P A Hill
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
19
|
Cantor JO, Cerreta JM, Armand G, Turino GM. Further investigation of the use of intratracheally administered hyaluronic acid to ameliorate elastase-induced emphysema. Exp Lung Res 1997; 23:229-44. [PMID: 9184790 DOI: 10.3109/01902149709087369] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previously, this laboratory has shown that intratracheally administered hyaluronic acid (HA) significantly reduces air-space enlargement in a hamster model of emphysema induced with pancreatic elastase. Whereas HA was given immediately following elastase in those initial studies, the current investigation determined the effect of instilling HA up to 2 h before or after intratracheal administration of elastase to hamsters. Both 1 and 2 mg HA, given 2 h before pancreatic elastase, significantly decreased (p < .05) air-space enlargement compared to controls (as measured by the mean linear intercept). Instillment of 2 mg HA, 1 h after pancreatic elastase, had a similar effect (p < .05). In contrast, 1 mg HA, given 1 or 2 h after pancreatic elastase, did not significantly affect the mean linear intercept. Against human neutrophil elastase, HA exhibited the same protective effect. While neutrophil elastase induced less air-space enlargement than pancreatic elastase, both 1 and 4 mg of HA, given 2 h prior to the enzyme, still produced a significant reduction (p < .05) in the mean linear intercept. HA exerted this effect despite the fact that it initiates a transient influx of neutrophils into the lung. Since HA does not slow the clearance of intratracheally instilled [14C] albumin from the lung, its mechanism of action may not involve physical interference with the movement of elastase through the lung, but may instead depend on interaction with elastic fibers. Evidence for an association between these two matrix constituents was provided by studies using fluorescein-labeled HA. Overall, these results further suggest that HA may be useful in preventing lung injury by elastases.
Collapse
Affiliation(s)
- J O Cantor
- Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | |
Collapse
|
20
|
Svee K, White J, Vaillant P, Jessurun J, Roongta U, Krumwiede M, Johnson D, Henke C. Acute lung injury fibroblast migration and invasion of a fibrin matrix is mediated by CD44. J Clin Invest 1996; 98:1713-27. [PMID: 8878421 PMCID: PMC507609 DOI: 10.1172/jci118970] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fibrosis results when myofibroblasts invade the wound fibrin provisional matrix. Extracellular matrix receptors on the cell surface mediate cell adhesion, migration, and invasion. Recent work with transformed cells indicates that these cells use the cell surface matrix receptor CD44 for migration and invasion. In this study, we examine whether lung fibroblasts, isolated from patients dying with acute alveolar fibrosis, use CD44 to invade a fibrin matrix. Consistent with a role for CD44 in mediating fibroblast invasion and subsequent tissue fibrosis, immunohistochemical analysis of lung tissue from patients who died from acute alveolar fibrosis after lung injury reveals CD44-expressing mesenchymal cells throughout newly formed fibrotic tissue. PCR, Western, and immunoprecipitation analysis demonstrate that the 85-kD CD44 isoform is expressed by acute lung injury fibroblasts. Consistent with a role in mediating matrix adhesion and migration ultrastructurally, CD44 was found uniformly over the cell surface and was found densely labeling filopodia and lamellipodia, highly motile structures involved in cell migration. To determine if lung injury fibroblasts use CD44 to invade fibrin, a fibrin gel model of fibrosis was used. By blocking the function of CD44 with monoclonal antibodies, fibroblast invasion into a fibrin matrix was inhibited. To examine the mechanism by which CD44 mediates fibroblast invasion, the role of CD44 in fibroblast migration and adhesion was evaluated. Anti-CD44 antibody blocked fibroblast migration on the provisional matrix proteins fibronectin, fibrinogen, and hyaluronic acid. Additionally, fibroblast CD44 mediated adhesion to the provisional matrix proteins fibronectin, fibrin, and hyaluronic acid, but not to laminin, a component of the basement membrane. These findings support the hypothesis that fibroblast CD44 functions as an adhesion receptor for provisional matrix proteins and is capable of mediating fibroblast migration and invasion of the wound provisional matrix resulting in the formation of fibrotic tissue.
Collapse
Affiliation(s)
- K Svee
- Department of Medicine, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kasper M, Bierhaus A, Whyte A, Binns RM, Schuh D, Müller M. Expression of CD44 isoforms during bleomycin-or radiation-induced pulmonary fibrosis in rats and mini-pigs. Histochem Cell Biol 1996; 105:221-30. [PMID: 8681040 DOI: 10.1007/bf01462295] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The distribution of CD44s and CD44v molecules in normal and injured lung tissue of rats and mini-pigs was studied by examining the immunohistochemical binding of monoclonal antibodies against CD44 isoforms. We showed that the expression of CD44v and CD44s varies greatly among different pulmonary fibrosis samples and that some tissues express either enhanced expression of CD44s, particularly in the interstitium and on alveolar macrophages, or very low levels of CD44v in the alveolar epithelium. Normal type II pneumocytes expressed the CD44s and CD44v molecules at the basolateral aspect of the cell. Such localisation favours a role for CD44 in epithelial cell-fibroblast interaction during lung development and repair.
Collapse
Affiliation(s)
- M Kasper
- Institute of Pathology, Technical University of Dresden, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Cantor JO, Cerreta JM, Keller S, Turino GM. Modulation of airspace enlargement in elastase-induced emphysema by intratracheal instillment of hyaluronidase and hyaluronic acid. Exp Lung Res 1995; 21:423-36. [PMID: 7621778 DOI: 10.3109/01902149509023717] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The study examined how lung hyaluronic acid content influences airspace enlargement in elastase-induced emphysema. To determine the effect of a decrease in hyaluronic acid, hamsters received a single intratracheal instillment of hyaluronidase 24 h prior to administration of pancreatic elastase by the same route. One week later, these animals showed significantly greater airspace enlargement than controls sequentially instilled with saline and elastase (128 vs. 100 microns; p < .05). Conversely, intratracheal administration of hyaluronic acid immediately after elastase instillment resulted in a marked decrease in airspace enlargement at 1 week compared to controls receiving elastase followed by saline (82 vs. 122 microns; p = .005). Since hyaluronic acid has no elastase inhibitory capacity, its effect may involve extracellular matrix interactions not directly related to elastic fiber breakdown. This concept is supported by the finding that animals treated with hyaluronidase and elastase showed no greater loss of lung elastin than that observed in the saline/elastase control group, despite demonstrating a marked increase in airspace enlargement. Further work is needed to determine how hyaluronic acid influences airspace enlargement and to evaluate the potential use of this substance as a treatment for emphysema.
Collapse
Affiliation(s)
- J O Cantor
- Columbia University College of Physicians and Surgeons, New York, USA
| | | | | | | |
Collapse
|
23
|
Savani RC, Wang C, Yang B, Zhang S, Kinsella MG, Wight TN, Stern R, Nance DM, Turley EA. Migration of bovine aortic smooth muscle cells after wounding injury. The role of hyaluronan and RHAMM. J Clin Invest 1995; 95:1158-68. [PMID: 7533785 PMCID: PMC441453 DOI: 10.1172/jci117764] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The migration of smooth muscle cells is a critical event in the pathogenesis of vascular diseases. We have investigated the role of hyaluronan (HA) and the hyaluronan receptor RHAMM in the migration of adult bovine aortic smooth muscle cells (BASMC). Cultured BASMC migrated from the leading edge of a single scratch wound with increased velocity between 1 and 24 h. Polyclonal anti-RHAMM antisera that block HA binding with this receptor abolished smooth muscle cell migration following injury. HA stimulated the random locomotion of BASMC and its association with the cell monolayer increased following wounding injury. Immunoblot analysis of wounded monolayers demonstrated a novel RHAMM protein isoform that appeared within one hour after injury. At the time of increased cell motility after wounding, FACS analysis demonstrated an increase in the membrane localization in approximately 25% of the cell population. Confocal microscopy of injured monolayers confirmed that membrane expression of this receptor was limited to cells at the wound edge. Collectively, these data demonstrate that RHAMM is necessary for the migration of smooth muscle cells and that expression and distribution of this receptor is tightly regulated following wounding of BASMC monolayers.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Aorta/cytology
- Base Sequence
- Blotting, Northern
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/physiology
- Cattle
- Cell Membrane/metabolism
- Cell Movement/drug effects
- Cell Movement/physiology
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Expression Regulation
- Hyaluronan Receptors
- Hyaluronic Acid/physiology
- Microscopy, Confocal
- Microscopy, Video
- Molecular Sequence Data
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
- Physical Stimulation
- Polymerase Chain Reaction
- RNA, Messenger/analysis
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/physiology
- Receptors, Lymphocyte Homing/biosynthesis
- Receptors, Lymphocyte Homing/genetics
- Receptors, Lymphocyte Homing/immunology
- Receptors, Lymphocyte Homing/physiology
Collapse
Affiliation(s)
- R C Savani
- Department of Pediatrics, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sasaki T, Kawamata-Kido H. Providing an environment for reparative dentine induction in amputated rat molar pulp by high molecular-weight hyaluronic acid. Arch Oral Biol 1995; 40:209-19. [PMID: 7605248 DOI: 10.1016/0003-9969(95)98810-l] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To study provision of this environment, wound healing was examined by light and electron microscopy following pulp amputation and direct capping with hyaluronic acid. Molar pulps of female Sprague-Dawley rats were mechanically exposed and directly capped; the cavities were then restored with glass-ionomer cement. As an experimental control. Calvital (a commercial preparation of calcium hydroxide paste) was used as the direct pulp-capping agent in other rats, and its effect on pulp healing was compared with that of hyaluronic acid. In hyaluronic acid-treated pulps, at 2 days after amputation, wound surfaces were covered with blood and fibrin clots and inflammatory cells such as neutrophils and macrophages. At 1 week, differentiation of fibroblastic and odontoblast-like cells was observed beneath the wound layer; and odontoblast-like cells produced globular calcified nodules along the existing dentine walls. At 2 weeks, a layer of reparative dentine had been formed by odontoblast-like cells over the dentine walls. Between 30 and 60 days, the formation of reparative dentine had extended throughout the pulp chamber. The healing observed after direct capping with hyaluronic acid was, except for the formation of dentine bridges, similar to that seen after Calvital capping. These results suggest that high molecular-weight hyaluronic acid can provide an environment suitable for reparative dentine formation through mesenchymal cell differentiation during healing of the amputated dental pulp.
Collapse
Affiliation(s)
- T Sasaki
- Department of Oral Anatomy, School of Dentistry, Showa University, Tokyo, Japan
| | | |
Collapse
|
25
|
Bhattacharya J. The microphysiology of lung liquid clearance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 381:95-108. [PMID: 8867827 DOI: 10.1007/978-1-4615-1895-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Bhattacharya
- Department of Medicine, Columbia University, New York, NY 10019, USA
| |
Collapse
|
26
|
Bray BA, Hsu W, Turino GM. Lung hyaluronan as assayed with a biotinylated hyaluronan-binding protein. Exp Lung Res 1994; 20:317-30. [PMID: 7527337 DOI: 10.3109/01902149409064390] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study was designed to define how hyaluronan (HA) is bound in lung tissue. Aliquots of lyophilized hamster lungs were extracted with 0.5 M NaCl (associative conditions) or 4 M guanidine . HCL (Gu . HCl) (dissociative conditions) or with water. Aliquots were also digested with Pronase in phosphate-buffered saline (PBS) or in dilute Tris buffer. The nanogram amounts of solubilized HA were quantified by an inhibition assay based on the specificity of binding of HA to biotinylated HA-binding protein (B-HABP) rather than radioactive HA-binding protein. Lung HA was readily soluble. More than 80% of it was solubilized by one extraction with either 0.5 M NaCl or 4 M guanidine . HCl. Almost half of it was solubilized by two brief (15-min) water washes. After three extractions under associative conditions only 5% of the total HA remained insoluble and could exist in structural proteoglycan aggregates. However, HA is present in lung in more than one situation, as was discerned in Pronase digestion experiments. Digestion of lung tissue with Pronase solubilized total lung HA. In PBS all the HA was detected, but in dilute Tris buffer 52% of the HA solubilized was not available for combination with the B-HABP and was presumed to be bound to another lung component. Overall, the data suggest that lung HA is free to engage in water transport and to provide a protective coating for elastin and collagen fibers.
Collapse
Affiliation(s)
- B A Bray
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | | | | |
Collapse
|
27
|
Samuel SK, Hurta RA, Spearman MA, Wright JA, Turley EA, Greenberg AH. TGF-beta 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan. J Cell Biol 1993; 123:749-58. [PMID: 7693717 PMCID: PMC2200130 DOI: 10.1083/jcb.123.3.749] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
TGF-beta is a potent stimulator of motility in a variety of cell types. It has recently been shown that hyaluronan (HA) can directly promote locomotion of cells through interaction with the HA receptor RHAMM. We have investigated the role of RHAMM and HA in TGF-beta-stimulated locomotion and show that TGF-beta triggers the transcription, synthesis and membrane expression of the RHAMM receptor and the secretion of HA coincident with the induction of the locomotory response. This was demonstrated by both incubating cells with exogenous TGF-beta 1 and by stimulating the production of bioactive TGF-beta 1 in tumor cells transfected with TGF-beta 1 under the control of the metallothionein promoter. TGF-beta 1-induced locomotion was suppressed by antibodies that prevented HA/RHAMM interaction, using polyclonal antibodies to either RHAMM fusion protein or RHAMM peptides, or mAbs to purified RHAMM. Peptides corresponding to the HA-binding motif of RHAMM also suppressed TGF-beta 1-induced increases in motility rate. Spontaneous locomotion of fibrosarcoma cells was blocked by neutralizing secreted TGF-beta with panspecific TGF-beta antibodies and by inhibition of TGF-beta 1 secretion with antisense oligonucleotides. Polyclonal anti-RHAMM fusion protein antibodies and peptide from the RHAMM HA-binding motif also suppressed the spontaneous motility rate of fibrosarcoma cells. These data suggest that fibrosarcoma cell locomotion requires TGF-beta, and the pathway by which TGF-beta stimulates locomotion uses the HA receptor RHAMM and HA.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Carrier Proteins/biosynthesis
- Carrier Proteins/drug effects
- Carrier Proteins/physiology
- Cell Line
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cell Movement/drug effects
- Fibrosarcoma
- Genes, ras
- Hyaluronan Receptors
- Hyaluronic Acid/biosynthesis
- Hyaluronic Acid/physiology
- Kanamycin Kinase
- Kinetics
- Mice
- Molecular Sequence Data
- Oligodeoxyribonucleotides/pharmacology
- Oligonucleotides, Antisense/pharmacology
- Oligopeptides/pharmacology
- Phosphotransferases (Alcohol Group Acceptor)/biosynthesis
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/physiology
- Receptors, Lymphocyte Homing/biosynthesis
- Receptors, Lymphocyte Homing/drug effects
- Receptors, Lymphocyte Homing/physiology
- Time Factors
- Transcription, Genetic
- Transfection
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S K Samuel
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
28
|
McCarthy J, Turley EA. Effects of extracellular matrix components on cell locomotion. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1993; 4:619-37. [PMID: 8292712 DOI: 10.1177/10454411930040050101] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The extracellular matrix (ecm), which is composed of collagens, glycoproteins, and proteoglycans, has emerged as an important regulator of cell locomotion. This review describes some of the mechanisms by which the ecm may regulate locomotion, focusing primarily on cell extension and lamellae formation. Ecm-receptor interactions form an important part of cell recognition of ecm. Such interactions can result in altered cell adhesion, signal transduction, and cytoskeletal organization, all of which impact on cell locomotion. It is important to note that although the effects of single ecm components have been studied, generally, the cell is likely to perceive ecm in vivo as a macromolecular complex. It will fall to future work to define how complexes of ecm regulate cell behavior. Because of our own particular research bias, we focus on reviewing the role of fibronectin, integrins, chondroitin sulfate, hyaluronan, and hyaluronan receptors in the regulation of cell locomotion and examine their effect on adhesion, signal transduction, and cytoskeletal integrity. Cytoskeleton assembly mechanisms, particularly those that might be regulated by the ecm, are also described. These events are summarized in a working model of ecm-promoted locomotion.
Collapse
Affiliation(s)
- J McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | | |
Collapse
|
29
|
Juul SE, Kinsella MG, Wight TN, Hodson WA. Alterations in nonhuman primate (M. nemestrina) lung proteoglycans during normal development and acute hyaline membrane disease. Am J Respir Cell Mol Biol 1993; 8:299-310. [PMID: 8448019 DOI: 10.1165/ajrcmb/8.3.299] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Proteoglycans (PGs) and lung hyaluronan (HA) are important components of the lung matrix both during normal development and in response to injury. We combined morphologic and biochemical techniques to study changes in PG and HA in a developmental series of Macaca nemestrina lungs ranging from 62% gestation to 3 mo post-term (n = 16), in adult lungs (n = 6), and from prematurely delivered, mechanically ventilated monkeys with hyaline membrane disease (HMD) (n = 7). Three groups of cuprolinic blue-positive (CuB) precipitates, identified by size, location, and susceptibility to enzyme digestion were found in lungs from all animals. Immature alveolar interstitium is characterized by loosely woven collagen bundles and an abundance of large (100 to 200 nm) stained filaments representing chondroitin sulfate proteoglycans (CSPGs). As maturation proceeds, the interstitial matrix appears increasingly organized, with large collagen bundles associated with 20 nm CuB-stained deposits (dermatan sulfate proteoglycans, DSPGs), and fewer large CSPGs. Fetal alveolar basement membrane contains CuB-stained heparin sulfate proteoglycans (HSPGs) (10 nm) scattered throughout. Lung matrix from animals with HMD appeared to have a disruption of the collagen-DSPG relationship, in addition to an enrichment in large CSPG. Complementary biochemical analysis of lung PGs and HA was done. Minced lung parenchyma was cultured with [3H]-glucosamine and [35S]-sulfate for 24 h; PGs and HA were extracted and analyzed. While PG synthesis during development tended to be highest at 80% gestation, animals with HMD showed greatly increased synthesis, approximately 2.5-fold higher than comparable fetal animals. In the developmental series, [3H]-glucosamine incorporation into HA was maximal at term, falling abruptly thereafter. HMD animals, however, showed a 2.3-fold increase over controls in net HA synthesis. Extracted PGs were separated according to buoyant density by dissociative cesium chloride density gradient ultracentrifugation. Two peaks of 35S-labeled PGs were separated from each density gradient fraction by chromatography on Sepharose CL-4B. A large CSPG was the principal PG eluting in the voiding volume, while the second broad peak (K(av) = 0.42) contained a mixed population of CSPG, DSPG, and HSPGs, the proportions of which varied with age. Both ultrastructural and biochemical analyses indicate that production of a large, high buoyant density CSPG predominates in fetal lung tissue, and diminishes with developmental age. Synthesis of large CSPG is greatly increased in lung explants from prematurely delivered animals with HMD.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S E Juul
- Department of Pediatrics, University of Washington, Seattle
| | | | | | | |
Collapse
|
30
|
Cantor JO, Cerreta JM, Armand G, Keller S, Turino GM. Pulmonary air-space enlargement induced by intratracheal instillment of hyaluronidase and concomitant exposure to 60% oxygen. Exp Lung Res 1993; 19:177-92. [PMID: 8467761 DOI: 10.3109/01902149309031718] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although emphysema is generally characterized by damage to pulmonary elastic fibers, the causes of such injury appear to be complex and are not entirely explained by a singular imbalance between elastases and their inhibitors. Other factors could compromise elastic fiber integrity. To test the validity of this argument, hamsters were instilled intratracheally with a nonelastolytic enzyme, hyaluronidase (which reduces lung hexuronic acid content by 21% after 24 h), then exposed to an otherwise nontoxic concentration of oxygen (60%) for 4 days. Additional groups were given (1) hyaluronidase and room air, (2) saline and 60% oxygen, and (3) saline and room air. Treatment with both hyaluronidase and 60% oxygen resulted in a significant increase in air-space enlargement at 4 days (67.1 vs. 57.9 microns for saline/room air controls; p < .05), which was accompanied by only minimal inflammatory changes, as determined by both light microscopy and lavage cytology. Animals receiving either hyaluronidase or 60% oxygen alone showed no significant increases in air-space size compared to those given saline and exposed to room air. While the mechanisms responsible for these results are unclear, the marked increase in radiolabeling of lung elastin cross-links (desmosine and isodesmosine) in animals receiving both hyaluronidase and 60% oxygen (429 vs. 168 cpm/g dry lung for saline/room air controls; p < .05), as well as a significant decrease in total lung desmosine and isodesmosine (32.5 vs. 37.7 micrograms/lung for saline/room air controls; p < .05), suggests that elastic fiber damage is a potential factor. Moreover, only those animals receiving both hyaluronidase and 60% oxygen showed a significant rise in cell-free elastase activity in lavage fluids compared to saline/room air controls (83.3 vs. 48.3 ng; p < .05). On the basis of these findings, it is concluded that while elastic fiber damage may be a common pathway in emphysema, the factors that initiate the disease may be more varied than previously suspected and not always related to the balance between elastases and their inhibitors.
Collapse
Affiliation(s)
- J O Cantor
- Columbia University College of Physicians and Surgeons, New York, NY
| | | | | | | | | |
Collapse
|
31
|
Sampson PM, Rochester CL, Freundlich B, Elias JA. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase. J Clin Invest 1992; 90:1492-503. [PMID: 1401082 PMCID: PMC443196 DOI: 10.1172/jci116017] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We characterized the mechanisms by which recombinant (r) tumor necrosis factor (TNF), IFN-gamma, and IL-1, alone and in combination, regulate human lung fibroblast hyaluronic acid (HA) production. Each cytokine stimulated fibroblast HA production. The combination of rTNF and rIFN-gamma resulted in a synergistic increase in the production of high molecular weight HA. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous decrease in HA degradation. In contrast, when rTNF and rIL-1 were combined, an additive increase in low molecular weight HA was noted. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous increase in HA degradation. Human lung fibroblasts contained a hyaluronidase that, at pH 3.7, depolymerized high molecular weight HA to 10-40 kD end products of digestion. However, hyaluronidase activity did not correlate with fibroblast HA degradation. Instead, HA degradation correlated with fibroblast-HA binding, which was increased by rIL-1 plus rTNF and decreased by rIFN-gamma plus rTNF. Recombinant IL-1 and rTNF weakly stimulated and rIL-1 and rTNF in combination further augmented the levels of CD44 mRNA in lung fibroblasts. In contrast, rIFN-gamma did not significantly alter the levels of CD44 mRNA in unstimulated or rTNF stimulated cells. These studies demonstrate that rIL-1, rTNF, and rIFN-gamma have complex effects on biosynthesis and degradation which alter the quantity and molecular weight of the HA produced by lung fibroblasts. They also show that fibroblast HA degradation is mediated by a previously unrecognized lysosomal-type hyaluronidase whose function may be regulated by altering fibroblast-HA binding. Lastly, they suggest that the CD44 HA receptor may be involved in this process.
Collapse
Affiliation(s)
- P M Sampson
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
32
|
Cantin AM, Larivée P, Martel M, Bégin R. Hyaluronan (hyaluronic acid) in lung lavage of asbestos-exposed humans and sheep. Lung 1992; 170:211-20. [PMID: 1522741 DOI: 10.1007/bf00174118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The concentration of hyaluronan was measured in the bronchoalveolar lavage fluid (BALF) of 18 control subjects and 27 workers from the asbestos mills and mines of Québec, 9 without asbestosis and 18 with asbestosis. Hyaluronan was also measured in the BALF of 9 control sheep exposed to 100 ml phosphate-buffered saline (PBS) at 10 day intervals for 39 months, and 13 sheep exposed at the same intervals to 100 mg chrysotile in 100 ml PBS for 24 months. At month 24, the asbestos-exposed sheep were classified into 3 groups: (A) 4 sheep exposed to PBS alone, (B) 4 sheep exposed to 10 mg chrysotile asbestos every 10 days, and (C) 5 sheep exposed to 100 mg chrysotile asbestos every 10 days for 15 months. The BALF hyaluronan averaged 53.9 +/- 7.4 ng/ml in human controls, 67.5 +/- 10.3 ng/ml in asbestos-exposed workers without asbestosis, and 206 +/- 83 ng/ml in workers with asbestosis (p less than 0.05 vs. normal). In the control sheep, BALF hyaluronan was 34.7 +/- 6.9 ng/ml, and it was 31.5 +/- 17.8 ng/ml in the low-dosage asbestos-exposed group (A), 83.0 +/- 27.7 ng/ml in the intermediate-dose group (B), and 248.0 +/- 134.7 ng/ml in the high-dosage group (C) (p less than 0.05 vs. controls). In contrast, the release of plasminogen activator, a protease that may play a role in limiting the fibrotic process, was increased in group A, but not in groups B and C. In conclusion, BALF hyaluronan constitutes an indicator of lung interstitial tissue changes that may reflect the activity of the fibrosing alveolitis associated with chronic asbestos exposure.
Collapse
Affiliation(s)
- A M Cantin
- Unité de Recherche Pulmonaire, Centre Hospitalier Universitaire de Sherbrooke, (Qc), Canada
| | | | | | | |
Collapse
|
33
|
Abstract
Hyaluronan (HA), a glycosaminoglycan, has long been implicated in cell locomotion. We have shown that HA production regulates the locomotion of H-ras-transformed cells. This autocrine motility mechanism is mediated by a novel HA receptor termed RHAMM, an acronym for Receptor for HA Mediated Motility. HA:RHAMM interactions regulate directional locomotion of tumor cells and result in enhanced protein tyrosine phosphorylation that may be a critical messenger mechanism for initiation of locomotion.
Collapse
Affiliation(s)
- E A Turley
- Manitoba Institute of Cell Biology, Winnipeg, Canada
| |
Collapse
|