1
|
Zhong Z, Li K, Shen C, Ma Y, Guo L. Erythropoietin improves pulmonary hypertension by promoting the homing and differentiation of bone marrow mesenchymal stem cells in lung tissue. Hum Cell 2024; 37:214-228. [PMID: 37968533 DOI: 10.1007/s13577-023-01009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease thatultimately progresses to right-sided heart failure and death. Erythropoietin (EPO) has been shown to have therapeutic potential in cardiovascular diseases, including PAH. In this study, we aimed to investigate the improvement effect of EPO pretreated bone marrow mesenchymal stem cells (BMSCs) on PAH. BMSCs were obtained from the bone marrow of male SD rats. Female rats were randomly divided into six groups, including control group, monocrotaline (MCT)-induced group, and four groups with different doses of EPO pretreated BMSCs. Lung tissue was taken for testing at 2 weeks of treatment. Our results showed EPO promoted homing and endothelial cell differentiation of BMSCs in the lung tissues of PAH rats. EPO and BMSCs treatment attenuated pulmonary arterial pressure, polycythemia, and pulmonary artery structural remodeling. Furthermore, BMSCs inhibited pulmonary vascular endothelial-to-mesenchymal transition (EndoMT) in PAH rats, which was further suppressed by EPO in a concentration-dependent manner. Meanwhile, EPO and BMSC treatment elevated pulmonary angiogenesis in PAH rats. BMSCs inhibited TNF-α, IL-1β, IL-6, and MCP-1 in lung tissues of PAH rats, which was further decreased by EPO in a concentration-dependent manner. Thus, EPO improved pulmonary hypertension (PH) by promoting the homing and differentiation of BMSCs in lung tissue.
Collapse
Affiliation(s)
- Zhendong Zhong
- Institute for Laboratory Animal Research, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Kang Li
- Department of Gastroenterology, People's Hospital of Tibet Autonomous Region, Lhasa, 850000, Tibet, China
| | - Chongyang Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 230041, Sichuan, China
| | - Yuxiao Ma
- Department of Biology, New York University, 100 Washington Square E, New York, NY, 10003, United States of America.
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2,1St Ring Rd., Chengdu, 610072, Sichuan, China.
| |
Collapse
|
2
|
Li Y, Fu Y, Liu Y, Zhao D, Liu L, Bourouis S, Algarni AD, Zhong C, Wu P. An optimized machine learning method for predicting wogonin therapy for the treatment of pulmonary hypertension. Comput Biol Med 2023; 164:107293. [PMID: 37591162 DOI: 10.1016/j.compbiomed.2023.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Human health is at risk from pulmonary hypertension (PH), characterized by decreased pulmonary vascular resistance and constriction of the pulmonary vessels, resulting in right heart failure and dysfunction. Thus, preventing PH and monitoring its progression before treating it is vital. Wogonin, derived from the leaves of Scutellaria baicalensis Georgi, exhibits remarkable pharmacological activity. In this study, we examined the effectiveness of wogonin in mitigating the progression of PH in mice using right heart catheterization and hematoxylin-eosin (HE) staining. As an alternative to minimize the possibility of harming small animals, we present a scientifically effective feature selection method (BSCDWOA-KELM) that will allow us to develop a novel simpler noninvasive prediction method for wogonin in treating PH. In this method, we use the proposed enhanced whale optimizer (SCDWOA) in conjunction with the kernel extreme learning machine (KELM). Initially, we let SCDWOA perform global optimization experiments on the IEEE CEC2014 benchmark function set to verify its core advantages. Lastly, 12 public and PH datasets are examined for feature selection experiments using BSCDWOA-KELM. As shown in the experimental results for global optimization, the proposed SCDWOA has better convergence performance. Meanwhile, the proposed binary SCDWOA (BSCDWOA) significantly improves the ability of KELM to classify data. By utilizing the BSCDWOA-KELM, key indicators such as the Red blood cell (RBC), the Haemoglobin (HGB), the Lymphocyte percentage (LYM%), the Hematocrit (HCT), and the Red blood cell distribution width-size distribution (RDW-SD) can be efficiently screened in the Pulmonary hypertension dataset, and one of its most essential points is its accuracy of greater than 0.98. Consequently, the BSCDWOA-KELM introduced in this study can be used to predict wogonin therapy for treating pulmonary hypertension in a simple and noninvasive manner.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin 130032, China.
| | - Yujie Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Yining Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin 130032, China.
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Sami Bourouis
- Department of Information Technology, College of Computers and Information Technology, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia.
| | - Abeer D Algarni
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Chuyue Zhong
- The First Clinical College, Wenzhou Medical University, Wenzhou 325000, China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
3
|
Rafikov R, McBride ML, Zemskova M, Kurdyukov S, McClain N, Niihori M, Langlais PR, Rafikova O. Inositol monophosphatase 1 as a novel interacting partner of RAGE in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316:L428-L444. [PMID: 30604625 DOI: 10.1152/ajplung.00393.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by progressive pulmonary vascular remodeling. The receptor for advanced glycation end products (RAGE) plays an important role in PAH by promoting proliferation of pulmonary vascular cells. RAGE is also known to mediate activation of Akt signaling, although the particular molecular mechanism remains unknown. This study aimed to identify the interacting partner of RAGE that could facilitate RAGE-mediated Akt activation and vascular remodeling in PAH. The progressive angioproliferative PAH was induced in 24 female Sprague-Dawley rats ( n = 8/group) that were randomly assigned to develop PAH for 1, 2, or 5 wk [right ventricle systolic pressure (RVSP) 56.5 ± 3.2, 63.6 ± 1.6, and 111.1 ± 4.5 mmHg, respectively, vs. 22.9 ± 1.1 mmHg in controls]. PAH triggered early and late episodes of apoptosis in rat lungs accompanied by RAGE activation. Mass spectrometry analysis has identified IMPA1 as a novel PAH-specific interacting partner of RAGE. The proximity ligation assay (PLA) confirmed the formation of RAGE/IMPA1 complex in the pulmonary artery wall. Activation of IMPA1 in response to increased glucose 6-phosphate (G6P) is known to play a critical role in inositol synthesis and recycling. Indeed, we confirmed a threefold increase in G6P ( P = 0.0005) levels in lungs of PAH rats starting from week 1 that correlated with accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), membrane translocation of PI3K, and a threefold increase in membrane Akt levels ( P = 0.02) and Akt phosphorylation. We conclude that the formation of the newly discovered RAGE-IMPA1 complex could be responsible for the stimulation of inositol pathways and activation of Akt signaling in PAH.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Matthew L McBride
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Marina Zemskova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Sergey Kurdyukov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Nolan McClain
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Maki Niihori
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
4
|
Chen M, Zhang J, Chen Y, Qiu Y, Luo Z, Zhao S, Du L, Tian D. Hydrogen protects lung from hypoxia/re-oxygenation injury by reducing hydroxyl radical production and inhibiting inflammatory responses. Sci Rep 2018; 8:8004. [PMID: 29789753 PMCID: PMC5964155 DOI: 10.1038/s41598-018-26335-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
Here we investigated whether hydrogen can protect the lung from chronic injury induced by hypoxia/re-oxygenation (H/R). We developed a mouse model in which H/R exposure triggered clinically typical lung injury, involving increased alveolar wall thickening, infiltration by neutrophils, consolidation, alveolar hemorrhage, increased levels of inflammatory factors and recruitment of M1 macrophages. All these processes were attenuated in the presence of H2. We found that H/R-induced injury in our mouse model was associated with production of hydroxyl radicals as well as increased levels of colony-stimulating factors and circulating leukocytes. H2 attenuated H/R-induced production of hydroxyl radicals, up-regulation of colony-stimulating factors, and recruitment of neutrophils and M1 macrophages to lung tissues. However, H2 did not substantially affect the H/R-induced increase in erythropoietin or pulmonary artery remodeling. Our results suggest that H2 ameliorates H/R-induced lung injury by inhibiting hydroxyl radical production and inflammation in lungs. It may also prevent colony-stimulating factors from mobilizing progenitors in response to H/R-induced injury.
Collapse
Affiliation(s)
- Meihong Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511500, China
| | - Jie Zhang
- Department of Pathology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yun Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511500, China
| | - Yan Qiu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zi Luo
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Anesthesiology, Loudi Central Hospital, Loudi, Hunan, 417000, China
| | - Sixia Zhao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Anesthesiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, China
| | - Lei Du
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dongbo Tian
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511500, China.
| |
Collapse
|
5
|
Kang J, Li Y, Hu K, Lu W, Zhou X, Yu S, Xu L. Chronic intermittent hypoxia versus continuous hypoxia: Same effects on hemorheology? Clin Hemorheol Microcirc 2017; 63:245-55. [PMID: 26444604 DOI: 10.3233/ch-151973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although both chronic intermittent hypoxia (CIH) and chronic continuous hypoxia (CCH) have effects on hemorheology, we do not know whether their roles are the same. In this study, we explored the effect of simulated-apnea CIH on hemorheology in experimental rats and compared with the effect of CCH. 45 adult SD rats were randomly divided into the normoxic control group, CCH and CIH groups. CIH rats were given nitrogen and air alternately for 8 hours per day and the experiment lasted for 5 weeks. The control group were placed in the normoxia animal chambers, and the CCH rats were housed in the same chambers which were continuously given normobaric hypoxia (FiO2 = 10%). After the preparations, the blood samples were taken and the hemorheology were determined. Compared with control group, the whole blood apparent viscosity, plasma viscosity, hematocrit, erythrocyte aggregation index and electrophoresis index, platelet aggregation rate and fibrinogen significantly increased in CIH group and CCH group. The whole blood viscosity, plasma viscosity, hematocrit and fibrinogen values were much higher in CCH group than in CIH group. However, there was not significantly difference in RBC deformation index or rigidity index among the three groups and no significantly differences were found in the effects on RBC rheological property between CIH and CCH. Our results suggest that intermittent hypoxia and continuous hypoxia increase whole blood viscosity, impair the functions of red blood cells and promote the platelet aggregation in model rats. Moreover, CCH had a greater effect on blood rheology than CIH.
Collapse
|
6
|
Evaluation and Management of Pulmonary Hypertension in Kidney Transplant Candidates and Recipients. Transplantation 2017; 101:166-181. [DOI: 10.1097/tp.0000000000001043] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Yang YM, Yuan H, Edwards JG, Skayian Y, Ochani K, Miller EJ, Sehgal PB. Deletion of STAT5a/b in vascular smooth muscle abrogates the male bias in hypoxic pulmonary hypertension in mice: implications in the human disease. Mol Med 2015; 20:625-38. [PMID: 25470773 DOI: 10.2119/molmed.2014.00180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/20/2014] [Indexed: 12/27/2022] Open
Abstract
Chronic hypoxia typically elicits pulmonary hypertension (PH) in mice with a male-dominant phenotype. There is an opposite-sex bias in human PH, with a higher prevalence in women, but greater survival (the "estrogen paradox"). We investigated the involvement of the STAT5a/b species, previously established to mediate sexual dimorphism in other contexts, in the sex bias in PH. Mice with heterozygous or homozygous deletions of the STAT5a/b locus in vascular smooth muscle cells (SMCs) were generated in crosses between STAT5a/b(fl/fl) and transgelin (SM22α)-Cre(+/+) parents. Wild-type (wt) males subjected to chronic hypoxia showed significant PH and pulmonary arterial remodeling, with wt females showing minimal changes (a male-dominant phenotype). However, in conditional STAT5(+/-) or STAT5(-/-) mice, hypoxic females showed the severest manifestations of PH (a female-dominant phenotype). Immunofluorescence studies on human lung sections showed that obliterative pulmonary arterial lesions in patients with idiopathic pulmonary arterial hypertension (IPAH) or hereditary pulmonary arterial hypertension (HPAH), both male and female, overall had reduced STAT5a/b, reduced PY-STAT5 and reduced endoplasmic reticulum (ER) GTPase atlastin-3 (ATL3). Studies of SMCs and endothelial cell (EC) lines derived from vessels isolated from lungs of male and female IPAH patients and controls revealed instances of coordinate reductions in STAT5a, STAT5b and ATL3 in IPAH-derived cells, including SMCs and ECs from the same patient. Taken together, these data provide the first definitive evidence for a contribution of STAT5a/b to the sex bias in PH in the hypoxic mouse and implicate reduced STAT5 in the pathogenesis of the human disease.
Collapse
Affiliation(s)
- Yang-Ming Yang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Huijuan Yuan
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - John G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York, United States of America
| | - Yester Skayian
- Department of Physiology, New York Medical College, Valhalla, New York, United States of America
| | - Kanta Ochani
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Edmund J Miller
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Pravin B Sehgal
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States of America.,Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| |
Collapse
|
8
|
Samillan V, Haider T, Vogel J, Leuenberger C, Brock M, Schwarzwald C, Gassmann M, Ostergaard L. Combination of erythropoietin and sildenafil can effectively attenuate hypoxia-induced pulmonary hypertension in mice. Pulm Circ 2014; 3:898-907. [PMID: 25006406 DOI: 10.1086/674758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 08/22/2013] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is an incurable disease that often leads to right ventricular hypertrophy and right heart failure. This study investigated single versus combined therapy with sildenafil and erythropoietin on hypoxia-induced pulmonary hypertension in mice. Mice were randomized into 5 groups and exposed to either hypoxia (10% oxygen) or normoxia for a total of 5 weeks. Hypoxic mice were treated with saline solution, erythropoietin (500 IU/kg 3 times weekly), sildenafil (10 mg/kg daily), or a combination of the two drugs for the last 2 weeks of hypoxic exposure. We measured right ventricular pressures using right heart catheterization, and the ventilatory response to hypoxia was recorded via whole-body plethysmography. Histological analyses were performed to elucidate changes in pulmonary morphology and appearance of right heart hypertrophy. Plasma levels of cardiotrophin-1 and atrial natriuretic peptide were quantified. Treatment with either erythropoietin or sildenafil alone lowered the hypoxia-induced increase of pulmonary pressure and reduced pulmonary edema formation, pulmonary vascular remodeling, and right ventricular hypertrophy. Notably, the combination of the two drugs had the most prominent effect. Changes in cardiotrophin-1 and atrial natriuretic protein levels confirmed these observations. The combination treatment with erythropoietin and sildenafil demonstrated an attenuation of the development of hypoxia-induced PH in mice that was superior to that observed for either drug when given alone.
Collapse
Affiliation(s)
- Victor Samillan
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland ; Human Physiology Department, Medical School, Universidad Alas Peruanas, Lima, Peru
| | - Thomas Haider
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Johannes Vogel
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Caroline Leuenberger
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Matthias Brock
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Division of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Colin Schwarzwald
- Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland ; Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Louise Ostergaard
- Institute for Veterinary Physiology, Vetsuisse Faculty, Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| |
Collapse
|
9
|
Sise ME, Courtwright AM, Channick RN. Pulmonary hypertension in patients with chronic and end-stage kidney disease. Kidney Int 2013; 84:682-92. [PMID: 23739239 DOI: 10.1038/ki.2013.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/09/2013] [Accepted: 03/14/2013] [Indexed: 11/09/2022]
Abstract
Pulmonary hypertension is defined as a mean pulmonary artery pressure ≥25 mm Hg and is a recently recognized complication of chronic kidney disease and end-stage renal disease. There is significant epidemiological overlap with kidney disease and the underlying causes of World Health Organization group 1-4 pulmonary hypertension (pulmonary arteriopathy, left heart disease, chronic pulmonary disease, and chronic thromboembolic disease, respectively). In addition, an entity of 'unexplained pulmonary hypertension,' group 5, in patients with chronic kidney disease and end-stage renal disease has emerged, with prevalence estimates of 30-50%. The pathogenesis of pulmonary hypertension in this population is due to alterations in endothelial function, increased cardiac output, and myocardial dysfunction leading to elevated left heart filling pressure, with recent data suggesting that left heart dysfunction may account for the vast majority of pulmonary hypertension in patients with kidney disease. Pulmonary hypertension is an independent predictor of increased mortality in patients on dialysis and those undergoing kidney transplantation. This review summarizes what is known about the epidemiology, pathogenesis, transplantation outcomes, mortality, and treatment of pulmonary hypertension in patients with chronic kidney disease and end-stage renal disease.
Collapse
Affiliation(s)
- Meghan E Sise
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | | | | |
Collapse
|
10
|
Naeije R, Vanderpool R. Pulmonary Hypertension and Chronic Mountain Sickness. High Alt Med Biol 2013; 14:117-25. [DOI: 10.1089/ham.2012.1124] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Robert Naeije
- Department of Pathophysiology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Rebecca Vanderpool
- Department of Pathophysiology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| |
Collapse
|
11
|
Unal A, Duran M, Tasdemir K, Oymak S, Sipahioglu MH, Tokgoz B, Utas C, Oymak O. Does Arterio-Venous Fistula Creation Affects Development of Pulmonary Hypertension in Hemodialysis Patients? Ren Fail 2013; 35:344-51. [DOI: 10.3109/0886022x.2012.760407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Pulmonary hypertension in parenchymal lung disease. Pulm Med 2012; 2012:684781. [PMID: 23094153 PMCID: PMC3474989 DOI: 10.1155/2012/684781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/07/2012] [Indexed: 01/23/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) has been extensively investigated, although it represents a less common form of the pulmonary hypertension (PH) family, as shown by international registries. Interestingly, in types of PH that are encountered in parenchymal lung diseases such as interstitial lung diseases (ILDs), chronic obstructive pulmonary disease (COPD), and many other diffuse parenchymal lung diseases, some of which are very common, the available data is limited. In this paper, we try to browse in the latest available data regarding the occurrence, pathogenesis, and treatment of PH in chronic parenchymal lung diseases.
Collapse
|
13
|
Beleslin-Čokić BB, Cokić VP, Wang L, Piknova B, Teng R, Schechter AN, Noguchi CT. Erythropoietin and hypoxia increase erythropoietin receptor and nitric oxide levels in lung microvascular endothelial cells. Cytokine 2011; 54:129-35. [PMID: 21324713 DOI: 10.1016/j.cyto.2011.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 12/22/2010] [Accepted: 01/20/2011] [Indexed: 01/26/2023]
Abstract
Acute lung exposure to low oxygen results in pulmonary vasoconstriction and redistribution of blood flow. We used human microvascular endothelial cells from lung (HMVEC-L) to study the acute response to oxygen stress. We observed that hypoxia and erythropoietin (EPO) increased erythropoietin receptor (EPOR) gene expression and protein level in HMVEC-L. In addition, EPO dose- and time-dependently stimulated nitric oxide (NO) production. This NO stimulation was evident despite hypoxia induced reduction of endothelial NO synthase (eNOS) gene expression. Western blot of phospho-eNOS (serine1177) and eNOS and was significantly induced by hypoxia but not after EPO treatment. However, iNOS increased at hypoxia and with EPO stimulation compared to normal oxygen tension. In accordance with our previous results of NO induction by EPO at low oxygen tension in human umbilical vein endothelial cells and bone marrow endothelial cells, these results provide further evidence in HMVEC-L for EPO regulation of NO production to modify the effects of hypoxia and cause compensatory vasoconstriction.
Collapse
Affiliation(s)
- Bojana B Beleslin-Čokić
- Institute of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
14
|
Hickey MM, Richardson T, Wang T, Mosqueira M, Arguiri E, Yu H, Yu QC, Solomides CC, Morrisey EE, Khurana TS, Christofidou-Solomidou M, Simon MC. The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. J Clin Invest 2010; 120:827-39. [PMID: 20197624 DOI: 10.1172/jci36362] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/14/2009] [Indexed: 12/22/2022] Open
Abstract
Mutation of the von Hippel-Lindau (VHL) tumor suppressor protein at codon 200 (R200W) is associated with a disease known as Chuvash polycythemia. In addition to polycythemia, Chuvash patients have pulmonary hypertension and increased respiratory rates, although the pathophysiological basis of these symptoms is unclear. Here we sought to address this issue by studying mice homozygous for the R200W Vhl mutation (VhlR/R mice) as a model for Chuvash disease. These mice developed pulmonary hypertension independently of polycythemia and enhanced normoxic respiration similar to Chuvash patients, further validating VhlR/R mice as a model for Chuvash disease. Lungs from VhlR/R mice exhibited pulmonary vascular remodeling, hemorrhage, edema, and macrophage infiltration, and lungs from older mice also exhibited fibrosis. HIF-2alpha activity was increased in lungs from VhlR/R mice, and heterozygosity for Hif2a, but not Hif1a, genetically suppressed both the polycythemia and pulmonary hypertension in the VhlR/R mice. Furthermore, Hif2a heterozygosity resulted in partial protection against vascular remodeling, hemorrhage, and edema, but not inflammation, in VhlR/R lungs, suggesting a selective role for HIF-2alpha in the pulmonary pathology and thereby providing insight into the mechanisms underlying pulmonary hypertension. These findings strongly support a dependency of the Chuvash phenotype on HIF-2alpha and suggest potential treatments for Chuvash patients.
Collapse
Affiliation(s)
- Michele M Hickey
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Erythropoietin-induced upregulation of endothelial nitric oxide synthase but not vascular endothelial growth factor prevents musculocutaneous tissue from ischemic damage. J Transl Med 2010; 90:40-51. [PMID: 19901910 DOI: 10.1038/labinvest.2009.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent findings have attested the protective effects of erythropoietin (EPO) in ischemically challenged organs. We therefore aimed at elaborating the underlying mechanism of EPO-mediated protection in musculocutaneous tissue undergoing persistent ischemia after acute injury. Mice were assigned to five experimental groups equipped with a randomly perfused flap fixed in a dorsal skinfold chamber, whereas the sixth group did not undergo flap preparation: EPO, L-Name, EPO and L-Name, EPO and bevacizumab, untreated flap, and nonischemic chamber (control). Intravital fluorescence microscopic analysis of microhemodynamics, apoptotic cell death, macromolecular leakage and angiogenesis was carried out over a 10-day period. Further, immunohistochemical analysis was used to study the protein expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF). Increased expression of eNOS in EPO-administered mice correlated with significant arteriolar dilation and thus increased blood flow resulting in a maintained functional capillary density (FCD) at day 10. In addition, EPO induced a VEGF upregulation, which was associated with newly formed capillaries. In addition, EPO was able to reduce ischemia-induced apoptotic cell death and finally to significantly reduce flap necrosis. In contrast, coadministration of L-Name abolished EPO-mediated tissue protection by abrogating the dilatory effect resulting in reduced FCD and tissue survival, without counteracting angiogenesis and apoptotic cell death, whereas additional administration of bevacizumab did not influence the beneficial effect of EPO on flap survival despite abrogating angiogenesis. Macromolecular leakage was found to be increased in all treatment groups. This study shows that EPO administration prevents musculocutaneous tissue from ischemic necrosis as a consequence of an eNOS-dependent arteriolar hyperperfusion maintaining capillary perfusion, thus representing a promising approach to pharmacologically protect ischemically challenged tissue.
Collapse
|
16
|
Jyothula S, Safdar Z. Update on pulmonary hypertension complicating chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2009; 4:351-63. [PMID: 19802350 PMCID: PMC2754087 DOI: 10.2147/copd.s5102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Indexed: 12/04/2022] Open
Abstract
Pulmonary hypertension (PH) is the hemodynamic manifestation of various pathological processes that result in elevated pulmonary artery pressures (PAP). The National Institutes of Health Registry defined pulmonary arterial hypertension as the mean PAP of more than 25 mm Hg with a pulmonary capillary wedge pressure or left atrial pressure equal to or less than 15 mm Hg. This definition remains the currently accepted definition of PH that is used to define PH related to multiple clinical conditions including chronic obstructive pulmonary disease (COPD). The estimated US prevalence of COPD by the National Health Survey in 2002 in people aged >25 was 12.1 million. There is a lack of large population-based studies in COPD to document the correct prevalence of PH and outcome. The major cause of PH in COPD is hypoxemia leading to vascular remodeling. Echocardiogram is the initial screening tool of choice for PH. This simple noninvasive test can provide an estimate of right ventricular systolic and right atrial pressures. Right heart catheterization remains the gold standard to diagnose PH. It provides accurate measurement of mean PAP and pulmonary capillary wedge pressure. Oxygen therapy remains the cornerstone therapeutic for hypoxemia in COPD patients. Anecdotal reports suggest utility of PDE5-inhibitors and prostacyclin to treat COPD-related PH. Large randomized clinical trials are needed before the use of these drugs can be recommended.
Collapse
Affiliation(s)
- Soma Jyothula
- Pulmonary-Critical Care Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
17
|
Ünal A, Sipahioglu M, Oguz F, Kaya M, Kucuk H, Tokgoz B, Buyukoglan H, Oymak O, Utas C. Pulmonary Hypertension in Peritoneal Dialysis Patients: Prevalence and Risk Factors. Perit Dial Int 2008. [DOI: 10.1177/089686080902900214] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim To investigate the prevalence of pulmonary arterial hypertension (PAH) and the possible contributing factors for PAH in patients receiving regular continuous ambulatory peritoneal dialysis (CAPD). Patients and Methods The study included 135 CAPD patients and 15 disease-free controls. Patients that had chronic obstructive pulmonary disease, severe mitral or aortic valve disease, connective tissue disease, history of pulmonary embolism, left ventricular ejection fraction <50%, or chest wall or parenchymal lung disease were excluded. All patients and controls were examined using echocardiography and bioelectrical impedance analysis. PAH was defined as systolic pulmonary artery pressure (PAP) >35 mmHg at rest. Results Mean systolic PAP was higher in the CAPD patients than in the controls (19.66 ± 11.66 vs 14.27 ± 4.55 mmHg, p = 0.001). PAH was detected in 17 (12.6%) of the 135 CAPD patients. Mean systolic PAP was significantly higher in patients with PAH than in those without PAH (42.00 ± 9.13 vs 16.44 ± 7.83 mmHg, p = 0.001). Serum albumin level and ejection fraction were lower in patients with PAH than in those without PAH ( p = 0.001 and 0.003 respectively). The ratio of extracellular water/total body water (ECW/TBW), which can reflect hydration status, was significantly higher in patients with PAH than in those without PAH ( p = 0.008). In the PD group, no patients were hypovolemic; 51 (37.8%) of the 135 PD patients were hypervolemic and 84 (62.2%) were normovolemic. Only 3 of the 17 patients with PAH were normovolemic; the rest were hypervolemic. Mean systolic PAP was significantly higher in hypervolemic PD patients (24.57 ± 14.19 mmHg) than in normovolemic PD patients (16.68 ± 7.61 mmHg) ( p = 0.001). PAP correlated with ECW/TBW ( r=0.317, p = 0.001) and left ventricular mass index (LVMI; r=0.286, p = 0.001). On the other hand, it inversely correlated with serum albumin level ( r = –0.281, p = 0.001), hemoglobin level ( r = –0.165, p = 0.044), and ejection fraction ( r = –0.263, p = 0.001). Serum albumin level, ECW/TBW, and LVMI were found in multivariate analysis to be independent risk factors for PAP. Conclusion PAH is a frequent cardiovascular complication in CAPD patients. Serum albumin level, hypervolemia, and LVMI are major risk factors for PAH. Therefore, strategies for treatment of hypervolemia, left ventricular hypertrophy, and hypoalbuminemia should be enhanced to prevent the development of PAH in CAPD patients.
Collapse
Affiliation(s)
- Aydin Ünal
- Departments of Nephrology, Erciyes University, Kayseri, Turkey
| | | | - Fatih Oguz
- Cardiology, Erciyes University, Kayseri, Turkey
| | - Mehmet Kaya
- Cardiology, Erciyes University, Kayseri, Turkey
| | - Hamit Kucuk
- Internal Medicine, Erciyes University, Kayseri, Turkey
| | - Bulent Tokgoz
- Departments of Nephrology, Erciyes University, Kayseri, Turkey
| | | | - Oktay Oymak
- Departments of Nephrology, Erciyes University, Kayseri, Turkey
| | - Cengiz Utas
- Departments of Nephrology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
18
|
Villafuerte FC, Cárdenas-Alayza R, Macarlupú JL, Monge-C C, León-Velarde F. Ventilatory response to acute hypoxia in transgenic mice over-expressing erythropoietin: Effect of acclimation to 3-week hypobaric hypoxia. Respir Physiol Neurobiol 2007; 158:243-50. [PMID: 17693141 DOI: 10.1016/j.resp.2007.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 11/23/2022]
Abstract
We used transgenic mice constitutively over-expressing erythropoietin ("tg6" mice) and wild-type (wt) mice to investigate whether the high hematocrit (hct), consequence of Epo over-expression affected: (1) the normoxic ventilation (V (E)) and the acute hypoxic ventilatory response (HVR) and decline (HVD), (2) the increase in ventilation observed after chronic exposure to hypobaric hypoxia (430mmHg for 21 days), (3) the respiratory "blunting", and (4) the erythrocythemic response induced by chronic hypoxia exposure. V (E) was found to be similar in tg6 and wt mice in normoxia (FIO2=0.21). Post-acclimation V (E) was significantly elevated in every time point in wt mice at FIO2=0.10 when compared to pre-acclimation values. In contrast, tg6 mice exhibited a non-significant increase in V (E) throughout acute hypoxia exposure. Changes in V (E) are associated with adjustments in tidal volume (V(T)). HVR and HVD were independent of EE in tg6 and wt mice before chornic hypoxia exposure. HVR was significantly greater in wt than in tg6 mice after chronic hypoxia. After acclimation, HVD decreased in tg6 mice. Chronic hypoxia exposure caused hct to increase significantly in wt mice, while only a marginal increase occurred in the tg6 group. Although pre-existent EE does not appear to have an effect on HVR, the observation of alterations on V(T) suggests that it may contribute to time-dependent changes in ventilation and in the acute HVR during exposure to chronic hypoxia. In addition, our results suggest that EE may lead to an early "blunting" of the ventilatory response.
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Transporte de Oxígeno, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | | | | | |
Collapse
|
19
|
Buemi M, Senatore M, Gallo G, Crascì E, Campo S, Sturiale A, Coppolino G, Bolignano D, Frisina N. Pulmonary Hypertension and Erythropoietin. Kidney Blood Press Res 2007; 30:248-52. [DOI: 10.1159/000104443] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Yeung HM, Kravtsov GM, Ng KM, Wong TM, Fung ML. Chronic intermittent hypoxia alters Ca2+ handling in rat cardiomyocytes by augmented Na+/Ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion. Am J Physiol Cell Physiol 2007; 292:C2046-56. [PMID: 17267548 DOI: 10.1152/ajpcell.00458.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined Ca(2+) handling mechanisms involved in cardioprotection induced by chronic intermittent hypoxia (CIH) against ischemia-reperfusion (I/R) injury. Adult male Sprague-Dawley rats were exposed to 10% inspired O(2) continuously for 6 h daily from 3, 7, and 14 days. In isolated perfused hearts subjected to I/R, CIH-induced cardioprotection was most significant in the 7-day group with less infarct size and lactate dehydrogenase release, compared with the normoxic group. The I/R-induced alterations in diastolic Ca(2+) level, amplitude, time-to-peak, and the decay time of both electrically and caffeine-induced Ca(2+) transients measured by spectrofluorometry in isolated ventricular myocytes of the 7-day CIH group were less than that of the normoxic group, suggesting an involvement of altered Ca(2+) handling of the sarcoplasmic reticulum (SR) and sarcolemma. We further determined the protein expression and activity of (45)Ca(2+) flux of SR-Ca(2+)-ATPase, ryanodine receptor (RyR) and sarcolemmal Na(+)/Ca(2+) exchange (NCX) in ventricular myocytes from the CIH and normoxic groups before and during I/R. There were no changes in expression levels of the Ca(2+)-handling proteins but significant increases in the RyR and NCX activities were remarkable during I/R in the CIH but not the normoxic group. The augmented RyR and NCX activities were abolished, respectively, by PKA inhibitor (0.5 microM KT5720 or 0.5 microM PKI(14-22)) and PKC inhibitor (5 microM chelerythrine chloride or 0.2 microM calphostin C) but not by Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN-93 (1 microM). Thus, CIH confers cardioprotection against I/R injury in rat cardiomyocytes by altered Ca(2+) handling with augmented RyR and NCX activities via protein kinase activation.
Collapse
Affiliation(s)
- Hang Mee Yeung
- Dept. of Physiology, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
21
|
Heinicke K, Baum O, Ogunshola OO, Vogel J, Stallmach T, Wolfer DP, Keller S, Weber K, Wagner PD, Gassmann M, Djonov V. Excessive erythrocytosis in adult mice overexpressing erythropoietin leads to hepatic, renal, neuronal, and muscular degeneration. Am J Physiol Regul Integr Comp Physiol 2006; 291:R947-56. [PMID: 16690772 DOI: 10.1152/ajpregu.00152.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the consequences of inborn excessive erythrocytosis, we made use of our transgenic mouse line (tg6) that constitutively overexpresses erythropoietin (Epo) in a hypoxia-independent manner, thereby reaching hematocrit levels of up to 0.89. We detected expression of human Epo in the brain and, to a lesser extent, in the lung but not in the heart, kidney, or liver of tg6 mice. Although no acute cardiovascular complications are observed, tg6 animals have a reduced lifespan. Decreased swim performance was observed in 5-mo-old tg6 mice. At about 7 mo, several tg6 animals developed spastic contractions of the hindlimbs followed by paralysis. Morphological analysis by light and electron microscopy showed degenerative processes in liver and kidney characterized by increased vascular permeability, chronic progressive inflammation, hemosiderin deposition, and general vasodilatation. Moreover, most of the animals showed severe nerve fiber degeneration of the sciatic nerve, decreased number of neuromuscular junctions, and degeneration of skeletal muscle fibers. Most probably, the developing demyelinating neuropathy resulted in muscular degeneration demonstrated in the extensor digitorum longus muscle. Taken together, chronically increased Epo levels inducing excessive erythrocytosis leads to multiple organ degeneration and reduced life expectancy. This model allows investigation of the impact of excessive erythrocytosis in individuals suffering from polycythemia vera, chronic mountain sickness, or in subjects tempted to abuse Epo by means of gene doping.
Collapse
Affiliation(s)
- Katja Heinicke
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tuchscherer HA, Vanderpool RR, Chesler NC. Pulmonary vascular remodeling in isolated mouse lungs: effects on pulsatile pressure-flow relationships. J Biomech 2006; 40:993-1001. [PMID: 16756983 DOI: 10.1016/j.jbiomech.2006.03.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 03/15/2006] [Indexed: 11/25/2022]
Abstract
Chronic hypoxia causes pulmonary vasoconstriction and pulmonary hypertension, which lead to pulmonary vascular remodeling and right ventricular hypertrophy. To determine the effects of hypoxia-induced pulmonary vascular remodeling on pulmonary vascular impedance, which is the right ventricular afterload, we exposed C57BL6 mice to 0 (control), 10 and 15 days of hypobaric hypoxia (n=6, each) and measured pulmonary vascular resistance (PVR) and impedance ex vivo. Chronic hypoxia led to increased pulmonary artery pressures for flow rates between 1 and 5ml/min (P<0.01), and increased PVR, 0-Hz pulmonary vascular impedance and the index of wave reflection (P<0.05) as well as a more negative impedance phase angle for low frequencies (P<0.05). The increases in resistance and 0-Hz impedance correlated with increased muscularization of small arterioles measured with quantitative immunohistochemistry (P<0.01). The increases in wave reflection and decreases in phase angle are likely due to increased proximal artery stiffness. These results confirm that chronic hypoxia causes significant changes in steady and pulsatile pressure-flow relationships in mouse lungs and does so via structural remodeling. They also provide important baseline data for experiments with genetically engineered mice, with which molecular mechanisms of pulmonary vascular remodeling can be investigated.
Collapse
Affiliation(s)
- Holly A Tuchscherer
- Department of Biomedical Engineering, University of Wisconsin-Madison, 2146 Engineering Centers Building, 1550 Engineering Drive, Madison, WI 53706-1609, USA
| | | | | |
Collapse
|
23
|
Tuchscherer HA, Webster EB, Chesler NC. Pulmonary Vascular Resistance and Impedance in Isolated Mouse Lungs: Effects of Pulmonary Emboli. Ann Biomed Eng 2006; 34:660-8. [PMID: 16568350 DOI: 10.1007/s10439-005-9050-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 10/24/2005] [Indexed: 11/28/2022]
Abstract
To study pulsatile pressure-flow rate relationships in the intact pulmonary vascular network of mice, we developed a protocol for measuring pulmonary vascular resistance and impedance in isolated, ventilated, and perfused mouse lungs. We used pulmonary emboli to validate the effect of vascular obstruction on resistance and impedance. Main pulmonary artery and left atrial pressures and pulmonary vascular flow rate were measured under steady and pulsatile conditions in the lungs of C57BL/6J mice (n = 6) before and after two infusions with 25 microm-diameter microspheres (one million per infusion). After the first and second embolizations, pulmonary artery pressures increased approximately two-fold and three and a half-fold, respectively, compared to baseline, at a steady flow rate of 1 ml/min (P < 0.05). Pulmonary vascular resistance and 0 Hz impedance also increased after the first and second embolizations for all flow rates tested (P < 0.05). Frequency-dependent features of the pulmonary vascular impedance spectrum were suggestive of shifts in the major pulmonary vascular reflection sites with embolization. Our results demonstrate that pulmonary artery pressure, resistance, and impedance magnitude measured in this isolated lung setup changed in ways consistent with in vivo studies in larger animals and humans and demonstrate the usefulness of the isolated, ventilated, and perfused mouse lung for investigating steady and pulsatile pressure-flow rate relationships.
Collapse
Affiliation(s)
- Holly A Tuchscherer
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706-1609, USA
| | | | | |
Collapse
|
24
|
Satoh K, Kagaya Y, Nakano M, Ito Y, Ohta J, Tada H, Karibe A, Minegishi N, Suzuki N, Yamamoto M, Ono M, Watanabe J, Shirato K, Ishii N, Sugamura K, Shimokawa H. Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation 2006; 113:1442-50. [PMID: 16534010 DOI: 10.1161/circulationaha.105.583732] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies have suggested that endogenous erythropoietin (Epo) plays an important role in the mobilization of bone marrow-derived endothelial progenitor cells (EPCs). However, it remains to be elucidated whether the Epo system exerts protective effects on pulmonary hypertension (PH), a fatal disorder encountered in cardiovascular medicine. METHODS AND RESULTS A mouse model of hypoxia-induced PH was used for study. We evaluated right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling in mice lacking the Epo receptor (EpoR) in nonerythroid lineages (EpoR(-/-) rescued mice) after 3 weeks of exposure to hypoxia. Those mice lack EpoR in the cardiovascular system but not in the hematopoietic system. The development of PH and pulmonary vascular remodeling were accelerated in EpoR(-/-) rescued mice compared with wild-type mice. The mobilization of EPCs and their recruitment to the pulmonary endothelium were significantly impaired in EpoR(-/-) rescued mice. By contrast, reconstitution of the bone marrow with wild-type bone marrow cells ameliorated PH in the EpoR(-/-) rescued mice. Hypoxia enhanced the expression of EpoR on pulmonary endothelial cells in wild-type but not EpoR(-/-) rescued mice. Finally, hypoxia activated endothelial nitric oxide synthase in the lungs in wild-type mice but not in EpoR(-/-) rescued mice. CONCLUSIONS These results indicate that the endogenous Epo/EpoR system plays an important role in the recruitment of EPCs and prevents the development of PH during chronic hypoxia in mice in vivo, suggesting the therapeutic importance of the system for the treatment of PH.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Cell Movement
- Cells, Cultured/cytology
- Chronic Disease
- Endothelial Cells/pathology
- Endothelium/pathology
- Endothelium, Vascular/pathology
- Enzyme Activation
- Erythroid Precursor Cells/metabolism
- Erythropoietin/physiology
- GATA1 Transcription Factor/physiology
- Heart Failure/etiology
- Hematopoietic Stem Cells/physiology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia/complications
- Hypoxia/physiopathology
- Lung/blood supply
- Lung/pathology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/pathology
- Nitric Oxide Synthase Type III/metabolism
- Organ Specificity
- Radiation Chimera
- Receptor, TIE-2/genetics
- Receptors, Erythropoietin/deficiency
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/physiology
- Systole
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/physiopathology
Collapse
Affiliation(s)
- Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Littler CM, Wehling CA, Wick MJ, Fagan KA, Cool CD, Messing RO, Dempsey EC. Divergent contractile and structural responses of the murine PKC-epsilon null pulmonary circulation to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1083-93. [PMID: 16085670 DOI: 10.1152/ajplung.00472.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Loss of PKC-epsilon limits the magnitude of acute hypoxic pulmonary vasoconstriction (HPV) in the mouse. Therefore, we hypothesized that loss of PKC-epsilon would decrease the contractile and/or structural response of the murine pulmonary circulation to chronic hypoxia (Hx). However, the pattern of lung vascular responses to chronic Hx may or may not be predicted by the acute HPV response. Adult PKC-epsilon wild-type (PKC-epsilon(+/+)), heterozygous null, and homozygous null (PKC-epsilon(-/-)) mice were exposed to normoxia or Hx for 5 wk. PKC-epsilon(-/-) mice actually had a greater increase in right ventricular (RV) systolic pressure, RV mass, and hematocrit in response to chronic Hx than PKC-epsilon(+/+) mice. In contrast to the augmented PA pressure and RV hypertrophy, pulmonary vascular remodeling was increased less than expected (i.e., equal to PKC-epsilon(+/+) mice) in both the proximal and distal PKC-epsilon(-/-) pulmonary vasculature. The contribution of increased vascular tone to this pulmonary hypertension (PHTN) was assessed by measuring the acute vasodilator response to nitric oxide (NO). Acute inhalation of NO reversed the increased PA pressure in hypoxic PKC-epsilon(-/-) mice, implying that the exaggerated PHTN may be due to a relative deficiency in nitric oxide synthase (NOS). Despite the higher PA pressure, chronic Hx stimulated less of an increase in lung endothelial (e) and inducible (i) NOS expression in PKC-epsilon(-/-) than PKC-epsilon(+/+) mice. In contrast, expression of nNOS in PKC-epsilon(+/+) mice decreased in response to chronic Hx, while lung levels in PKC-epsilon(-/-) mice remained unchanged. In summary, loss of PKC-epsilon results in increased vascular tone, but not pulmonary vascular remodeling in response to chronic Hx. Blunting of Hx-induced eNOS and iNOS expression may contribute to the increased vascular tone. PKC-epsilon appears to be an important signaling intermediate in the hypoxic regulation of each NOS isoform.
Collapse
Affiliation(s)
- C M Littler
- Cardiovascular Pulmonary Research Laboratory, B-133, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bradley TD, Miller YE, Martinez FJ, Angus DC, Macnee W, Abraham E. Interstitial Lung Disease, Lung Cancer, Lung Transplantation, Pulmonary Vascular Disorders, and Sleep-disordered Breathing inAJRCCMin 2004. Am J Respir Crit Care Med 2005; 171:675-85. [PMID: 15790865 DOI: 10.1164/rccm.2412008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- T Douglas Bradley
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Spöhr F, Cornelissen AJM, Busch C, Gebhard MM, Motsch J, Martin EO, Weimann J. Role of endogenous nitric oxide in endotoxin-induced alteration of hypoxic pulmonary vasoconstriction in mice. Am J Physiol Heart Circ Physiol 2005; 289:H823-31. [PMID: 15778287 DOI: 10.1152/ajpheart.00605.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary vasoconstriction in response to alveolar hypoxia (HPV) is frequently impaired in patients with sepsis or acute respiratory distress syndrome or in animal models of endotoxemia. Pulmonary vasodilation due to overproduction of nitric oxide (NO) by NO synthase 2 (NOS2) may be responsible for this impaired HPV after administration of endotoxin (LPS). We investigated the effects of acute nonspecific (N(G)-nitro-L-arginine methyl ester, L-NAME) and NOS2-specific [L-N6-(1-iminoethyl)lysine, L-NIL] NOS inhibition and congenital deficiency of NOS2 on impaired HPV during endotoxemia. The pulmonary vasoconstrictor response and pulmonary vascular pressure-flow (P-Q) relationship during normoxia and hypoxia were studied in isolated, perfused, and ventilated lungs from LPS-pretreated and untreated wild-type and NOS2-deficient mice with and without L-NAME or L-NIL added to the perfusate. Compared with lungs from untreated mice, lungs from LPS-challenged wild-type mice constricted less in response to hypoxia (69 +/- 17 vs. 3 +/- 7%, respectively, P < 0.001). Perfusion with L-NAME or L-NIL restored this blunted HPV response only in part. In contrast, LPS administration did not impair the vasoconstrictor response to hypoxia in NOS2-deficient mice. Analysis of the pulmonary vascular P-Q relationship suggested that the HPV response may consist of different components that are specifically NOS isoform modulated in untreated and LPS-treated mice. These results demonstrate in a murine model of endotoxemia that NOS2-derived NO production is critical for LPS-mediated development of impaired HPV. Furthermore, impaired HPV during endotoxemia may be at least in part mediated by mechanisms other than simply pulmonary vasodilation by NOS2-derived NO overproduction.
Collapse
Affiliation(s)
- Fabian Spöhr
- Department of Anaesthesiology, Ruprecht-Karls-University, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Jelkmann W, Wagner K. Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol 2004; 83:673-86. [PMID: 15322761 DOI: 10.1007/s00277-004-0911-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 06/17/2004] [Indexed: 02/07/2023]
Abstract
The primary function of the glycoprotein hormone erythropoietin (Epo) is to promote red cell production by inhibiting apoptosis of erythrocytic progenitors in hemopoietic tissues. However, functional Epo receptors (Epo-R) have recently been demonstrated in various nonhemopoietic tissues indicating that Epo is a more pleiotropic viability and growth factor. Herein, in vitro and in vivo effects of Epo in the brain and the cardiovascular system are reviewed. In addition, the therapeutic impact of Epo in oncology is considered, including the question of whether Epo might promote tumor growth. Convincing evidence is available that Epo acts as a neurotrophic and neuroprotective factor in the brain. Epo prevents neuronal cells from hypoxia-induced and glutamate-induced cell death. Epo-R is expressed by neurons and glia cells in specific regions of the brain. Epo supports the survival of neurons in the ischemic brain. The neuroprotective potential of Epo has already been confirmed in a clinical trial on patients with acute stroke. With respect to the vasculature, Epo acts on both endothelial and smooth muscle cells. Epo promotes angiogenesis and stimulates the production of endothelin and other vasoactive mediators. In addition, Epo-R is expressed by cardiomyocytes. The role of Epo as a myocardial protectant is at the focus of present research. Epo therapy in tumor patients is practiced primarily to maintain the hemoglobin concentration above the transfusion trigger and to reduce fatigue. In addition, increased tumor oxygenation may improve the efficacy of chemotherapy and radiotherapy. However, tumor cells often express Epo-R. Therefore, careful studies are required to fully exclude that recombinant human Epo (rHuEpo) promotes tumor growth.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.
| | | |
Collapse
|
29
|
Taylor AE. Effect of Excessive Erythrocytosis on Pulmonary Vascular Smooth Muscle Mass. Am J Respir Crit Care Med 2004; 169:782-3. [PMID: 15044220 DOI: 10.1164/rccm.2401011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|