1
|
Maruthachalam BV, Zwolak A, Lin-Schmidt X, Keough E, Tamot N, Venkataramani S, Geist B, Singh S, Ganesan R. Discovery and characterization of single-domain antibodies for polymeric Ig receptor-mediated mucosal delivery of biologics. MAbs 2021; 12:1708030. [PMID: 31906797 PMCID: PMC6973331 DOI: 10.1080/19420862.2019.1708030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mucosal immunity is dominated by secretory IgA and IgM, although these are less favorable compared to IgG molecules for therapeutic development. Polymeric IgA and IgM are actively transported across the epithelial barrier via engagement of the polymeric Ig receptor (pIgR), but IgG molecules lack a lumen-targeted active transport mechanism, resulting in poor biodistribution of IgG therapeutics in mucosal tissues. In this work, we describe the discovery and characterization of single-domain antibodies (VHH) that engage pIgR and undergo transepithelial transport across the mucosal epithelium. The anti-pIgR VHH panel displayed a broad range of biophysical characteristics, epitope diversity, IgA competition profiles and transcytosis activity in cell and human primary lung tissue models. Making use of this diverse VHH panel, we studied the relationship between biophysical and functional properties of anti-pIgR binders targeting different domains and epitopes of pIgR. These VHH molecules will serve as excellent tools for studying pIgR-mediated transport of biologics and for delivering multispecific IgG antibodies into mucosal lumen, where they can target and neutralize mucosal antigens.
Collapse
Affiliation(s)
| | - Adam Zwolak
- Janssen BioTherapeutics, Janssen Research and Development, Spring House, PA, USA
| | - Xiefan Lin-Schmidt
- Janssen BioTherapeutics, Janssen Research and Development, Spring House, PA, USA
| | - Edward Keough
- Janssen BioTherapeutics, Janssen Research and Development, Spring House, PA, USA
| | - Ninkka Tamot
- Janssen BioTherapeutics, Janssen Research and Development, Spring House, PA, USA
| | - Sathya Venkataramani
- Janssen BioTherapeutics, Janssen Research and Development, Spring House, PA, USA
| | - Brian Geist
- Janssen BioTherapeutics, Janssen Research and Development, Spring House, PA, USA
| | - Sanjaya Singh
- Janssen BioTherapeutics, Janssen Research and Development, Spring House, PA, USA
| | - Rajkumar Ganesan
- Janssen BioTherapeutics, Janssen Research and Development, Spring House, PA, USA
| |
Collapse
|
2
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
3
|
Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, Ying LY, Wie LX, Chellian J, Mehta M, Satija S, Singh SK, Gulati M, Dureja H, Da Silva MW, Tambuwala MM, Gupta G, Paudel KR, Wadhwa R, Hansbro PM, Dua K. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81:419-436. [PMID: 32048757 DOI: 10.1002/ddr.21648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/29/2022]
Abstract
Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
Collapse
Affiliation(s)
- Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim W Yee
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kong Y Xuan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishen Kunalan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim C Rou
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Leong S Jean
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Y Ying
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee X Wie
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jaipur, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
4
|
Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv 2018; 15:821-834. [PMID: 30021074 PMCID: PMC6110405 DOI: 10.1080/17425247.2018.1502267] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Macromolecules with unique effects and potency are increasingly being considered for application in lung pathologies. Numerous delivery strategies for these macromolecules through the lung have been investigated to improve the targeting and overall efficacy. AREAS COVERED Targeting approaches from delivery devices, formulation strategies and specific targets are discussed. EXPERT OPINION Although macromolecules are a heterogeneous group of molecules, a number of strategies have been investigated at the macro, micro, and nanoscopic scale for the delivery of macromolecules to specific sites and cells of lung tissues. Targeted approaches are already in use at the macroscopic scale through inhalation devices and formulations, but targeting strategies at the micro and nanoscopic scale are still in the laboratory stage. The combination of controlling lung deposition and targeting after deposition, through a combination of targeting strategies could be the future direction for the treatment of lung pathologies through the pulmonary route.
Collapse
Affiliation(s)
- Nashwa Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kan Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Valeria Carini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
5
|
Borrok MJ, DiGiandomenico A, Beyaz N, Marchetti GM, Barnes AS, Lekstrom KJ, Phipps SS, McCarthy MP, Wu H, Dall'Acqua WF, Tsui P, Gupta R. Enhancing IgG distribution to lung mucosal tissue improves protective effect of anti-Pseudomonas aeruginosa antibodies. JCI Insight 2018; 3:97844. [PMID: 29925682 DOI: 10.1172/jci.insight.97844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
Abstract
IgG antibodies are abundantly present in the vasculature but to a much lesser extent in mucosal tissues. This contrasts with antibodies of the IgA and IgM isotype that are present at high concentration in mucosal secretions due to active delivery by the polymeric Ig receptor (pIgR). IgG is the preferred isotype for therapeutic mAb development due to its long serum half-life and robust Fc-mediated effector function, and it is utilized to treat a diverse array of diseases with antigen targets located in the vasculature, serosa, and mucosa. As therapeutic IgG antibodies targeting the luminal side of mucosal tissue lack an active transport delivery mechanism, we sought to generate IgG antibodies that could be transported via pIgR, similarly to dimeric IgA and pentameric IgM. We show that an anti-Pseudomonas aeruginosa IgG fused with pIgR-binding peptides gained the ability to transcytose and be secreted via pIgR. Consistent with these results, pIgR-binding IgG antibodies exhibit enhanced localization to the bronchoalveolar space when compared with the parental IgG antibody. Furthermore, pIgR-binding mAbs maintained Fc-mediated functional activity and promoted enhanced survival compared with the parental mAb in a P. aeruginosa acute pneumonia model. Our results suggest that increasing IgG accumulation at mucosal surfaces by pIgR-mediated active transport can improve the efficacy of therapeutic mAbs that act at these sites.
Collapse
Affiliation(s)
| | | | | | - Gabriela M Marchetti
- Antibody Discovery and Protein Engineering.,Cardiovascular, Renal, and Metabolic Disease, MedImmune, Gaithersburg, Maryland, USA
| | | | | | | | | | - Herren Wu
- Antibody Discovery and Protein Engineering
| | | | - Ping Tsui
- Antibody Discovery and Protein Engineering
| | - Ruchi Gupta
- Cardiovascular, Renal, and Metabolic Disease, MedImmune, Gaithersburg, Maryland, USA
| |
Collapse
|
6
|
Takano M, Kawami M, Aoki A, Yumoto R. Receptor-mediated endocytosis of macromolecules and strategy to enhance their transport in alveolar epithelial cells. Expert Opin Drug Deliv 2014; 12:813-25. [DOI: 10.1517/17425247.2015.992778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Fang Y, Xu P, Gu C, Wang Y, Fu XJ, Yu WR, Yao M. Ulinastatin improves pulmonary function in severe burn-induced acute lung injury by attenuating inflammatory response. ACTA ACUST UNITED AC 2011; 71:1297-304. [PMID: 21926648 DOI: 10.1097/ta.0b013e3182127d48] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute systemic inflammatory response to severe skin burn injury mediates burn-induced acute lung injury. Ulinastatin is potentially an effective intervention, because it attenuates the systemic inflammatory response induced by endotoxin and improves myocardial function during ischemic shock and reperfusion. METHODS Rats received full-thickness burn wounds to 30% total body surface area followed by delayed resuscitation. The treatment group received 50,000 U/kg of ulinastatin and the burn group was given vehicle only. A sham group was not burned but otherwise was treated identically. After killing, blood and lung samples were harvested for histology and measurement of inflammatory mediators. RESULTS Administration of ulinastatin significantly decreased the mRNA and protein levels of tumor necrosis factor-alpha, interleukin-1β, -6, and -8 both locally and systemically in burn-injured rats. The secretion of neutrophil elastase and myeloperoxidase in the lung and the expression of intercellular adhesion molecule-1 on the surface of lung epithelium were inhibited by ulinastatin. Ulinastatin also reduced the increase in pulmonary microvascular permeability. Consistent with these findings, ulinastatin ameliorated the lung edema and pulmonary oxygenation in burn-injured rats. CONCLUSIONS These results indicate that the inhibitory effects of ulinastatin on inflammatory mediator production, neutrophil activation, and microvascular permeability are associated with the recovery of pulmonary functions in severe burn-induced acute lung injury and suggest that ulinastatin may serve as a potential therapeutic administration in critical burn care.
Collapse
Affiliation(s)
- Yong Fang
- Department of Burns and Plastic Surgery, No. 3 People's Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Quinn DJ, Weldon S, Taggart CC. Antiproteases as therapeutics to target inflammation in cystic fibrosis. Open Respir Med J 2010; 4:20-31. [PMID: 20448835 PMCID: PMC2864511 DOI: 10.2174/1874306401004020020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022] Open
Abstract
Cystic Fibrosis (CF) is the most common fatal inherited disease of Caucasians, affecting about 1 in 3000 births. Patients with CF have a recessive mutation in the gene encoding the CF transmembrane conductance regulator (CFTR). CFTR is expressed in the epithelium of many organs throughout the exocrine system, however, inflammation and damage of the airways as a result of persistent progressive endobronchial infection is a central feature of CF. The inflammatory response to infection brings about a sustained recruitment of neutrophils to the site of infection. These neutrophils release various pro-inflammatory compounds including proteases, which when expressed at aberrant levels can overcome the endogenous antiprotease defence mechanisms of the lung. Unregulated, these proteases can exacerbate inflammation and result in the degradation of structural proteins and tissue damage leading to bronchiectasis and loss of respiratory function. Other host-derived and bacterial proteases may also contribute to the inflammation and lung destruction observed in the CF lung. Antiprotease strategies to dampen the excessive inflammatory response and concomitant damage to the airways remains an attractive therapeutic option for CF patients.
Collapse
Affiliation(s)
| | | | - Clifford C Taggart
- Centre for Infection and Immunity, Whitla Medical Building, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| |
Collapse
|
9
|
Lin CH, Wang PW, Pan TL, Bazylak G, Liu EKW, Wei FC. Proteomic profiling of oxidative stress in human victims of traffic-related injuries after lower limb revascularization and indication for secondary amputation. J Pharm Biomed Anal 2010; 51:784-94. [DOI: 10.1016/j.jpba.2009.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 06/30/2009] [Accepted: 07/14/2009] [Indexed: 12/20/2022]
|
10
|
Di Gioia S, Conese M. Polyethylenimine-mediated gene delivery to the lung and therapeutic applications. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:163-88. [PMID: 19920904 PMCID: PMC2761186 DOI: 10.2147/dddt.s2708] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nonviral gene delivery is now considered a promising alternative to viral vectors. Among nonviral gene delivery agents, polyethylenimine (PEI) has emerged as a potent candidate for gene delivery to the lung. PEI has some advantages over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. However, intracellular (mainly the nuclear membrane) and extracellular obstacles still hamper its efficiency in vitro and in vivo, depending on the route of administration and the type of PEI. Nuclear delivery has been increased by adding nuclear localization signals. To overcome nonspecific interactions with biological fluids, extracellular matrix components and nontarget cells, strategies have been developed to protect polyplexes from these interactions and to increase target specificity and gene expression. When gene delivery into airway epithelial cells of the conducting airways is necessary, aerosolization of complexes seems to be better suited to guarantee higher transgene expression in the airway epithelial cells with lower toxicity than observed with either intratracheal or intravenous administration. Aerosolization, indeed, is useful to target the alveolar epithelium and pulmonary endothelium. Proof-of-principle that PEI-mediated gene delivery has therapeutic application to some genetic and acquired lung disease is presented, using as genetic material either plasmidic DNA or small-interfering RNA, although optimization of formulation and delivery protocols and limitation of toxicity need further studies.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Biomedical Sciences, University of Foggia, Viale L. Pinto 1, Foggia, Italy
| | | |
Collapse
|
11
|
Nichols DP, Konstan MW, Chmiel JF. Anti-inflammatory therapies for cystic fibrosis-related lung disease. Clin Rev Allergy Immunol 2009; 35:135-53. [PMID: 18546078 DOI: 10.1007/s12016-008-8081-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease affecting many organ systems. In the lung, the underlying ion transport defect in CF establishes a perpetuating cycle of impaired airway clearance, chronic endobronchial infection, and exuberant inflammation. The interrelated nature of these components of CF lung disease makes it likely that the most effective therapeutic strategies will include treatments of each of these. This chapter reviews the preclinical and clinical data focused on ways to better understand and particularly to limit inflammation in the CF airway. Anti-inflammatories are an attractive therapeutic target in CF with a proven ability to decrease the rate of decline in lung function. However, the inherent complexity of the inflammatory response combined with the obvious dependency on this response to contain infection and the side effect profiles of common anti-inflammatories have made identifying the most suitable agents challenging. Research continues to discover impairments in signaling events in CF that may contribute to the excessive inflammation seen clinically. Concurrent with these findings, promising new therapies are being evaluated to determine which agents will be most effective and well tolerated. Available data from studies commenced over the last two decades, which have generated both encouraging and disappointing results, are reviewed below.
Collapse
Affiliation(s)
- David P Nichols
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | | | | |
Collapse
|
12
|
Chmiel JF, Konstan MW. Inflammation and anti-inflammatory therapies for cystic fibrosis. Clin Chest Med 2007; 28:331-46. [PMID: 17467552 DOI: 10.1016/j.ccm.2007.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cystic fibrosis lung disease is characterized by a self-propagating cycle of obstruction, infection, and inflammation. The inflammatory response, which accounts for the majority of the morbidity and mortality of the disease, begins early in life, becomes persistent, and is excessive relative to the bacterial burden. Therapies aimed at decreasing the inflammatory response represent a relatively new strategy for treatment. This article reviews the current state of the art of anti-inflammatory therapy in cystic fibrosis and introduces clinical trials that are underway.
Collapse
Affiliation(s)
- James F Chmiel
- Division of Pediatric Pulmonology, Department of Pediatrics, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
13
|
Braathen R, Sandvik A, Berntzen G, Hammerschmidt S, Fleckenstein B, Sandlie I, Brandtzaeg P, Johansen FE, Lauvrak V. Identification of a polymeric Ig receptor binding phage-displayed peptide that exploits epithelial transcytosis without dimeric IgA competition. J Biol Chem 2006; 281:7075-81. [PMID: 16423833 DOI: 10.1074/jbc.m508509200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The polymeric Ig receptor (pIgR), also called membrane secretory component (SC), mediates epithelial transcytosis of polymeric immunoglobulins (pIgs). J Chain-containing polymeric IgA (pIgA) and pentameric IgM bind pIgR at the basolateral epithelial surface. After transcytosis, the extracellular portion of the pIgR is cleaved at the apical side, either complexed with pIgs as bound SC or unoccupied as free SC. This transport pathway may be exploited to target bioactive molecules to the mucosal surface. To identify small peptide motifs with specific affinity to human pIgR, we used purified free SC and selection from randomized, cysteine-flanked 6- and 9-mer phage-display libraries. One of the selected phages, called C9A, displaying the peptide CVVWMGFQQVC, showed binding both to human free SC and SC complexed with pIgs. However, the pneumococcal surface protein SpsA (Streptococcus pneumoniae secretory IgA-binding protein), which binds human SC at a site distinct from the pIg binding site, competed with the C9A phage for binding to SC. The C9A phage showed greatly increased transport through polarized Madin-Darby canine kidney cells transfected with human pIgR. This transport was not affected by pIgA nor did it inhibit pIgR-mediated pIgA transcytosis. A free peptide of identical amino acid sequence as that displayed by the C9A phage inhibited phage interaction with SC. This implied that the C9A peptide sequence may be exploited for pIgR-mediated epithelial transport without interfering with secretory immunity.
Collapse
Affiliation(s)
- Ranveig Braathen
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, Rikshospitalet University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gupta S, Heacock M, Perez A, Davis PB. Antibodies to the polymeric immunoglobulin receptor with different binding and trafficking patterns. Am J Respir Cell Mol Biol 2005; 33:363-70. [PMID: 15994431 PMCID: PMC2715344 DOI: 10.1165/rcmb.2005-0132oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The polymeric immunoglobulin receptor (pIgR) has been proposed as a therapeutic target, but its potential depends on the efficiency of uptake and trafficking of the receptor ligand. Mouse monoclonal antibodies (Mabs) directed against pIgR, selected for strong binding to secretory component (SC) and secretory IgA (sIgA), were tested in a transcytosis assay in 16HBEo--cells (human bronchial epithelial cell line) transfected with human pIgR. Intracellular trafficking was followed by confocal microscopy. Mabs fell into two classes. For two Mabs, transcytosis from basolateral to apical surface is rapid, unidirectional, and little Mab is retained in the cell. For three Mabs, basolateral to apical transcytosis occurs to a significantly lesser extent, reverse transcytosis is permitted, and some of the Mab is retained in the perinuclear region even after 24 h. When tested for their ability to recognize and immunoprecipitate pIgR with systematic truncations and deletions of the five immunoglobulin (Ig)-like domains, all Mabs bound to the fifth Ig-like domain, but three of them also bound to the C-terminal region of pIgR near the plasma membrane. Different binding sites probably account for the different trafficking of these Mabs and may predict differential therapeutic utility.
Collapse
Affiliation(s)
- Sanhita Gupta
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The serine proteases cathepsin G, human leucocyte elastase and proteinase 3 are major contents of neutrophils and are released at sites of inflammation. The common picture of their function was that they do not degrade extracellular proteins specifically. Recent studies provided evidence that these proteases are able to activate specifically pro-inflammatory cytokines and lead to the activation of different receptors. Neutrophil serine proteases might therefore be important regulators of inflammatory processes and are interesting targets for new therapeutic approaches against inflammatory disorders. This review summarizes the current knowledge on the regulation of cell signalling by neutrophil serine proteases.
Collapse
Affiliation(s)
- O Wiedow
- Department of Dermatology, University Kiel, Kiel, Germany
| | | |
Collapse
|
16
|
|
17
|
Affiliation(s)
- Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Hines Veterans Affairs Hospital, Hines, IL 60141, USA.
| |
Collapse
|