1
|
Sakanoue I, Okamoto T, Ayyat KS, Yun JJ, Farver CF, Fujioka H, Date H, McCurry KR. Intermittent Ex Vivo Lung Perfusion in a Porcine Model for Prolonged Lung Preservation. Transplantation 2024; 108:669-678. [PMID: 37726888 DOI: 10.1097/tp.0000000000004802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND Ex vivo lung perfusion expands the lung transplant donor pool and extends preservation time beyond cold static preservation. We hypothesized that repeated regular ex vivo lung perfusion would better maintain lung grafts. METHODS Ten pig lungs were randomized into 2 groups. The control underwent 16 h of cold ischemic time and 2 h of cellular ex vivo lung perfusion. The intermittent ex vivo lung perfusion group underwent cold ischemic time for 4 h, ex vivo lung perfusion (first) for 2 h, cold ischemic time for 10 h, and 2 h of ex vivo lung perfusion (second). Lungs were assessed, and transplant suitability was determined after 2 h of ex vivo lung perfusion. RESULTS The second ex vivo lung perfusion was significantly associated with better oxygenation, limited extravascular water, higher adenosine triphosphate, reduced intraalveolar edema, and well-preserved mitochondria compared with the control, despite proinflammatory cytokine elevation. No significant difference was observed in the first and second perfusion regarding oxygenation and adenosine triphosphate, whereas the second was associated with lower dynamic compliance and higher extravascular lung water than the first. Transplant suitability was 100% for the first and 60% for the second ex vivo lung perfusion, and 0% for the control. CONCLUSIONS The second ex vivo lung perfusion had a slight deterioration in graft function compared to the first. Intermittent ex vivo lung perfusion created a better condition for lung grafts than cold static preservation, despite cytokine elevation. These results suggested that intermittent ex vivo lung perfusion may help prolong lung preservation.
Collapse
Affiliation(s)
- Ichiro Sakanoue
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Kamal S Ayyat
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - James J Yun
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Carol F Farver
- Department of Pathology, Cleveland Clinic, Cleveland, OH
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core, Case Western Reserve University, Cleveland, OH
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Kenneth R McCurry
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
2
|
Dugbartey GJ. Therapeutic benefits of nitric oxide in lung transplantation. Biomed Pharmacother 2023; 167:115549. [PMID: 37734260 DOI: 10.1016/j.biopha.2023.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Lung transplantation is an evolutionary procedure from its experimental origin in the twentieth century and is now recognized as an established and routine life-saving intervention for a variety of end-stage pulmonary diseases refractory to medical management. Despite the success and continuous refinement in lung transplantation techniques, the widespread application of this important life-saving intervention is severely hampered by poor allograft quality offered from donors-after-brain-death. This has necessitated the use of lung allografts from donors-after-cardiac-death (DCD) as an additional source to expand the pool of donor lungs. Remarkably, the lung exhibits unique properties that may make it ideally suitable for DCD lung transplantation. However, primary graft dysfunction (PGD), allograft rejection and other post-transplant complications arising from unavoidable ischemia-reperfusion injury (IRI) of transplanted lungs, increase morbidity and mortality of lung transplant recipients annually. In the light of this, nitric oxide (NO), a selective pulmonary vasodilator, has been identified as a suitable agent that attenuates lung IRI and prevents PGD when administered directly to lung donors prior to donor lung procurement, or to recipients during and after transplantation, or administered indirectly by supplementing lung preservation solutions. This review presents a historical account of clinical lung transplantation and discusses the lung as an ideal organ for DCD. Next, the author highlights IRI and its clinical effects in lung transplantation. Finally, the author discusses preservation solutions suitable for lung transplantation, and the protective effects and mechanisms of NO in experimental and clinical lung transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Accra College of Medicine, Magnolia St, JVX5+FX9, East Legon, Accra, Ghana.
| |
Collapse
|
3
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
4
|
Van Slambrouck J, Van Raemdonck D, Vos R, Vanluyten C, Vanstapel A, Prisciandaro E, Willems L, Orlitová M, Kaes J, Jin X, Jansen Y, Verleden GM, Neyrinck AP, Vanaudenaerde BM, Ceulemans LJ. A Focused Review on Primary Graft Dysfunction after Clinical Lung Transplantation: A Multilevel Syndrome. Cells 2022; 11:cells11040745. [PMID: 35203392 PMCID: PMC8870290 DOI: 10.3390/cells11040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Primary graft dysfunction (PGD) is the clinical syndrome of acute lung injury after lung transplantation (LTx). However, PGD is an umbrella term that encompasses the ongoing pathophysiological and -biological mechanisms occurring in the lung grafts. Therefore, we aim to provide a focused review on the clinical, physiological, radiological, histological and cellular level of PGD. PGD is graded based on hypoxemia and chest X-ray (CXR) infiltrates. High-grade PGD is associated with inferior outcome after LTx. Lung edema is the main characteristic of PGD and alters pulmonary compliance, gas exchange and circulation. A conventional CXR provides a rough estimate of lung edema, while a chest computed tomography (CT) results in a more in-depth analysis. Macroscopically, interstitial and alveolar edema can be distinguished below the visceral lung surface. On the histological level, PGD correlates to a pattern of diffuse alveolar damage (DAD). At the cellular level, ischemia-reperfusion injury (IRI) is the main trigger for the disruption of the endothelial-epithelial alveolar barrier and inflammatory cascade. The multilevel approach integrating all PGD-related aspects results in a better understanding of acute lung failure after LTx, providing novel insights for future therapies.
Collapse
Affiliation(s)
- Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Cedric Vanluyten
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Elena Prisciandaro
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lynn Willems
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Pulmonary Circulation Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium;
| | - Michaela Orlitová
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yanina Jansen
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Geert M. Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arne P. Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
- Department of Anesthesiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
5
|
Lan CC, Hsieh PC, Wu YK, Kuo CY, Lee YH, Yang MC. The roles of sodium-potassium-chloride cotransporter isoform-1 in acute lung injury. Tzu Chi Med J 2022; 34:119-124. [PMID: 35465284 PMCID: PMC9020242 DOI: 10.4103/tcmj.tcmj_50_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Acute lung injury (ALI) is often characterized by severe lung inflammation and pulmonary edema with poor gas exchange and hypoxemia. Alveolar inflammation and water flooding are, in fact, notable features of ALI pathogenesis. The sodium-potassium-chloride co-transporter isoform 1 (NKCC1), localized at the basolateral surface of the lung epithelium, drives water transport via back transport of Na+ and Cl− to the alveolar air space. NKCC1, therefore, is crucial in regulating alveolar fluid. Increased expression of NKCC1 results in increased alveolar fluid secretion and impaired alveolar fluid clearance. During ALI, the with no lysine kinase (WNK), oxidative stress responsive kinase 1 (OSR1), and STE20/SPS1-related proline/alanine-rich kinase (SPAK) pathways are activated, which upregulates NKCC1 expression. Proinflammatory cytokines also enhance the expression of NKCC1 via c-Jun N-terminal kinase-and p38-dependent pathways. NKCC1 activation also increases the expression of proinflammatory cytokines via cell rupture and activation of macrophages. Increased proinflammatory cytokines, in turn, recruit inflammatory cells to the site of injury and cause further lung damage. Animals with high expression of NKCC1 show more severe lung injury with presentations of more severe pulmonary edema and microvascular permeability, higher expression of proinflammatory cytokines, and greater neutrophilic infiltration. In contrast, animals with low expression of NKCC1 or those treated with NKCC1 inhibitors show less severe lung injury with milder levels of presentations of ALI. These reports collectively highlight a novel role of NKCC1 in ALI pathogenesis. Manipulation of NKCC1 expression levels could, therefore, represent novel modalities for effective ALI treatment.
Collapse
|
6
|
Ding Y, Cui Y, Hou Y, Nie H. Bone marrow mesenchymal stem cell-conditioned medium facilitates fluid resolution via miR-214-activating epithelial sodium channels. MedComm (Beijing) 2021; 1:376-385. [PMID: 34766129 PMCID: PMC8491198 DOI: 10.1002/mco2.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury (ALI) is featured with severe lung edema at the early exudative phase, resulting from the imbalance of alveolar fluid turnover and clearance. Mesenchymal stem cells (MSCs) belong to multipotent stem cells, which have shown potential therapeutic effects during ALI. Of note, MSC‐conditioned medium (MSC‐CM) improved alveolar fluid clearance (AFC) in vivo, whereas the involvement of miRNAs is seldom known. We thus aim to explore the roles of miR‐214 in facilitating MSC‐CM mediated fluid resolution of impaired AFC. In this study, AFC was increased significantly by intratracheally administrated MSC‐CM in lipopolysaccharide‐treated mice. MSC‐CM augmented amiloride‐sensitive currents in intact H441 monolayers, and increased α‐epithelial sodium channel (α‐ENaC) expression level in H441 and mouse alveolar type 2 epithelial cells. Meanwhile, MSC‐CM increased the expression of miR‐214, which may participate in regulating ENaC expression and function. Our results suggested that MSC‐CM enhanced AFC in ALI mice in vivo through a novel mechanism, involving miR‐214 regulation of ENaC.
Collapse
Affiliation(s)
- Yan Ding
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| | - Yong Cui
- Department of Anesthesiology the First Affiliated Hospital of China Medical University Shenyang China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| |
Collapse
|
7
|
Ali A, Wang A, Ribeiro RVP, Beroncal EL, Baciu C, Galasso M, Gomes B, Mariscal A, Hough O, Brambate E, Abdelnour-Berchtold E, Michaelsen V, Zhang Y, Gazzalle A, Fan E, Brochard L, Yeung J, Waddell T, Liu M, Andreazza AC, Keshavjee S, Cypel M. Static lung storage at 10°C maintains mitochondrial health and preserves donor organ function. Sci Transl Med 2021; 13:eabf7601. [PMID: 34524862 DOI: 10.1126/scitranslmed.abf7601] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aizhou Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Rafaela V P Ribeiro
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Erika L Beroncal
- Departments of Pharmacology & Toxicology and Psychiatry, The Canada Mitochondrial Network, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cristina Baciu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Marcos Galasso
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Bruno Gomes
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrea Mariscal
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Olivia Hough
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Edson Brambate
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Etienne Abdelnour-Berchtold
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Vinicius Michaelsen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Yu Zhang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Anajara Gazzalle
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Eddy Fan
- Divisions of Respirology and Critical Care Medicine, University Health Network, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Laurent Brochard
- Divisions of Respirology and Critical Care Medicine, University Health Network, University of Toronto, Toronto, ON M5B 1W8, Canada.,Keenan Research Centre, St Michael's Hospital, Unity Health Toronto and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, M5B 1T8, Canada
| | - Jonathan Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada.,Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON M5G 2C4, Canada
| | - Tom Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada.,Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON M5G 2C4, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Ana C Andreazza
- Departments of Pharmacology & Toxicology and Psychiatry, The Canada Mitochondrial Network, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada.,Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON M5G 2C4, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada.,Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
8
|
Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review. Cells 2021; 10:cells10061417. [PMID: 34200413 PMCID: PMC8229792 DOI: 10.3390/cells10061417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Lung transplantation (LTx) is the gold standard treatment for end-stage lung disease; however, waitlist mortality remains high due to a shortage of suitable donor lungs. Organ quality can be compromised by lung ischemic reperfusion injury (LIRI). LIRI causes pulmonary endothelial inflammation and may lead to primary graft dysfunction (PGD). PGD is a significant cause of morbidity and mortality post-LTx. Research into preservation strategies that decrease the risk of LIRI and PGD is needed, and ex-situ lung perfusion (ESLP) is the foremost technological advancement in this field. This review addresses three major topics in the field of LTx: first, we review the clinical manifestation of LIRI post-LTx; second, we discuss the pathophysiology of LIRI that leads to pulmonary endothelial inflammation and PGD; and third, we present the role of ESLP as a therapeutic vehicle to mitigate this physiologic insult, increase the rates of donor organ utilization, and improve patient outcomes.
Collapse
|
9
|
Natalini JG, Diamond JM. Primary Graft Dysfunction. Semin Respir Crit Care Med 2021; 42:368-379. [PMID: 34030200 DOI: 10.1055/s-0041-1728794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Primary graft dysfunction (PGD) is a form of acute lung injury after transplantation characterized by hypoxemia and the development of alveolar infiltrates on chest radiograph that occurs within 72 hours of reperfusion. PGD is among the most common early complications following lung transplantation and significantly contributes to increased short-term morbidity and mortality. In addition, severe PGD has been associated with higher 90-day and 1-year mortality rates compared with absent or less severe PGD and is a significant risk factor for the subsequent development of chronic lung allograft dysfunction. The International Society for Heart and Lung Transplantation released updated consensus guidelines in 2017, defining grade 3 PGD, the most severe form, by the presence of alveolar infiltrates and a ratio of PaO2:FiO2 less than 200. Multiple donor-related, recipient-related, and perioperative risk factors for PGD have been identified, many of which are potentially modifiable. Consistently identified risk factors include donor tobacco and alcohol use; increased recipient body mass index; recipient history of pulmonary hypertension, sarcoidosis, or pulmonary fibrosis; single lung transplantation; and use of cardiopulmonary bypass, among others. Several cellular pathways have been implicated in the pathogenesis of PGD, thus presenting several possible therapeutic targets for preventing and treating PGD. Notably, use of ex vivo lung perfusion (EVLP) has become more widespread and offers a potential platform to safely investigate novel PGD treatments while expanding the lung donor pool. Even in the presence of significantly prolonged ischemic times, EVLP has not been associated with an increased risk for PGD.
Collapse
Affiliation(s)
- Jake G Natalini
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Zhao L, Hu C, Han F, Chen D, Ma Y, Cai F, Chen J. Combination of mesenchymal stromal cells and machine perfusion is a novel strategy for organ preservation in solid organ transplantation. Cell Tissue Res 2021; 384:13-23. [PMID: 33439348 PMCID: PMC8016762 DOI: 10.1007/s00441-020-03406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022]
Abstract
Organ preservation is a prerequisite for an urgent increase in the availability of organs for solid organ transplantation (SOT). An increasing amount of expanded criteria donor (ECD) organs are used clinically. Currently, the paradigm of organ preservation is shifting from simple reduction of cellular metabolic activity to maximal simulation of an ex vivo physiological microenvironment. An ideal organ preservation technique should not only preserve isolated organs but also offer the possibility of rehabilitation and evaluation of organ function prior to transplantation. Based on the fact that mesenchymal stromal cells (MSCs) possess strong regeneration properties, the combination of MSCs with machine perfusion (MP) is expected to be superior to conventional preservation methods. In recent years, several studies have attempted to use this strategy for SOT showing promising outcomes. With better organ function during ex vivo preservation and the potential of utilization of organs previously deemed untransplantable, this strategy is meaningful for patients with organ failure to help overcome organ shortage in the field of SOT.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Yanhong Ma
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
11
|
Transplant Suitability of Rejected Human Donor Lungs With Prolonged Cold Ischemia Time in Low-Flow Acellular and High-Flow Cellular Ex Vivo Lung Perfusion Systems. Transplantation 2019; 103:1799-1808. [DOI: 10.1097/tp.0000000000002667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Inhibition of the Receptor for Advanced Glycation End-Products in Acute Respiratory Distress Syndrome: A Randomised Laboratory Trial in Piglets. Sci Rep 2019; 9:9227. [PMID: 31239497 PMCID: PMC6592897 DOI: 10.1038/s41598-019-45798-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/12/2019] [Indexed: 02/08/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) modulates the pathogenesis of acute respiratory distress syndrome (ARDS). RAGE inhibition attenuated lung injury and restored alveolar fluid clearance (AFC) in a mouse model of ARDS. However, clinical translation will require assessment of this strategy in larger animals. Forty-eight anaesthetised Landrace piglets were randomised into a control group and three treatment groups. Animals allocated to treatment groups underwent orotracheal instillation of hydrochloric acid (i) alone; (ii) in combination with intravenous administration of a RAGE antagonist peptide (RAP), or (iii) recombinant soluble (s)RAGE. The primary outcome was net AFC at 4 h. Arterial oxygenation was assessed hourly and alveolar-capillary permeability, alveolar inflammation and lung histology were assessed at 4 h. Treatment with either RAP or sRAGE improved net AFC (median [interquartile range], 21.2 [18.8–21.7] and 19.5 [17.1–21.5] %/h, respectively, versus 12.6 [3.2–18.8] %/h in injured, untreated controls), oxygenation and decreased alveolar inflammation and histological evidence of tissue injury after ARDS. These findings suggest that RAGE inhibition restored AFC and attenuated lung injury in a piglet model of acid-induced ARDS.
Collapse
|
13
|
Ross JT, Nesseler N, Lee JW, Ware LB, Matthay MA. The ex vivo human lung: research value for translational science. JCI Insight 2019; 4:128833. [PMID: 31167972 DOI: 10.1172/jci.insight.128833] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Respiratory diseases are among the leading causes of death and disability worldwide. However, the pathogenesis of both acute and chronic lung diseases remains incompletely understood. As a result, therapeutic options for important clinical problems, including acute respiratory distress syndrome and chronic obstructive pulmonary disease, are limited. Research efforts have been held back in part by the difficulty of modeling lung injury in animals. Donor human lungs that have been rejected for transplantation offer a valuable alternative for understanding these diseases. In 2007, our group developed a simple preparation of an ex vivo-perfused single human lung. In this Review, we discuss the availability of donor human lungs for research, describe the ex vivo-perfused lung preparation, and highlight how this preparation can be used to study the mechanisms of lung injury, to isolate primary cells, and to test novel therapeutics.
Collapse
Affiliation(s)
| | - Nicolas Nesseler
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA.,Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, Rennes, France.,Univ Rennes, CHU de Rennes, Inra, INSERM, Institut Nutrition, Métabolismes, Cancer- UMR_A 1341, UMR_S 1241, Rennes, France.,Univ Rennes, CHU Rennes, INSERM, Centre d'Investigation Clinique de Rennes 1414, Rennes, France
| | - Jae-Woo Lee
- Department of Anesthesiology, Cardiovascular Research Institute, UCSF, San Francisco, California
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael A Matthay
- Department of Anesthesiology, Cardiovascular Research Institute, UCSF, San Francisco, California.,Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| |
Collapse
|
14
|
Geube M, Anandamurthy B, Yared JP. Perioperative Management of the Lung Graft Following Lung Transplantation. Crit Care Clin 2018; 35:27-43. [PMID: 30447779 DOI: 10.1016/j.ccc.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Perioperative management of patients undergoing lung transplantation is one of the most complex in cardiothoracic surgery. Certain perioperative interventions, such as mechanical ventilation, fluid management and blood transfusions, use of extracorporeal mechanical support, and pain management, may have significant impact on the lung graft function and clinical outcome. This article provides a review of perioperative interventions that have been shown to impact the perioperative course after lung transplantation.
Collapse
Affiliation(s)
- Mariya Geube
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, J4-331, Cleveland, OH 44195, USA.
| | - Balaram Anandamurthy
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, J4-331, Cleveland, OH 44195, USA
| | - Jean-Pierre Yared
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic, 9500 Euclid Avenue, J4-331, Cleveland, OH 44195, USA
| |
Collapse
|
15
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
16
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
17
|
Ware LB. Targeting resolution of pulmonary edema in primary graft dysfunction after lung transplantation: Is inhaled AP301 the answer? J Heart Lung Transplant 2017; 37:S1053-2498(17)32114-9. [PMID: 29198870 DOI: 10.1016/j.healun.2017.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
18
|
Broquet A, Jacqueline C, Davieau M, Besbes A, Roquilly A, Martin J, Caillon J, Dumoutier L, Renauld JC, Heslan M, Josien R, Asehnoune K. Interleukin-22 level is negatively correlated with neutrophil recruitment in the lungs in a Pseudomonas aeruginosa pneumonia model. Sci Rep 2017; 7:11010. [PMID: 28887540 PMCID: PMC5591182 DOI: 10.1038/s41598-017-11518-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a major threat for immune-compromised patients. Bacterial pneumonia can induce uncontrolled and massive neutrophil recruitment ultimately leading to acute respiratory distress syndrome and epithelium damage. Interleukin-22 plays a central role in the protection of the epithelium. In this study, we aimed to evaluate the role of interleukin-22 and its soluble receptor IL-22BP in an acute Pseudomonas aeruginosa pneumonia model in mice. In this model, we noted a transient increase of IL-22 during Pseudomonas aeruginosa challenge. Using an antibody-based approach, we demonstrated that IL-22 neutralisation led to increased susceptibility to infection and to lung damage correlated with an increase in neutrophil accumulation in the lungs. On the contrary, rIL-22 administration or IL-22BP neutralisation led to a decrease in mouse susceptibility and lung damage associated with a decrease in neutrophil accumulation. This study demonstrated that the IL-22/IL-22BP system plays a major role during Pseudomonas aeruginosa pneumonia by moderating neutrophil accumulation in the lungs that ultimately leads to epithelium protection.
Collapse
Affiliation(s)
- Alexis Broquet
- Laboratoire UPRES EA3826 « Thérapeutiques cliniques et expérimentales des infections », IRS2 - Nantes Biotech, Université de Nantes, Nantes, France
| | - Cédric Jacqueline
- Laboratoire UPRES EA3826 « Thérapeutiques cliniques et expérimentales des infections », IRS2 - Nantes Biotech, Université de Nantes, Nantes, France
| | - Marion Davieau
- Laboratoire UPRES EA3826 « Thérapeutiques cliniques et expérimentales des infections », IRS2 - Nantes Biotech, Université de Nantes, Nantes, France
| | - Anissa Besbes
- Laboratoire UPRES EA3826 « Thérapeutiques cliniques et expérimentales des infections », IRS2 - Nantes Biotech, Université de Nantes, Nantes, France
| | - Antoine Roquilly
- Laboratoire UPRES EA3826 « Thérapeutiques cliniques et expérimentales des infections », IRS2 - Nantes Biotech, Université de Nantes, Nantes, France
- CHU Nantes, Pôle anesthésie réanimations, Service d'anesthésie réanimation chirurgicale, Hôtel Dieu, Nantes, F-44093, France
| | - Jérôme Martin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
- Laboratoire d'Immunologie, CHU Nantes, Nantes, France
| | - Jocelyne Caillon
- Laboratoire UPRES EA3826 « Thérapeutiques cliniques et expérimentales des infections », IRS2 - Nantes Biotech, Université de Nantes, Nantes, France
| | - Laure Dumoutier
- Ludwig Institute for cancer Research and Institut de Duve, Université Catholique de Louvain, B-1200, Brussels, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for cancer Research and Institut de Duve, Université Catholique de Louvain, B-1200, Brussels, Belgium
| | - Michèle Heslan
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Régis Josien
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
- Laboratoire d'Immunologie, CHU Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA3826 « Thérapeutiques cliniques et expérimentales des infections », IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.
- CHU Nantes, Pôle anesthésie réanimations, Service d'anesthésie réanimation chirurgicale, Hôtel Dieu, Nantes, F-44093, France.
| |
Collapse
|
19
|
Pharmacological Reconditioning of Marginal Donor Rat Lungs Using Inhibitors of Peroxynitrite and Poly (ADP-ribose) Polymerase During Ex Vivo Lung Perfusion. Transplantation 2017; 100:1465-73. [PMID: 27331361 DOI: 10.1097/tp.0000000000001183] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Donor lungs obtained after prolonged warm ischemia (WI) may be unsuitable for transplantation due to the risk of reperfusion injury, but could be reconditioned using ex-vivo lung perfusion (EVLP). Key processes of reperfusion injury include the formation of reactive oxygen species (ROS)/nitrogen species (RNS) and the activation of poly(adenosine diphosphate-ribose) polymerase (PARP). We explored whether rat lungs obtained after WI could be reconditioned during EVLP using the ROS/RNS scavenger Mn(III)-tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) or the PARP inhibitor 3-aminobenzamide (3-AB). METHODS Rat lungs obtained after 3 hours cold ischemia (CI group, control), or 1 hour WI plus 2 hours CI (WI group) were placed in an EVLP circuit for normothermic perfusion for 3 hours. Lungs retrieved after WI were treated or not with 3-AB (1 mg/mL) or MnTBAP (0.3 mg/mL), added to the perfusate. Measurements included physiological variables (lung compliance, vascular resistance, oxygenation capacity), lung weight gain, levels of proteins, lactate dehydrogenase, protein carbonyl (marker of ROS), 3-nitrotyrosine (marker of RNS), poly(adenosine diphosphate-ribose) (PAR, marker of PARP activation) and IL-6, in the bronchoalveolar lavage or the lung tissue, and histology. RESULTS In comparison to the CI group, the lungs from the WI group displayed higher protein carbonyls, 3-nitrotyrosine, PAR, lactate dehydrogenase and proteins in bronchoalveolar lavage, lung weight gain, perivascular edema, as well as reduced static compliance, but similar oxygenation. All these alterations were markedly attenuated by 3-AB and MnTBAP. CONCLUSIONS After EVLP, lungs obtained after WI exhibit oxidative stress, PARP activation, and tissue injury, which are suppressed by pharmacological inhibitors of ROS/RNS and PARP.
Collapse
|
20
|
Increased Extravascular Lung Water and Plasma Biomarkers of Acute Lung Injury Precede Oxygenation Impairment in Primary Graft Dysfunction After Lung Transplantation. Transplantation 2017; 101:112-121. [PMID: 27495752 DOI: 10.1097/tp.0000000000001434] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND After lung transplantation (LT), early prediction of grade 3 pulmonary graft dysfunction (PGD) remains a research gap for clinicians. We hypothesized that it could be improved using extravascular lung water (EVLWi) and plasma biomarkers of acute lung injury. METHODS After institutional review board approval and informed consent, consecutive LT recipients were included. Transpulmonary thermodilution-based EVLWi, plasma concentrations of epithelial (soluble receptor for advanced glycation endproducts [sRAGE]) and endothelial biomarkers (soluble intercellular adhesion molecule-1 and endocan [full-length and cleaved p14 fragment]) were obtained before and after LT (0 [H0], 6, 12, 24, 48 and 72 hours after pulmonary artery unclamping). Grade 3 PGD was defined according to the International Society for Lung and Heart Transplantation definition, combining arterial oxygen partial pressure (PaO2)/inspired fraction of oxygen (FiO2) ratio and chest X-rays. Association of clinical risk factors, EVLWi and biomarkers with grade 3 PGD was analyzed under the Bayesian paradigm, using logistic model and areas under the receiver operating characteristic curves (AUCs). RESULTS In 47 LT recipients, 10 developed grade 3 PGD, which was obvious at H6 in 8 cases. Clinical risk factors, soluble intercellular adhesion molecule-1 and endocan (both forms) were not associated with grade 3 PGD. Significant predictors of grade 3 PGD included (1) EVLWi (optimal cutoff, 13.7 mL/kg; AUC, 0.74; 95% confidence interval [CI], 0.48-0.99), (2) PaO2/FiO2 ratio (optimal cutoff, 236; AUC, 0.68; 95% CI, 0.52-0.84), and (3) sRAGE (optimal cutoff, 11 760 pg/mL; AUC, 0.66; 95% CI, 0.41-0.91) measured at H0. CONCLUSIONS Immediate postreperfusion increases in EVLWi and sRAGE along with impaired PaO2/FiO2 ratios were early predictors of grade 3 PGD at or beyond 6 hours and may trigger early therapeutic interventions.
Collapse
|
21
|
Hamilton BCS, Kukreja J, Ware LB, Matthay MA. Protein biomarkers associated with primary graft dysfunction following lung transplantation. Am J Physiol Lung Cell Mol Physiol 2017; 312:L531-L541. [PMID: 28130262 DOI: 10.1152/ajplung.00454.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Severe primary graft dysfunction affects 15-20% of lung transplant recipients and carries a high mortality risk. In addition to known donor, recipient, and perioperative clinical risk factors, numerous biologic factors are thought to contribute to primary graft dysfunction. Our current understanding of the pathogenesis of lung injury and primary graft dysfunction emphasizes multiple pathways leading to lung endothelial and epithelial injury. Protein biomarkers specific to these pathways can be measured in the plasma, bronchoalveolar lavage fluid, and lung tissue. Clarification of the pathophysiology and timing of primary graft dysfunction could illuminate predictors of dysfunction, allowing for better risk stratification, earlier identification of susceptible recipients, and development of targeted therapies. Here, we review much of what has been learned about the association of protein biomarkers with primary graft dysfunction and evaluate this association at different measurement time points.
Collapse
Affiliation(s)
- B C S Hamilton
- Department of Surgery, University of California San Francisco, San Francisco, California;
| | - J Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - L B Ware
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - M A Matthay
- Department of Medicine, Anesthesia, and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California; and
| |
Collapse
|
22
|
Geube MA, Perez-Protto SE, McGrath TL, Yang D, Sessler DI, Budev MM, Kurz A, McCurry KR, Duncan AE. Increased Intraoperative Fluid Administration Is Associated with Severe Primary Graft Dysfunction After Lung Transplantation. Anesth Analg 2016; 122:1081-8. [PMID: 26991618 DOI: 10.1213/ane.0000000000001163] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Severe primary graft dysfunction (PGD) is a major cause of early morbidity and mortality in patients after lung transplantation. The etiology and pathophysiology of PGD is not fully characterized and whether intraoperative fluid administration increases the risk for PGD remains unclear from previous studies. Therefore, we tested the hypothesis that increased total intraoperative fluid volume during lung transplantation is associated with the development of grade-3 PGD. METHODS This retrospective cohort analysis included patients who had lung transplantation at the Cleveland Clinic between January 2009 and June 2013. We used multivariable logistic regression with adjustment for donor, recipient, and perioperative confounding factors to examine the association between total intraoperative fluid administration and development of grade-3 PGD in the initial 72 postoperative hours. Secondary outcomes included time to initial extubation and intensive care unit length of stay. RESULTS Grade-3 PGD occurred in 123 of 494 patients (25%) who had lung transplantation. Patients with grade-3 PGD received a larger volume of intraoperative fluid (median 5.0 [3.8, 7.5] L) than those without grade-3 PGD (3.9 [2.8, 5.2] L). Each intraoperative liter of fluid increased the odds of grade-3 PGD by approximately 22% (adjusted odds ratio, 1.22; 95% confidence interval [CI], 1.12-1.34; P <0.001). The volume of transfused red blood cell concentrate was associated with grade-3 PGD (1.1 [0.0, 1.8] L for PGD-3 vs 0.4 [0.0, 1.1 for nongrade-3 PGD] L; adjusted odds ratio, 1.7; 95% CI, 1.08-2.7; P = 0.002). Increased fluid administration was associated with longer intensive care unit stay (adjusted hazard ratio, 0.92; 97.5% CI, 0.88-0.97; P < 0.001) but not with time to initial tracheal extubation (hazard ratio, 0.97; 97.5% CI, 0.93-1.02; P = 0.17). CONCLUSIONS Increased intraoperative fluid volume is associated with the most severe form of PGD after lung transplant surgery. Limiting fluid administration may reduce the risk for development of grade-3 PGD and thus improve early postoperative morbidity and mortality after lung transplantation.
Collapse
Affiliation(s)
- Mariya A Geube
- From the *Department of Cardiothoracic Anesthesia, Cleveland Clinic, Cleveland, Ohio; †Department of Anesthesiology and Critical Care, Cleveland Clinic, Cleveland, Ohio; ‡Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio; §Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio; ‖Transplantation Center, Department of Pulmonology, Allergy and Critical Care, Cleveland Clinic, Cleveland, Ohio; ¶Departments of Outcomes Research and General Anesthesiology, Cleveland Clinic, Cleveland, Ohio; #Transplantation Center, Department of Thoracic and Cardiovascular Surgery and Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio; and **Departments of Cardiothoracic Anesthesia and Outcomes Research, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Major strides have been made in lung transplantation during the 1990s and it has become an established treatment option for patients with advanced lung disease. Due to improvements in organ preservation, surgical techniques, postoperative intensive care, and immunosuppression, the risk of perioperative and early mortality (less than 3 months after transplantation) has declined [1]. The transplant recipient now has a greater chance of realizing the benefits of the long and arduous waiting period.Despite these improvements, suboptimal long-term outcomes continue to be shaped by issues such as opportunistic infections and chronic rejection. Because of the wider use of lung transplantation and the longer life span of recipients, intensivists and ancillary intensive care unit (ICU) staff should be well versed with the care of lung transplant recipients.In this clinical review, issues related to organ donation will be briefly mentioned. The remaining focus will be on the critical care aspects of lung transplant recipients in the posttransplant period, particularly ICU management of frequently encountered conditions. First, the groups of patients undergoing transplantation and the types of procedures performed will be outlined. Specific issues directly related to the allograft, including early graft dysfunction from ischemia-reperfusion injury, airway anastomotic complications, and infections in the setting of immunosuppression will be emphasized. Finally nonpulmonary aspects of posttransplant care and key pharmacologic points in the ICU will be covered.
Collapse
|
24
|
Net alveolar fluid clearance is associated with lung morphology phenotypes in acute respiratory distress syndrome. Anaesth Crit Care Pain Med 2016; 35:81-6. [PMID: 26926951 DOI: 10.1016/j.accpm.2015.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/29/2015] [Accepted: 11/24/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome that encompasses multiple phenotypes, e.g. with regards to lung morphology as assessed by computed tomography (CT). Focal or non-focal lung morphology may influence the response to positive end-expiratory pressure (PEEP), recruitment manoeuvres and prone position. Lung morphology has been hypothesized to be associated with alveolar fluid clearance (AFC), thus explaining various responses to such therapeutic interventions; however, this hypothesis has not been specifically studied in humans. METHODS We measured net AFC rates in 30 patients with ARDS as a secondary data analysis of a prospective single-centre study. Net AFC rates were compared between patients with focal ARDS and those with non-focal ARDS, as assessed by lung CT-scans. RESULTS Net AFC rates were significantly lower in patients with non-focal ARDS (n=23; median [interquartile range], 1.5 [0-5.5] %/h) as compared to those with focal ARDS (n=7; 10.3 [4.5-15] %/h) (P=0.01). The area under the receiver-operating characteristic curve when net AFC rates were used to differentiate the presence from absence of non-focal ARDS was 0.93 (95% confidence interval, 0.81-1). Tidal volumes and PEEP levels differed between focal and non-focal ARDS patients, but there was no difference in arterial oxygenation or in alveolar-capillary permeability. CONCLUSIONS Non-focal lung morphology may be characterized by a functional endotype consistent with marked AFC impairment. Despite study limitations and the need for validating studies in larger cohorts, such novel findings may reinforce our understanding of the association between ARDS phenotypes and therapeutic responses.
Collapse
|
25
|
Monsel A, Calfee CS. Focusing on the alveolar epithelium: Alveolar fluid clearance in diffuse versus focal acute respiratory distress syndrome. Anaesth Crit Care Pain Med 2016; 35:75-7. [PMID: 26924611 DOI: 10.1016/j.accpm.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Antoine Monsel
- Multidisciplinary intensive care unit, department of anaesthesiology and critical care, UPMC université, La Pitié-Salpêtrière hospital, Assistance publique-Hôpitaux de Paris, Paris, France.
| | - Carolyn S Calfee
- Departments of medicine and anaesthesia, division of pulmonary and critical care medicine, university of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Gennai S, Monsel A, Hao Q, Park J, Matthay MA, Lee JW. Microvesicles Derived From Human Mesenchymal Stem Cells Restore Alveolar Fluid Clearance in Human Lungs Rejected for Transplantation. Am J Transplant 2015; 15:2404-12. [PMID: 25847030 PMCID: PMC4792255 DOI: 10.1111/ajt.13271] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 01/25/2023]
Abstract
The need to increase the donor pool for lung transplantation is a major public health issue. We previously found that administration of mesenchymal stem cells "rehabilitated" marginal donor lungs rejected for transplantation using ex vivo lung perfusion. However, the use of stem cells has some inherent limitation such as the potential for tumor formation. In the current study, we hypothesized that microvesicles, small anuclear membrane fragments constitutively released from mesenchymal stem cells, may be a good alternative to using stem cells. Using our well established ex vivo lung perfusion model, microvesicles derived from human mesenchymal stem cells increased alveolar fluid clearance (i.e. ability to absorb pulmonary edema fluid) in a dose-dependent manner, decreased lung weight gain following perfusion and ventilation, and improved airway and hemodynamic parameters compared to perfusion alone. Microvesicles derived from normal human lung fibroblasts as a control had no effect. Co-administration of microvesicles with anti-CD44 antibody attenuated these effects, suggesting a key role of the CD44 receptor in the internalization of the microvesicles into the injured host cell and its effect. In summary, microvesicles derived from human mesenchymal stem cells were as effective as the parent mesenchymal stem cells in rehabilitating marginal donor human lungs.
Collapse
Affiliation(s)
- S. Gennai
- Department of Emergency Medicine, Grenoble University Hospital, La Tronche, France
| | - A. Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Q. Hao
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA
| | - J. Park
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA
| | - M. A. Matthay
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA
,Departments of Medicine, Anesthesiology and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - J. W. Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA
,Corresponding author: Jae-Woo Lee,
| |
Collapse
|
27
|
Aeffner F, Bolon B, Davis IC. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicol Pathol 2015; 43:1074-92. [PMID: 26296628 DOI: 10.1177/0192623315598399] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Collapse
Affiliation(s)
- Famke Aeffner
- Flagship Biosciences Inc., Westminster, Colorado, USA
| | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, Ohio, USA GEMpath Inc., Longmont, Colorado, USA
| | | |
Collapse
|
28
|
Oxidative Stress and Lung Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:590987. [PMID: 26161240 PMCID: PMC4487720 DOI: 10.1155/2015/590987] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Ischemia-reperfusion (IR) injury is directly related to the formation of reactive oxygen species (ROS), endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.
Collapse
|
29
|
Ware LB, Lee JW, Wickersham N, Nguyen J, Matthay MA, Calfee CS. Donor smoking is associated with pulmonary edema, inflammation and epithelial dysfunction in ex vivo human donor lungs. Am J Transplant 2014; 14:2295-302. [PMID: 25146497 PMCID: PMC4169304 DOI: 10.1111/ajt.12853] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/22/2014] [Accepted: 05/31/2014] [Indexed: 01/25/2023]
Abstract
Although recipients of donor lungs from smokers have worse clinical outcomes, the underlying mechanisms are unknown. We tested the association between donor smoking and the degree of pulmonary edema (as estimated by lung weight), the rate of alveolar fluid clearance (AFC; measured by airspace instillation of 5% albumin) and biomarkers of lung epithelial injury and inflammation (bronchoalveolar lavage [BAL] surfactant protein-D (SP-D) and IL-8) in ex vivo lungs recovered from 298 organ donors. The extent of pulmonary edema was higher in current smokers (n = 127) compared to nonsmokers (median 408 g, interquartile range [IQR] 364-500 vs. 385 g, IQR 340-460, p = 0.009). Oxygenation at study enrollment was worse in current smokers versus nonsmokers (median PaO2 /FiO2 214 mm Hg, IQR 126-323 vs. 266 mm Hg, IQR 154-370, p = 0.02). Current smokers with the highest exposure (≥20 pack years) had significantly lower rates of AFC, suggesting that the effects of cigarette smoke on alveolar epithelial fluid transport function may be dose related. BAL IL-8 was significantly higher in smokers while SP-D was lower. These findings indicate that chronic exposure to cigarette smoke has important effects on inflammation, gas exchange, lung epithelial function and lung fluid balance in the organ donor that could influence lung function in the lung transplant recipient.
Collapse
Affiliation(s)
- Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Jae W. Lee
- Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | - Nancy Wickersham
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN
| | - John Nguyen
- California Transplant Donor Network, Oakland, CA
| | - Michael A. Matthay
- Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | - Carolyn S. Calfee
- Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | | |
Collapse
|
30
|
Fang X, Wang L, Shi L, Chen C, Wang Q, Bai C, Wang X. Protective effects of keratinocyte growth factor-2 on ischemia-reperfusion-induced lung injury in rats. Am J Respir Cell Mol Biol 2014; 50:1156-65. [PMID: 24450501 DOI: 10.1165/rcmb.2013-0268oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a common cause to compromise tissue injury via endothelial and epithelial barrier dysfunction and damage. Keratinocyte growth factor (KGF)-2 could play an important role in the repair of alveolar epithelial damage and maintain the capillary barrier function. The present study aimed to investigate the potential effects of KGF-2 on I/R-induced lung injury in rats and the related mechanisms. KGF-2 (2.5-10 mg/kg) was administered intratracheally in rats 3 days before the left lobe with ischemia for 60 minutes followed by reperfusion for 180 minutes. Lung injury was evaluated by measuring lung morphology, blood gas analysis, total cell number, and protein concentration in the bronchoalveolar lavage fluid. The protective effects of KGF-2 on human pulmonary microvascular endothelial cells and related mechanisms were evaluated. Pretreatment with KGF-2 significantly prevented I/R-induced lung edema, inflammatory cell infiltration, protein exudation, and the release of inflammatory cytokines in rats, or I/R-induced endothelial cell apoptosis, migration, and barrier dysfunction. Phosphoinositide 3-kinase or epidermal growth factor receptor inhibitors attenuated the protective effect of KGF-2 in endothelial cells. Our results evidence that the local administration of KGF-2 may be an alternative to prophylactic or adjunct drug therapies for I/R-induced lung injury.
Collapse
|
31
|
VEGF-A Blockade Reduces Reperfusion Edema but Favors Arterial Thromboembolism in a Rat Model of Orthotopic Lung Transplantation. Transplantation 2014; 97:908-16. [DOI: 10.1097/tp.0000000000000056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Ikejiri AT, Somaio Neto F, Chaves JC, Bertoletto PR, Teruya R, Bertoletto ER, Taha MO, Fagundes DJ. Gene expression profile of oxidative stress in the lung of inbred mice after intestinal ischemia/reperfusion injury. Acta Cir Bras 2014; 29:186-92. [DOI: 10.1590/s0102-86502014000300007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/18/2014] [Indexed: 11/21/2022] Open
|
33
|
McAuley DF, Curley GF, Hamid UI, Laffey JG, Abbott J, McKenna DH, Fang X, Matthay MA, Lee JW. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Physiol Lung Cell Mol Physiol 2014; 306:L809-15. [PMID: 24532289 DOI: 10.1152/ajplung.00358.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The lack of suitable donors for all solid-organ transplant programs is exacerbated in lung transplantation by the low utilization of potential donor lungs, due primarily to donor lung injury and dysfunction, including pulmonary edema. The current studies were designed to determine if intravenous clinical-grade human mesenchymal stem (stromal) cells (hMSCs) would be effective in restoring alveolar fluid clearance (AFC) in the human ex vivo lung perfusion model, using lungs that had been deemed unsuitable for transplantation and had been subjected to prolonged ischemic time. The human lungs were perfused with 5% albumin in a balanced electrolyte solution and oxygenated with continuous positive airway pressure. Baseline AFC was measured in the control lobe and if AFC was impaired (defined as <10%/h), the lungs received either hMSC (5 × 10(6) cells) added to the perfusate or perfusion only as a control. AFC was measured in a different lung lobe at 4 h. Intravenous hMSC restored AFC in the injured lungs to a normal level. In contrast, perfusion only did not increase AFC. This positive effect on AFC was reduced by intrabronchial administration of a neutralizing antibody to keratinocyte growth factor (KGF). Thus, intravenous allogeneic hMSCs are effective in restoring the capacity of the alveolar epithelium to remove alveolar fluid at a normal rate, suggesting that this therapy may be effective in enhancing the resolution of pulmonary edema in human lungs deemed clinically unsuitable for transplantation.
Collapse
Affiliation(s)
- D F McAuley
- Health Sciences Bldg., 97, Lisburn Rd., Belfast, Northern Ireland, BT9 7BL.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aeffner F, Abdulrahman B, Hickman-Davis JM, Janssen PM, Amer A, Bedwell DM, Sorscher EJ, Davis IC. Heterozygosity for the F508del mutation in the cystic fibrosis transmembrane conductance regulator anion channel attenuates influenza severity. J Infect Dis 2013; 208:780-9. [PMID: 23749967 DOI: 10.1093/infdis/jit251] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Seasonal and pandemic influenza are significant public health concerns. Influenza stimulates respiratory epithelial Cl(-) secretion via the cystic fibrosis transmembrane conductance regulator (CFTR). The purpose of this study was to determine the contribution of this effect to influenza pathogenesis in mice with reduced CFTR activity. METHODS C57BL/6-congenic mice heterozygous for the F508del CFTR mutation (HET) and wild-type (WT) controls were infected intranasally with 10 000 focus-forming units of influenza A/WSN/33 (H1N1) per mouse. Body weight, arterial O2 saturation, and heart rate were monitored daily. Pulmonary edema and lung function parameters were derived from ratios of wet weight to dry weight and the forced-oscillation technique, respectively. Levels of cytokines and chemokines in bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay. RESULTS Relative to WT mice, influenza virus-infected HET mice showed significantly delayed mortality, which was accompanied by attenuated hypoxemia, cardiopulmonary dysfunction, and pulmonary edema. However, viral replication and weight loss did not differ. The protective HET phenotype was correlated with exaggerated alveolar macrophage and interleukin 6 responses to infection and was abrogated by alveolar macrophage depletion, using clodronate liposomes. CONCLUSIONS Reduced CFTR expression modulates the innate immune response to influenza and alters disease pathogenesis. CFTR-mediated Cl(-) secretion is therefore an important host determinant of disease, and CFTR inhibition may be of therapeutic benefit in influenza.
Collapse
Affiliation(s)
- Famke Aeffner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Venkateswaran RV, Dronavalli V, Patchell V, Wilson I, Mascaro J, Thompson R, Coote J, Bonser RS. Measurement of extravascular lung water following human brain death: implications for lung donor assessment and transplantation. Eur J Cardiothorac Surg 2012; 43:1227-32. [DOI: 10.1093/ejcts/ezs657] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
36
|
Pêgo-Fernandes PM, Hajjar LA, Galas FRBG, Samano MN, Ribeiro AKF, Park M, Soares R, Osawa E, Jatene FB. Respiratory failure after lung transplantation: extra-corporeal membrane oxygenation as a rescue treatment. Clinics (Sao Paulo) 2012; 67:1529-32. [PMID: 23295616 PMCID: PMC3521825 DOI: 10.6061/clinics/2012(12)32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Paulo Manuel Pêgo-Fernandes
- Thoracic Surgery Division, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bastarache JA, Diamond JM, Kawut SM, Lederer DJ, Ware LB, Christie JD. Postoperative estradiol levels associate with development of primary graft dysfunction in lung transplantation patients. ACTA ACUST UNITED AC 2012; 9:154-65. [PMID: 22361838 DOI: 10.1016/j.genm.2012.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/04/2012] [Accepted: 01/18/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Primary graft dysfunction (PGD) frequently complicates lung transplantation in the immediate postoperative period. Both female gender and estradiol modulate the body's response to injury and can influence the rate of alveolar fluid clearance. OBJECTIVE We hypothesized that female gender and higher estradiol levels would be associated with a lower risk of PGD after lung transplantation. METHODS We measured plasma estradiol levels preoperatively, 6 hours postoperatively, and 24 hours postoperatively in a cohort of 111 lung transplant recipients at 2 institutions. RESULTS Mean age was 57 years (12.5) and 52% were female. Median postoperative estradiol level was 63.9 pg/mL (interquartile range, 28.8-154.3 pg/mL) in male and 65.1 pg/mL (interquartile range, 28.4-217.2 pg/mL) in female patients. Contrary to our hypothesis, higher estradiol levels at 24 hours were associated with an increased risk of PGD at 72 hours in male patients (P = 0.001). This association was preserved when accounting for other factors known to be associated with PGD. However, there was no relationship between gender and risk of PGD or between estradiol levels and PGD in females. CONCLUSION These findings suggest that there might be different biologic effects of estrogens in males and females, and highlight the importance of considering gender differences in future studies of PGD.
Collapse
Affiliation(s)
- Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Rokkam D, LaFemina MJ, Lee JW, Matthay MA, Frank JA. Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1081-7. [PMID: 21741940 PMCID: PMC3157178 DOI: 10.1016/j.ajpath.2011.05.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 01/11/2023]
Abstract
The removal of edema from the air spaces is a critical function of the alveolar barrier requiring intact tight junctions. Alveolar fluid clearance contributes to graft function after transplantation and is associated with survival in patients with acute lung injury. Claudin-4 concentrations are known to increase during lung injury and the loss of claudin-4 decreases alveolar fluid clearance in mice. This study was therefore undertaken to evaluate whether differences in lung expression of the tight junction protein claudin-4 are associated with alveolar fluid clearance or clinical measures of lung function. Alveolar fluid clearance rates were measured in ex vivo perfused human lungs not used for transplantation and were compared with histological lung injury and clinical measures of lung injury in the donors. Claudin-4 staining demonstrated a positive correlation with alveolar fluid clearance (Spearman rank correlation [r(s)] = 0.71; P < 0.003); however, claudin-4 staining was not strongly associated with histological measures of lung injury. The expression of other tight junction proteins (including ZO-1) was not associated with alveolar fluid clearance or claudin-4 levels. Claudin-4 staining was lower in lungs from donors with greater impairment in respiratory physiology. These data suggest that claudin-4 may promote alveolar fluid clearance and demonstrate that the amount of claudin-4 expressed may provide specific information regarding alveolar epithelial barrier function that strengthens the link between histological changes and physiological impairment.
Collapse
Affiliation(s)
- Deepti Rokkam
- San Francisco VA Medical Center, University of California San Francisco, San Francisco, California
- Northern California Institute for Research and Education, University of California San Francisco, San Francisco, California
| | - Michael J. LaFemina
- San Francisco VA Medical Center, University of California San Francisco, San Francisco, California
- Northern California Institute for Research and Education, University of California San Francisco, San Francisco, California
| | - Jae Woo Lee
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - James A. Frank
- San Francisco VA Medical Center, University of California San Francisco, San Francisco, California
- Northern California Institute for Research and Education, University of California San Francisco, San Francisco, California
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| |
Collapse
|
39
|
Prognostic factors in lung transplantation: the Santa Casa de Porto Alegre experience. Transplantation 2011; 91:1297-303. [PMID: 21572382 DOI: 10.1097/tp.0b013e31821ab8e5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung transplantation (LT) has been established as a current therapy for selected patients with end-stage lung disease. Different prognostic factors have been reported by transplant centers. The objective of this study is to report our recent results with LT and to search for prognostic factors. METHODS We performed a retrospective analysis of 130 patients who underwent LT at our institution from January 2004 to July 2009. Donor, recipient, intraoperative, and postoperative variables were collected. RESULTS The mean age was 53.14 years (ranging from 8 to 72 years) and 80 (61.5%) were male. The main causes of end-stage respiratory disease were pulmonary fibrosis 53 (40.7%) and chronic obstructive pulmonary disease 52 (40%). The actuarial 1-year survival was 67.7%. Variables correlated with survival were age (P=0.004), distance in the 6-min walk test (P=0.007), coronary heart disease (P=0.001), cardiopulmonary bypass (P=0.02), intraoperative transfusion of red blood cells (P=0.016), increasing central venous pressure at 24th postoperative hour (P=0.001), increasing pulmonary capillary wedge pressure at 24th postoperative hour (P=0.01); length of intubation (P<0.01), reintubation (P=0.001), length of intensive care unit stay (P<0.001), abdominal complication (P=0.003), acute renal failure requiring dialysis (P<0.001), native lung hyperinflation (P=0.02), and acute rejection in the first month (P=0.03). In multivariate analysis, only dialysis (P=0.004, hazards ratio [HR] 2.68), length of intubation (P=0.004, HR 1.002 for each hour), and reintubation (P=0.003, HR 2.88) proved to be independent predictors. CONCLUSION Analysis of variables in our cohort highlighted dialysis, longer mechanical ventilation requirement, and reintubation as independent prognostic factors in LT.
Collapse
|
40
|
Aeffner F, Traylor ZP, Yu ENZ, Davis IC. Double-stranded RNA induces similar pulmonary dysfunction to respiratory syncytial virus in BALB/c mice. Am J Physiol Lung Cell Mol Physiol 2011; 301:L99-L109. [DOI: 10.1152/ajplung.00398.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Both respiratory syncytial virus (RSV) and influenza A virus induce nucleotide/P2Y purinergic receptor-mediated impairment of alveolar fluid clearance (AFC), which contributes to formation of lung edema. Although genetically dissimilar, both viruses generate double-stranded RNA replication intermediates, which act as Toll-like receptor (TLR)-3 ligands. We hypothesized that double-stranded RNA/TLR-3 signaling underlies nucleotide-mediated inhibition of amiloride-sensitive AFC in both infections. We found that addition of the synthetic double-stranded RNA analog poly-inosinic-cytidylic acid [poly(I:C)] (500 ng/ml) to the AFC instillate resulted in nucleotide/P2Y purinergic receptor-mediated inhibition of amiloride-sensitive AFC in BALB/c mice but had no effect on cystic fibrosis transmembrane regulator (CFTR)-mediated Cl− transport. Poly(I:C) also induced acute keratinocyte cytokine-mediated AFC insensitivity to stimulation by the β-adrenergic agonist terbutaline. Inhibitory effects of poly(I:C) on AFC were absent in TLR-3−/− mice and were not replicated by addition to the AFC instillate of ligands for other TLRs except TLR-2. Intranasal poly(I:C) administration (250 μg/mouse) similarly induced nucleotide-dependent AFC inhibition 2–3 days later, together with increased lung water content and neutrophilic inflammation. Intranasal treatment of BALB/c mice with poly(I:C) did not induce airway hyperresponsiveness at day 2 but did result in insensitivity to airway bronchodilation by β-adrenergic agonists. These findings suggest that viral double-stranded RNA replication intermediates induce nucleotide-mediated impairment of amiloride-sensitive AFC in both infections, together with β-adrenergic agonist insensitivity. Both of these effects also occur in RSV infection. However, double-stranded RNA replication intermediates do not appear to be sufficient to induce either adenosine-mediated, CFTR-dependent Cl− secretion in the lung or severe, lethal hypoxemia, both of which are features of influenza infection.
Collapse
Affiliation(s)
- Famke Aeffner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Zachary P. Traylor
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Erin N. Z. Yu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Ian C. Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
41
|
Ware LB, Koyama T, Billheimer D, Landeck M, Johnson E, Brady S, Bernard GR, Matthay MA. Advancing donor management research: design and implementation of a large, randomized, placebo-controlled trial. Ann Intensive Care 2011; 1:20. [PMID: 21906362 PMCID: PMC3224478 DOI: 10.1186/2110-5820-1-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/14/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Given the persistent shortage of organs for transplantation, new donor management strategies to improve both organ utilization and quality of procured organs are needed. Current management protocols for the care of the deceased donor before organ procurement are based on physiological rationale, experiential reasoning, and retrospective studies without rigorous testing. Although many factors contribute to the lack of controlled clinical trials in donor management, a major factor is the unique challenges posed by research in the brain-dead organ donor. METHODS AND RESULTS This article describes the study design and the challenges faced during implementation of the Beta-agonists for Oxygenation in Lung Donors (BOLD) study, a randomized, placebo-controlled clinical trial of nebulized albuterol vs. placebo in 500 organ donors. The study design and implementation are described with emphasis on aspects of the study that are unique to research in brain-dead organ donors. CONCLUSIONS Experience gained during the design and implementation of the BOLD study should be useful for investigators planning future clinical trials in the brain-dead donor population and for intensivists who are involved in the care of the brain-dead organ donor.
Collapse
Affiliation(s)
- Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | | | - Megan Landeck
- California Transplant Donor Network, Oakland, CA, USA
| | | | - Sandra Brady
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Gordon R Bernard
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Michael A Matthay
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
42
|
Diamond JM, Kawut SM, Lederer DJ, Ahya VN, Kohl B, Sonett J, Palmer SM, Crespo M, Wille K, Lama V, Shah PD, Orens J, Bhorade S, Weinacker A, Demissie E, Bellamy S, Christie JD, Ware LB. Elevated plasma clara cell secretory protein concentration is associated with high-grade primary graft dysfunction. Am J Transplant 2011; 11:561-7. [PMID: 21299834 PMCID: PMC3079443 DOI: 10.1111/j.1600-6143.2010.03431.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Primary graft dysfunction (PGD) is the leading cause of early posttransplant morbidity and mortality after lung transplantation. Clara cell secretory protein (CC16) is produced by the nonciliated lung epithelium and may serve as a plasma marker of epithelial cell injury. We hypothesized that elevated levels of CC16 would be associated with increased odds of PGD. We performed a prospective cohort study of 104 lung transplant recipients. Median plasma CC16 levels were determined at three time points: pretransplant and 6 and 24 h posttransplant. The primary outcome was the development of grade 3 PGD within the first 72 h after transplantation. Multivariable logistic regression was performed to evaluate for confounding by donor and recipient demographics and surgical characteristics. Twenty-nine patients (28%) developed grade 3 PGD within the first 72 h. The median CC16 level 6 h after transplant was significantly higher in patients with PGD [13.8 ng/mL (IQR 7.9, 30.4 ng/mL)] than in patients without PGD [8.2 ng/mL (IQR 4.5, 19.1 ng/mL)], p = 0.02. Elevated CC16 levels were associated with increased odds of PGD after lung transplantation. Damage to airway epithelium or altered alveolar permeability as a result of lung ischemia and reperfusion may explain this association.
Collapse
Affiliation(s)
- Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Steven M. Kawut
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA, Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - David J. Lederer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Vivek N. Ahya
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Benjamin Kohl
- Department of Anesthesia and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Joshua Sonett
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - Scott M. Palmer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Raleigh-Durham, North Carolina
| | - Maria Crespo
- Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keith Wille
- Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vibha Lama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Pali D. Shah
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan Orens
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Ann Weinacker
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Ejigayehu Demissie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Scarlett Bellamy
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
43
|
Dynamic changes of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) on pulmonary injury induced by ischemia–reperfusion in rats. Ir J Med Sci 2010; 180:483-8. [DOI: 10.1007/s11845-010-0644-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
44
|
Pelaez A, Force S, Gal A, Neujahr D, Ramirez A, Naik P, Quintero D, Pileggi A, Easley K, Echeverry R, Lawrence E, Mitchell P, Mitchell PO. Receptor for advanced glycation end products in donor lungs is associated with primary graft dysfunction after lung transplantation. Am J Transplant 2010; 10:900-907. [PMID: 20121754 PMCID: PMC2871333 DOI: 10.1111/j.1600-6143.2009.02995.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Development of primary graft dysfunction (PGD) is associated with poor outcomes after transplantation. We hypothesized that Receptor for Advanced Glycation End-products (RAGE) levels in donor lungs is associated with the development of PGD. Furthermore, we hypothesized that RAGE levels would be increased with PGD in recipients after transplantation. We measured RAGE in bronchoalveolar lavage fluid (BALf) from 25 donors and 34 recipients. RAGE was also detected in biopsies (transbronchial biopsy) from recipients with and without PGD. RAGE levels were significantly higher in donor lungs that subsequently developed sustained PGD versus transplanted lungs that did not display PGD. Donor RAGE level was a predictor of recipient PGD (odds ratio = 1.768 per 0.25 ng/mL increase in donor RAGE level). In addition, RAGE levels remained high for 14 days in those recipients that developed severe graft dysfunction. Recipients may be at higher risk for developing PGD if they receive transplanted organs that have higher levels of soluble RAGE prior to explantation. Moreover, the clinical and pathologic abnormalities associated with PGD posttransplantation are associated with increased RAGE expression. These findings also raise the possibility that targeting the RAGE signaling pathway could be a novel strategy for treatment and/or prevention of PGD.
Collapse
Affiliation(s)
- A. Pelaez
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA,McKelvey Center for Lung Transplantation & Pulmonary Vascular Diseases, Emory University, Atlanta, GA
| | - S.D. Force
- McKelvey Center for Lung Transplantation & Pulmonary Vascular Diseases, Emory University, Atlanta, GA,Division of Cardiothoracic Surgery, Emory University, Atlanta, GA
| | - A.A. Gal
- Department of Pathology and Laboratory Medicine, Emory University Hospital
| | - D.C. Neujahr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA,McKelvey Center for Lung Transplantation & Pulmonary Vascular Diseases, Emory University, Atlanta, GA
| | - A.M. Ramirez
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA,McKelvey Center for Lung Transplantation & Pulmonary Vascular Diseases, Emory University, Atlanta, GA
| | - P.M. Naik
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA
| | - D.A. Quintero
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA
| | - A.V. Pileggi
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - K.A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - R. Echeverry
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA
| | - E.C. Lawrence
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA,McKelvey Center for Lung Transplantation & Pulmonary Vascular Diseases, Emory University, Atlanta, GA
| | - P.O. Mitchell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA
| | - P O Mitchell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
45
|
Ware LB, Fremont RD, Bastarache JA, Calfee CS, Matthay MA. Determining the aetiology of pulmonary oedema by the oedema fluid-to-plasma protein ratio. Eur Respir J 2010; 35:331-7. [PMID: 19741024 PMCID: PMC2819058 DOI: 10.1183/09031936.00098709] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We hypothesised that the oedema fluid-to-plasma protein (EF/PL) ratio, a noninvasive measure of alveolar capillary membrane permeability, can accurately determine the aetiology of acute pulmonary oedema. 390 mechanically ventilated patients with acute pulmonary oedema were enrolled. A clinical diagnosis of acute lung injury (ALI), cardiogenic pulmonary oedema or a mixed aetiology was based on expert medical record review at the end of hospitalisation. The EF/PL ratio was measured from pulmonary oedema fluid and plasma samples collected at intubation. 209 patients had a clinical diagnosis of ALI, 147 had a diagnosis of cardiogenic pulmonary oedema and 34 had a mixed aetiology. The EF/PL ratio had an area under the receiver-operating curve of 0.84 for differentiating ALI from cardiogenic pulmonary oedema. Using a predefined cut-off of 0.65, the EF/PL ratio had a sensitivity of 81% and a specificity of 81% for the diagnosis of ALI. An EF/PL ratio >/=0.65 was also associated with significantly higher mortality and fewer ventilator-free days. Noninvasive measurement of the EF/PL ratio is a safe and reliable bedside method for rapidly determining the aetiology of acute pulmonary oedema that can be used at the bedside in both developed and developing countries.
Collapse
Affiliation(s)
- L B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Dept of Medicine, Vanderbilt University School of Medicine, T1218 MCN, 1161 21st Avenue S, Nashville, TN 37232-2650, USA.
| | | | | | | | | |
Collapse
|
46
|
Sugita M, Berthiaume Y, VanSpall M, Dagenais A, Ferraro P. Pharmacologic Modulation of Alveolar Liquid Clearance in Transplanted Lungs by Phentolamine and FK506. Ann Thorac Surg 2009; 88:958-64. [DOI: 10.1016/j.athoracsur.2009.05.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/11/2023]
|
47
|
Christie JD, Shah CV, Kawut SM, Mangalmurti N, Lederer DJ, Sonett JR, Ahya VN, Palmer SM, Wille K, Lama V, Shah PD, Shah A, Weinacker A, Deutschman CS, Kohl BA, Demissie E, Bellamy S, Ware LB. Plasma levels of receptor for advanced glycation end products, blood transfusion, and risk of primary graft dysfunction. Am J Respir Crit Care Med 2009; 180:1010-5. [PMID: 19661249 DOI: 10.1164/rccm.200901-0118oc] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE The receptor for advanced glycation end products (RAGE) is an important marker of lung epithelial injury and may be associated with impaired alveolar fluid clearance. We hypothesized that patients with primary graft dysfunction (PGD) after lung transplantation would have higher RAGE levels in plasma than patients without PGD. OBJECTIVES To test the association of soluble RAGE (sRAGE) levels with PGD in a prospective, multicenter cohort study. METHODS We measured plasma levels of sRAGE at 6 and 24 hours after allograft reperfusion in 317 lung transplant recipients at seven centers. The primary outcome was grade 3 PGD (Pa(O(2))/Fi(O(2)) < 200 with alveolar infiltrates) within the first 72 hours after transplantation. MEASUREMENTS AND MAIN RESULTS Patients who developed PGD had higher levels of sRAGE than patients without PGD at both 6 hours (median 9.3 ng/ml vs. 7.5 ng/ml, respectively; P = 0.028) and at 24 hours post-transplantation (median 4.3 ng/ml vs. 1.9 ng/ml, respectively; P < 0.001). Multivariable logistic regression analyses indicated that the relationship between levels of sRAGE and PGD was attenuated by elevated right heart pressures and by the use of cardiopulmonary bypass. Median sRAGE levels were higher in subjects with cardiopulmonary bypass at both 6 hours (P = 0.003) and 24 hours (P < 0.001). sRAGE levels at 6 hours were significantly associated with intraoperative red cell transfusion (Spearman's rho = 0.39, P = 0.002 in those with PGD), and in multivariable linear regression analyses this association was independent of confounding variables (P = 0.02). CONCLUSIONS Elevated plasma levels of sRAGE are associated with PGD after lung transplantation. Furthermore, plasma sRAGE levels are associated with blood product transfusion and use of cardiopulmonary bypass.
Collapse
Affiliation(s)
- Jason D Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bbeta15-42 (FX06) reduces pulmonary, myocardial, liver, and small intestine damage in a pig model of hemorrhagic shock and reperfusion. Crit Care Med 2009; 37:598-605. [PMID: 19114899 DOI: 10.1097/ccm.0b013e3181959a12] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The fibrin-derived peptide Bbeta15-42 (also called FX06) has been shown to reduce myocardial infarct size following ischemia/reperfusion. Hemorrhagic shock (HS) followed by volume resuscitation represents a similar scenario, whereby a whole organism is vulnerable to reperfusion injury. DESIGN We subjected male farm-bred landrace pigs ( approximately 30 kg) to HS by withdrawing blood to a mean arterial pressure of 40 mm Hg for 60 minutes. Pigs were then resuscitated with shed blood and crystalloids for 60 minutes, and at this time, FX06 (2.4 mg/kg, n = 8) or vehicle control (phosphate buffered saline; 2.4 mg/kg, n = 7) was injected as an intravenous bolus. SETTING University hospital laboratory. SUBJECTS Anesthetized male farm-bred landrace pigs. MEASUREMENTS AND MAIN RESULTS Data are presented as mean +/- sd. Five hours after resuscitation, controls presented acute lung injury (Pao2/Fio2-ratio <300 mm Hg; extra-vascular lung water index (marker for lung injury): 9.0 +/- 1.8 mL/kg) and myocardial dysfunction/damage (cardiac index: 4.3 +/- 0.25 L/min/m; stroke volume index: 30 +/- 6 mL/m; cardiac TnT levels: 0.58 +/- 0.25 ng/mL). In contrast, FX06-treated animals showed significantly improved pulmonary and circulatory function (Pao2/Fio2-ratio >*400 mm Hg; extra-vascular lung water index: *5.2 +/- 2.1 mL/kg, cardiac index: *6.3 +/- 1.4 L/min/m; stroke volume index: *51 +/- 11 mL/m; cardiac TnT levels: *0.11 +/- 0.09 ng/mL; *p < 0.05). Also, tissue oxygenation (tpO2; mm Hg) was significantly improved during reperfusion in FX06-treated pigs when compared with controls (liver 51 +/- 4 vs. *65 +/- 4; serosa 44 +/- 5 vs. *55 +/- 7; mucosa 14 +/- 4 vs. *26 +/- 4). Finally, FX06 reduced accumulation of myeloperoxidase-positive cells (mainly neutrophils) in myocardium, liver, and small intestine and reduced interleukin-6 plasma levels (*p < 0.05; compared with controls). CONCLUSION We conclude that in a pig model of HS and reperfusion, administration of FX06 during reperfusion protects shock- susceptible organs such as heart, lung, liver, and small intestine.
Collapse
|
49
|
Hamacher J, Lucas R, Stammberger U, Wendel A. Terbutaline improves ischemia-reperfusion injury after left-sided orthotopic rat lung transplantation. Exp Lung Res 2009; 35:175-85. [PMID: 19337901 DOI: 10.1080/01902140802488446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Beta2-agonists have been shown to increase alveolar fluid reabsorption, and at least part of their effect depends on active sodium transport from the alveolus into the epithelial cell by the amiloride-sensitive epithelial sodium channel (ENaC). Few data exist on their effect in the injured lung. The authors therefore investigated the effect of intrabronchially administered terbutaline pretransplantation by measuring outcome 1 day after experimental donor lung transplantation with severe injury due to prolonged ischemia. Orthotopic single left-sided lung allotransplantation was performed in female rats (Wistar to Wistar) after a total ischemic time of 20 hours. Graft PaO2/FiO2 in 6 recipients treated with 10(-4) M terbutaline in 500 microL NaCl 0.9% was superior 24 hours after transplantation, with a PaO2 of 329 (111 [SD]) mm Hg versus 5 vehicle controls with 44 (15) mm Hg (P = .002). The beneficial effect of 10(-4) M terbutaline was abrogated by 10(-4) M of the sodium channel blocker amiloride to 71 (34) mm Hg in 3 recipients (P = .028 versus terbutaline 10(-4) M). Ten recipients receiving 10(-5) M terbutaline in 500 microL NaCl 0.9% showed inconsistent improvements of gas exchange, with a PaO2 of 158 (+/- 153) mm Hg (P = .058). Terbutaline at a high dose significantly improved the transplanted rat lung function at 24 hours after transplantation. Part of it may be via activating epithelial sodium transport, thus suggesting an important role of alveolar fluid transport in such a model of acute lung injury.
Collapse
Affiliation(s)
- Jürg Hamacher
- Biochemical Pharmacology, University of Konstanz, Germany.
| | | | | | | |
Collapse
|
50
|
Kropski JA, Fremont RD, Calfee CS, Ware LB. Clara cell protein (CC16), a marker of lung epithelial injury, is decreased in plasma and pulmonary edema fluid from patients with acute lung injury. Chest 2009; 135:1440-1447. [PMID: 19188556 DOI: 10.1378/chest.08-2465] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) and ARDS are common clinical syndromes that are underdiagnosed. Clara cell secretory protein (CC16) is an antiinflammatory protein secreted by the Clara cells of the distal respiratory epithelium that has been proposed as a biomarker of lung epithelial injury. We tested the diagnostic and prognostic utility of CC16 in patients with non-trauma-related ALI/ARDS compared to a control group of patients with acute cardiogenic pulmonary edema (CPE). METHODS Plasma and pulmonary edema fluid samples were obtained from medical and surgical patients with ALI/ARDS or CPE requiring intubation for mechanical ventilation. The etiology of pulmonary edema was determined using consensus clinical criteria for ALI/ARDS and CPE and the edema fluid-to-plasma protein ratio. Plasma and edema fluid CC16 levels were measured by sandwich enzyme-linked immunosorbent assay. CC16 levels were log transformed for analysis, and comparisons were made by the Student t test or Chi(2) as appropriate. RESULTS Compared to patients with CPE (n = 9), patients with ALI/ARDS (n = 23) had lower median CC16 levels in plasma (22 ng/mL [interquartile range (IQR), 9 to 44 ng/mL] vs 55 ng/mL [IQR, 18 to 123 ng/mL], respectively; p = 0.053) and pulmonary edema fluid (1,950 ng/mL [IQR, 1,780 to 4,024 ng/mL] vs 4,835 ng/mL [IQR, 2,006 to 6,350 ng/mL], respectively; p = 0.044). Relative to total pulmonary edema fluid protein concentration, the median CC16 level was significantly lower in patients with ALI/ARDS (45 ng CC16/mg total protein [IQR, 4 to 64 ng CC16/mg total protein] vs 120 ng CC16/mg total protein [IQR, 87 to 257 ng CC16/mg total protein], respectively; p = 0.005). Neither plasma nor edema fluid CC16 levels predicted mortality, the number of days of unassisted ventilation, or ICU length of stay. CONCLUSION CC16 is a promising diagnostic biomarker for helping to discriminate ALI from CPE. Larger scale validation is warranted to better characterize the utility of CC16 in the diagnosis of this underrecognized syndrome.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Richard D Fremont
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Carolyn S Calfee
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|