1
|
Tan YH, Wang KCW, Chin IL, Sanderson RW, Li J, Kennedy BF, Noble PB, Choi YS. Stiffness Mediated-Mechanosensation of Airway Smooth Muscle Cells on Linear Stiffness Gradient Hydrogels. Adv Healthc Mater 2024; 13:e2304254. [PMID: 38593989 DOI: 10.1002/adhm.202304254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
In obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), the extracellular matrix (ECM) protein amount and composition of the airway smooth muscle (ASM) is often remodelled, likely altering tissue stiffness. The underlying mechanism of how human ASM cell (hASMC) mechanosenses the aberrant microenvironment is not well understood. Physiological stiffnesses of the ASM were measured by uniaxial compression tester using porcine ASM layers under 0, 5 and 10% longitudinal stretch above in situ length. Linear stiffness gradient hydrogels (230 kPa range) were fabricated and functionalized with ECM proteins, collagen I (ColI), fibronectin (Fn) and laminin (Ln), to recapitulate the above-measured range of stiffnesses. Overall, hASMC mechanosensation exhibited a clear correlation with the underlying hydrogel stiffness. Cell size, nuclear size and contractile marker alpha-smooth muscle actin (αSMA) expression showed a strong correlation to substrate stiffness. Mechanosensation, assessed by Lamin-A intensity and nuc/cyto YAP, exhibited stiffness-mediated behaviour only on ColI and Fn-coated hydrogels. Inhibition studies using blebbistatin or Y27632 attenuated most mechanotransduction-derived cell morphological responses, αSMA and Lamin-A expression and nuc/cyto YAP (blebbistatin only). This study highlights the interplay and complexities between stiffness and ECM protein type on hASMC mechanosensation, relevant to airway remodelling in obstructive airway diseases.
Collapse
Affiliation(s)
- Yong Hwee Tan
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Torun, 87-100, Poland
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
3
|
Zhang W, Wu Y, J Gunst S. Membrane adhesion junctions regulate airway smooth muscle phenotype and function. Physiol Rev 2023; 103:2321-2347. [PMID: 36796098 PMCID: PMC10243546 DOI: 10.1152/physrev.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
4
|
Nizamoglu M, Burgess JK. Current possibilities and future opportunities provided by three-dimensional lung ECM-derived hydrogels. Front Pharmacol 2023; 14:1154193. [PMID: 36969853 PMCID: PMC10034771 DOI: 10.3389/fphar.2023.1154193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Disruption of the complex interplay between cells and extracellular matrix (ECM), the scaffold that provides support, biochemical and biomechanical cues, is emerging as a key element underlying lung diseases. We readily acknowledge that the lung is a flexible, relatively soft tissue that is three dimensional (3D) in structure, hence a need exists to develop in vitro model systems that reflect these properties. Lung ECM-derived hydrogels have recently emerged as a model system that mimics native lung physiology; they contain most of the plethora of biochemical components in native lung, as well as reflecting the biomechanics of native tissue. Research investigating the contribution of cell:matrix interactions to acute and chronic lung diseases has begun adopting these models but has yet to harness their full potential. This perspective article provides insight about the latest advances in the development, modification, characterization and utilization of lung ECM-derived hydrogels. We highlight some opportunities for expanding research incorporating lung ECM-derived hydrogels and potential improvements for the current approaches. Expanding the capabilities of investigations using lung ECM-derived hydrogels is positioned at a cross roads of disciplines, the path to new and innovative strategies for unravelling disease underlying mechanisms will benefit greatly from interdisciplinary approaches. While challenges need to be addressed before the maximum potential can be unlocked, with the rapid pace at which this field is evolving, we are close to a future where faster, more efficient and safer drug development targeting the disrupted 3D microenvironment is possible using lung ECM-derived hydrogels.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, Netherlands
- *Correspondence: Janette K. Burgess,
| |
Collapse
|
5
|
Ba MA, Aiyuk A, Hernández K, Evasovic JM, Wuebbles RD, Burkin DJ, Singer CA. Transgenic overexpression of α7 integrin in smooth muscle attenuates allergen-induced airway inflammation in a murine model of asthma. FASEB Bioadv 2022; 4:724-740. [PMID: 36349295 PMCID: PMC9635010 DOI: 10.1096/fba.2022-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
Asthma is a chronic inflammatory disorder of the lower airways characterized by modulation of airway smooth muscle (ASM) function. Infiltration of smooth muscle by inflammatory mediators is partially regulated by transmembrane integrins and the major smooth muscle laminin receptor α7β1 integrin plays a critical role in the maintenance of ASM phenotype. The goal of the current study was to investigate the role of α7 integrin in asthma using smooth muscle-specific α7 integrin transgenic mice (TgSM-Itgα7) using both acute and chronic OVA sensitization and challenge protocols that mimic mild to severe asthmatic phenotypes. Transgenic over-expression of the α7 integrin in smooth muscle resulted in a significant decrease in airway resistance relative to controls, reduced the total number of inflammatory cells and substantially inhibited the production of crucial Th2 and Th17 cytokines in airways. This was accompanied by decreased secretion of various inflammatory chemokines such as eotaxin/CCL11, KC/CXCL3, MCP-1/CCL2, and MIP-1β/CCL4. Additionally, α7 integrin overexpression significantly decreased ERK1/2 phosphorylation in the lungs of TgSM-Itgα7 mice and affected proliferative, contractile, and inflammatory downstream effectors of ERK1/2 that drive smooth muscle phenotype in the lung. Taken together, these results support the hypothesis that enhanced expression of α7 integrin in vivo inhibits allergic inflammation and airway resistance. Moreover, we identify ERK1/2 as a potential target by which α7 integrin signals to regulate airway inflammation. We conclude that identification of therapeutics targeting an increase in smooth muscle α7 integrin expression could serve as a potential novel treatment for asthma.
Collapse
Affiliation(s)
- Mariam A. Ba
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Annemarie Aiyuk
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Karla Hernández
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Jon M. Evasovic
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Ryan D. Wuebbles
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Dean J. Burkin
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Cherie A. Singer
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| |
Collapse
|
6
|
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy 2022; 15:595-610. [PMID: 35592385 PMCID: PMC9112045 DOI: 10.2147/jaa.s267222] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Airway remodeling is a complex clinical feature of asthma that involves long-term disruption and modification of airway architecture, which contributes significantly to airway hyperresponsiveness (AHR) and lung function decline. It is characterized by thickening of the airway smooth muscle layer, deposition of a matrix below the airway epithelium, resulting in subepithelial fibrosis, changes within the airway epithelium, leading to disruption of the barrier, and excessive mucous production and angiogenesis within the airway wall. Airway remodeling contributes to stiffer and less compliant airways in asthma and leads to persistent, irreversible airflow obstruction. Current asthma treatments aim to reduce airway inflammation and exacerbations but none are targeted towards airway remodeling. Inhibiting the development of airway remodeling or reversing established remodeling has the potential to dramatically improve symptoms and disease burden in asthmatic patients. Integrins are a family of transmembrane heterodimeric proteins that serve as the primary receptors for extracellular matrix (ECM) components, mediating cell-cell and cell-ECM interactions to initiate intracellular signaling cascades. Cells present within the lungs, including structural and inflammatory cells, express a wide and varying range of integrin heterodimer combinations and permutations. Integrins are emerging as an important regulator of inflammation, repair, remodeling, and fibrosis in the lung, particularly in chronic lung diseases such as asthma. Here, we provide a comprehensive summary of the current state of knowledge on integrins in the asthmatic airway and how these integrins promote the remodeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiliation(s)
- Chitra Joseph
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Sedlář A, Trávníčková M, Bojarová P, Vlachová M, Slámová K, Křen V, Bačáková L. Interaction between Galectin-3 and Integrins Mediates Cell-Matrix Adhesion in Endothelial Cells and Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22105144. [PMID: 34067978 PMCID: PMC8152275 DOI: 10.3390/ijms22105144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins-namely α5β1, αVβ3, and αVβ1 integrins.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
- Department of Physiology, Faculty of Science, Charles University, Viničná 7, CZ 128 44 Prague 2, Czech Republic
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná, CZ 272 01 Kladno, Czech Republic
- Correspondence: (P.B.); (L.B.); Tel.: +420-296442360 (P.B.); +420-296443743 (L.B.)
| | - Miluše Vlachová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
- Correspondence: (P.B.); (L.B.); Tel.: +420-296442360 (P.B.); +420-296443743 (L.B.)
| |
Collapse
|
8
|
Abstract
Asthma is a chronic lower respiratory disease that is very common worldwide, and its incidence is increasing year by year. Since the 1970s, asthma has become widespread, with approximately 300 million people affected worldwide and about 250,000 people have lost their lives. Asthma seriously affects people's physical and mental health, resulting in reduced learning efficiency, limited physical activities, and decreased quality of life. Therefore, raising awareness of the risk of asthma and how to effectively treat asthma have become important targets for the prevention and management of asthma in recent years. For patients with asthma, exercise training is a widely accepted adjunct to drug-based and non-pharmacological treatment. It has been recommended abroad that exercise prescriptions are an important part of asthma management.
Collapse
Affiliation(s)
- Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Prabhala P, Wright DB, Robbe P, Bitter C, Pera T, Ten Hacken NHT, van den Berge M, Timens W, Meurs H, Dekkers BGJ. Laminin α4 contributes to airway remodeling and inflammation in asthma. Am J Physiol Lung Cell Mol Physiol 2019; 317:L768-L777. [PMID: 31553662 DOI: 10.1152/ajplung.00222.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Airway inflammation and remodeling are characteristic features of asthma, with both contributing to airway hyperresponsiveness (AHR) and lung function limitation. Airway smooth muscle (ASM) accumulation and extracellular matrix deposition are characteristic features of airway remodeling, which may contribute to persistent AHR. Laminins containing the α2-chain contribute to characteristics of ASM remodeling in vitro and AHR in animal models of asthma. The role of other laminin chains, including the laminin α4 and α5 chains, which contribute to leukocyte migration in other diseases, is currently unknown. The aim of the current study was to investigate the role of these laminin chains in ASM function and in AHR, remodeling, and inflammation in asthma. Expression of both laminin α4 and α5 was observed in the human and mouse ASM bundle. In vitro, laminin α4 was found to promote a pro-proliferative, pro-contractile, and pro-fibrotic ASM cell phenotype. In line with this, treatment with laminin α4 and α5 function-blocking antibodies reduced allergen-induced increases in ASM mass in a mouse model of allergen-induced asthma. Moreover, eosinophilic inflammation was reduced by the laminin α4 function-blocking antibody as well. Using airway biopsies from healthy subjects and asthmatic patients, we found inverse correlations between ASM α4-chain expression and lung function and AHR, whereas eosinophil numbers correlated positively with expression of laminin α4 in the ASM bundle. This study, for the first time, indicates a prominent role for laminin α4 in ASM function and in inflammation, AHR, and remodeling in asthma, whereas the role of laminin α5 is more subtle.
Collapse
Affiliation(s)
- Pavan Prabhala
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - David B Wright
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Patricia Robbe
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Catrin Bitter
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Tonio Pera
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nick H T Ten Hacken
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Herman Meurs
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Bart G J Dekkers
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
10
|
Airway smooth muscle cells are insensitive to the anti-proliferative effects of corticosteroids: The novel role of insulin growth factor binding Protein-1 in asthma. Immunobiology 2019; 224:490-496. [PMID: 31133345 DOI: 10.1016/j.imbio.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Airway remodeling in asthma manifests, in part, as enhanced airway smooth muscle (ASM) mass, due to myocyte proliferation. While the anti-proliferative effects of glucocorticoid (GC) were investigated in normal ASM cells (NASMC), little is known about such effects in ASM cells derived from asthma subjects (AASMC). We posit that GC differentially modulates mitogen-induced proliferation of AASMC and NASMC. Cells were cultured, starved, then treated with Epidermal growth factor (EGF) (10 ng/ml) and Platelet-derived growth factor (PDGF) (10 ng/ml) for 24 h and/or fluticasone propionate (FP) (100 nM) added 2 h before. Cell counts and flow cytometry analyses showed that FP failed to decrease the cell number of and DNA synthesis in AASMC irrespective of mitogens used. We also examine the ability of Insulin Growth Factor Binding Protein-1 (IGFBP-1), a steroid-inducible gene that deters cell growth in other cell types, to inhibit proliferation of AASMC where FP failed. We found that FP increased IGFBP1 mRNA and protein levels. Interestingly, the addition of IGFBP1 (1 μg/ml) to FP completely inhibited the proliferation of AASMC irrespective to the mitogens used. Further investigation of different signaling molecules involved in ASM growth and GC receptor functions (Protein kinase B (PKB/AKT), Mitogen-activated protein kinases (MAPKs), Focal Adhesion Kinase (FAK)) showed that IGFBP-1 selectively decreased mitogen-induced p38 phosphorylation in AASMC. Collectively, our results show the insensitivity of AASMC to the anti-proliferative effects of GC, and demonstrate the ability of IGFBP1 to modulate AASMC growth representing, hence, a promising strategy to control ASM growth in subjects with GC insensitive asthma.
Collapse
|
11
|
Gao Y, Wang B, Luo H, Zhang Q, Xu M. RETRACTED: miR-217 represses TGF-β1-induced airway smooth muscle cell proliferation and migration through targeting ZEB1. Biomed Pharmacother 2018; 108:27-35. [PMID: 30212709 DOI: 10.1016/j.biopha.2018.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The journal was alerted to several suspected image similarities within Figures 2C and 3B, between Figure 3B and 5E, and an image in Figure 3A appears to be present in another publication, as detailed here: https://pubpeer.com/publications/F4E8CA0032EF5375E7867504F3FC4A. These findings were confirmed as part of an internal investigation, and in addition, a portion of Figure 2C, ‘Scramble’ group appears to contain image similarities with Figure 5D ‘miR-217 mimic + ZEB1’ group. The journal requested the authors provide explanations and source data relating to these affected figures, but the Authors did not respond to these concerns. The Editor-in-Chief assessed this case and decided to retract the article.
Collapse
Affiliation(s)
- Ying Gao
- Otolaryngology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Shaanxi, China
| | - Botao Wang
- Otolaryngology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Shaanxi, China
| | - Huanan Luo
- Otolaryngology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Shaanxi, China
| | - Qing Zhang
- Otolaryngology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Shaanxi, China
| | - Min Xu
- Otolaryngology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Shaanxi, China.
| |
Collapse
|
12
|
Galior K, Ma VPY, Liu Y, Su H, Baker N, Panettieri RA, Wongtrakool C, Salaita K. Molecular Tension Probes to Investigate the Mechanopharmacology of Single Cells: A Step toward Personalized Mechanomedicine. Adv Healthc Mater 2018; 7:e1800069. [PMID: 29785773 PMCID: PMC6105437 DOI: 10.1002/adhm.201800069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/15/2018] [Indexed: 01/03/2023]
Abstract
Given that dysregulation of mechanics contributes to diseases ranging from cancer metastasis to lung disease, it is important to develop methods for screening the efficacy of drugs that target cellular forces. Here, nanoparticle-based tension sensors are used to quantify the mechanical response of individual cells upon drug treatment. As a proof-of-concept, the activity of bronchodilators is tested on human airway smooth muscle cells derived from seven donors, four of which are asthmatic. It is revealed that airway smooth muscle cells isolated from asthmatic donors exhibit greater traction forces compared to the control donors. Additionally, the mechanical signal is abolished using myosin inhibitors or further enhanced in the presence of inflammatory inducers, such as nicotine. Using the signal generated by the probes, single-cell dose-response measurements are performed to determine the "mechano" effective concentration (mechano-EC50 ) of albuterol, a bronchodilator, which reduces integrin forces by 50%. Mechano-EC50 values for each donor present discrete readings that are differentially enhanced as a function of nicotine treatment. Importantly, donor mechano-EC50 values varied by orders of magnitude, suggesting significant variability in their sensitivity to nicotine and albuterol treatment. To the best of the authors' knowledge, this is the first study harnessing a piconewton tension sensor platform for mechanopharmacology.
Collapse
Affiliation(s)
- Kornelia Galior
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Yang Liu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Hanquan Su
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Nusaiba Baker
- Emory University School of Medicine, Emory University, Atlanta, GA, 30307, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Cherry Wongtrakool
- Emory University School of Medicine, Emory University, Atlanta, GA, 30307, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
13
|
Chu M, Ji J, Cao W, Zhang H, Meng D, Xie B, Xu S. Cyclic peptide *CRRETAWAC* attenuates fibronectin-induced cytokine secretion of human airway smooth muscle cells by inhibiting FAK and p38 MAPK. J Cell Mol Med 2017; 21:2535-2541. [PMID: 28402030 PMCID: PMC5618697 DOI: 10.1111/jcmm.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/24/2017] [Indexed: 12/22/2022] Open
Abstract
α5β1 integrin is highly expressed in airway smooth muscle cells and mediate the adhesion of airway smooth muscle cells to fibronectin to regulate airway remodelling in asthma. This study aimed to investigate the effects of synthetic cyclic peptide *CRRETAWAC* on fibronectin‐induced cytokine secretion of airway smooth muscle cells and the underlying mechanism. Human airway smooth muscle cells were isolated and treated with fibronectin, IL‐13, *CRRETAWAC* peptide, α5β1 integrin‐blocking antibody, FAK inhibitor or p38 MAPK inhibitor. The transcription and secretion of eotaxin‐1 and RANTES were detected by real‐time PCR and ELISA, respectively. The phosphorylation of FAK and MAPKs including p38, ERK1/2 and JNK1/2 was detected by Western blot analysis. The transcription and secretion of eotaxin‐1 and RANTES increased in airway smooth muscle cells cultured in fibronectin‐coated plates. However, α5β1 integrin‐blocking antibody, *CRRETAWAC* peptide, FAK inhibitor or p38 MAPK inhibitor significantly reduced mRNA levels and the secretion of eotaxin‐1 and RANTES in airway smooth muscle cells cultured in fibronectin‐coated plates. In addition, the phosphorylation of FAK and p38 MAPK was significantly increased in airway smooth muscle cells cultured in fibronectin‐coated plates compared to the cells cultured in uncoated plates and was significantly reduced in airway smooth muscle cells treated with *CRRETAWAC* peptide. Fibronectin induces cytokine synthesis and secretion of airway smooth muscle cells. Peptide *CRRETAWAC* antagonizes fibronectin‐induced cytokine synthesis and secretion of airway smooth muscle cells via the inhibition of FAK and p38 MAPK, and is a potential agent for the therapy of asthma.
Collapse
Affiliation(s)
- Mengdi Chu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China.,Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, China
| | - Jiani Ji
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Wenhao Cao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Dan Meng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | | | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
14
|
Moraes JA, Frony AC, Dias AM, Renovato-Martins M, Rodrigues G, Marcinkiewicz C, Assreuy J, Barja-Fidalgo C. Alpha1beta1 and integrin-linked kinase interact and modulate angiotensin II effects in vascular smooth muscle cells. Atherosclerosis 2015; 243:477-85. [PMID: 26520903 DOI: 10.1016/j.atherosclerosis.2015.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/02/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
The effects of angiotensin II (Ang II) on vascular smooth muscle cells (VSMC) are modulated by reactive oxygen species (ROS) and also involve integrin engagement. However, the potential link between alpha1beta1 integrin signaling with NOX system and their combined contribution to Ang II effects on VSMC have not been investigated. We aimed to elucidate the moslecular mechanisms underlying the activation of these two pathways in Ang II effects on VSMC. Ang II-induced VSMC migration (2-fold increase) and proliferation (2.5-fold increase) is modulated by alpha1beta1 integrin, being inhibited by obtustatin, a specific alpha1beta1 integrin blocker. Ang II also stimulates ROS production in VSMC (140%) that is NOX1 dependent, being completely inhibited in NOX1 silenced cells. The ROS production develops in two peaks, and the second peak is maintained by NOX2 activation. Apocynin and obtustatin inhibit the NOX2-associated second peak, but not the first peak of ROS production, which is related to NOX1 activation. Corroborating the involvement of alpha1beta1 integrin, the pretreatment of VSMC with obtustatin impaired Ang II-induced FAK phosphorylation, AKT activation, p21 degradation and the increase of ILK expression. Silencing of ILK blocked cell migration, AKT phosphorylation and the second peak of ROS, but partially inhibits (70%) VSMC proliferation induced by Ang II. The data demonstrate a novel role for NOX2 in Ang II effects on VSMC, and suggest alpha1beta1 integrin and ILK as target molecules to the development of more effective therapeutic interventions in cardiovascular diseases.
Collapse
Affiliation(s)
- João Alfredo Moraes
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Ana Clara Frony
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Aline Maria Dias
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Mariana Renovato-Martins
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Genilson Rodrigues
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Jamil Assreuy
- Department of Pharmacology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Pilecki B, Schlosser A, Wulf-Johansson H, Trian T, Moeller JB, Marcussen N, Aguilar-Pimentel JA, de Angelis MH, Vestbo J, Berger P, Holmskov U, Sorensen GL. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma. Thorax 2015; 70:862-72. [PMID: 26038533 DOI: 10.1136/thoraxjnl-2014-206609] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recently, several proteins of the extracellular matrix have been characterised as active contributors to allergic airway disease. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein abundant in the lung, whose biological functions remain poorly understood. In the current study we investigated the role of MFAP4 in experimental allergic asthma. METHODS MFAP4-deficient mice were subjected to alum/ovalbumin and house dust mite induced models of allergic airway disease. In addition, human healthy and asthmatic primary bronchial smooth muscle cell cultures were used to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development and correlated with local eotaxin levels. MFAP4 was expressed in human bronchial smooth muscle cells and its expression was upregulated in asthmatic cells. Regarding the underlying mechanism, we showed that MFAP4 interacted with integrin αvβ5 and promoted asthmatic bronchial smooth muscle cell proliferation and CCL11 release dependent on phosphatidyloinositol-3-kinase but not extracellular signal-regulated kinase pathway. CONCLUSIONS MFAP4 promoted the development of asthmatic airway disease in vivo and pro-asthmatic functions of bronchial smooth muscle cells in vitro. Collectively, our results identify MFAP4 as a novel contributor to experimental asthma, acting through modulation of airway smooth muscle cells.
Collapse
Affiliation(s)
- Bartosz Pilecki
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helle Wulf-Johansson
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Thomas Trian
- Department of Pharmacology, Bordeaux University, Cardio-thoracic Research Centre, U1045, Bordeaux, France
| | - Jesper B Moeller
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Juan A Aguilar-Pimentel
- German Research Center for Environmental Health, German Mouse Clinic and Institute of Experimental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany Department of Dermatology and Allergology am Biederstein, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Martin Hrabe de Angelis
- German Research Center for Environmental Health, German Mouse Clinic and Institute of Experimental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technical University Munich, Freising-Weihenstephan, Germany
| | - Jorgen Vestbo
- Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark Manchester Academic Health Science Centre, University Hospital South Manchester NHS Foundation Trust, Manchester, UK
| | - Patrick Berger
- Department of Pharmacology, Bordeaux University, Cardio-thoracic Research Centre, U1045, Bordeaux, France Department of Lung Function Testing, Department of Thoracic Chirurgy, Department of Anatomy and Pathology, CHU Bordeaux Teaching Hospital, Pessac, France
| | - Uffe Holmskov
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Jaguin M, Fardel O, Lecureur V. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation. Toxicol Appl Pharmacol 2015; 285:170-8. [PMID: 25896968 DOI: 10.1016/j.taap.2015.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 11/29/2022]
Abstract
Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants.
Collapse
Affiliation(s)
- Marie Jaguin
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France
| | - Olivier Fardel
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France; Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex, France
| | - Valérie Lecureur
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France.
| |
Collapse
|
17
|
Shkumatov A, Thompson M, Choi KM, Sicard D, Baek K, Kim DH, Tschumperlin DJ, Prakash YS, Kong H. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1125-35. [PMID: 25724668 DOI: 10.1152/ajplung.00154.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/27/2015] [Indexed: 01/02/2023] Open
Abstract
Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs.
Collapse
Affiliation(s)
- Artem Shkumatov
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Kyoung M Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Kwanghyun Baek
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Dong Hyun Kim
- Korea Institute of Industrial Technology, Ansan-si, South Korea
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Hyunjoon Kong
- Departments of Chemical and Biomolecular Engineering, Pathobiology, and Bioengineering, Institute of Genomic Biology, Univeristy of Illinois at Urbana-Champaign, Urbana, Illinois; and Deptartment of Chemical Engineering, Soongshil University, Seoul, Korea
| |
Collapse
|
18
|
Collagen inhibitory peptide R1R2 mediates vascular remodeling by decreasing inflammation and smooth muscle cell activation. PLoS One 2015; 10:e0117356. [PMID: 25675397 PMCID: PMC4326127 DOI: 10.1371/journal.pone.0117356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is a major constituent of the vessel wall. In addition to providing a structural scaffold, the ECM controls numerous cellular functions in both physiologic and pathologic settings. Vascular remodeling occurs after injury and is characterized by endothelial cell activation, inflammatory cell infiltration, phenotypic modulation of smooth muscle cells (SMCs), and augmented deposition of collagen-rich ECM. R1R2, a peptide derived from the bacterial adhesin SFS, with sequence homology to collagen, is known to inhibit collagen type I deposition in vitro by inhibiting the binding of fibronectin to collagen. However, the inhibitory effects of R1R2 during vascular remodeling have not been explored. We periadventitially delivered R1R2 to carotid arteries using pluronic gel in a vascular remodeling mouse model induced by blood flow cessation, and evaluated its effects on intima-media thickening, ECM deposition, SMC activation, and inflammatory cell infiltration. Morphometric analysis demonstrated that R1R2 reduced intima-media thickening compared to the control groups. R1R2 treatment also decreased collagen type I deposition in the vessel wall, and maintained SMC in the contractile phenotype. Interestingly, R1R2 dramatically reduced inflammatory cell infiltration into the vessel by ∼78%. This decrease was accompanied by decreased VCAM-1 and ICAM-1 expression. Our in vitro studies revealed that R1R2 attenuated SMC proliferation and migration, and also decreased monocyte adhesion and transendothelial migration through endothelial cells. Together, these data suggest that R1R2 attenuates vascular remodeling responses by decreasing inflammation and by modulating SMC proliferation and migration, and suggest that the R1R2 peptide may have therapeutic potential in treating occlusive vascular diseases.
Collapse
|
19
|
Pelissier-Rota MA, Chartier NT, Jacquier-Sarlin MR. Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. INTERCELLULAR COMMUNICATION IN CANCER 2015:53-149. [DOI: 10.1007/978-94-017-7380-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Dekkers BGJ, Naeimi S, Bos IST, Menzen MH, Halayko AJ, Hashjin GS, Meurs H. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1. Am J Physiol Lung Cell Mol Physiol 2014; 308:L301-6. [PMID: 25480330 DOI: 10.1152/ajplung.00071.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypothyroidism may reduce, whereas hyperthyroidism may aggravate, asthma symptoms. The mechanisms underlying this relationship are largely unknown. Since thyroid hormones have central roles in cell growth and differentiation, we hypothesized that airway remodeling, in particular increased airway smooth muscle (ASM) mass, may be involved. To address this hypothesis, we investigated the effects of triiodothyronine (T3) and l-thyroxine (T4) in the absence and presence of the profibrotic transforming growth factor (TGF)-β1 on human ASM cell phenotype switching. T3 (1-100 nM) and T4 (1-100 nM) did not affect basal ASM proliferation. However, when combined with TGF-β1 (2 ng/ml), T4 synergistically increased the proliferative response, whereas only a minor effect was observed for T3. In line with a switch from a contractile to a proliferative ASM phenotype, T4 reduced the TGF-β1-induced contractile protein expression by ∼50%. Cotreatment with T3 reduced TGF-β1-induced contractile protein expression by ∼25%. The synergistic increase in proliferation was almost fully inhibited by the integrin αvβ3 antagonist tetrac (100 nM), whereas no significant effects of the thyroid receptor antagonist 1-850 (3 μM) were observed. Inhibition of MEK1/2, downstream of the integrin αvβ3, also inhibited the T4- and TGF-β1-induced proliferative responses. Collectively, the results indicate that T4, and to a lesser extent T3, promotes a proliferative ASM phenotype in the presence of TGF-β1, which is predominantly mediated by the membrane-bound T4 receptor αvβ3. These results indicate that thyroid hormones may enhance ASM remodeling in asthma, which could be of relevance for hyperthyroid patients with this disease.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands;
| | - Saeideh Naeimi
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Department of Pharmacology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Andrew J Halayko
- Department of Physiology, University of Manitoba, Winnipeg, Canada; and
| | - Goudarz Sadeghi Hashjin
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Teheran, Iran
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Integrins: therapeutic targets in airway hyperresponsiveness and remodelling? Trends Pharmacol Sci 2014; 35:567-74. [PMID: 25441775 DOI: 10.1016/j.tips.2014.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
Integrins are a group of transmembrane heterodimeric proteins that mediate cell-cell and cell-extracellular matrix (ECM) interactions. Integrins have been under intense investigation for their role in inflammation in asthma. Clinical trials investigating integrin antagonists, however, have shown that these compounds are relatively ineffective. Airway remodelling is another pathological feature of asthma that is thought to make an important contribution to airway hyperresponsiveness (AHR) and lung function decline. Recent studies have identified integrins as important players in this process, with a particular role for β1 and αv integrins. Here we review the role of these integrins in airway remodelling and hyperresponsiveness in obstructive airway disease and their potential as pharmacological targets for future treatment.
Collapse
|
22
|
Bartolák-Suki E, LaPrad AS, Harvey BC, Suki B, Lutchen KR. Tidal stretches differently regulate the contractile and cytoskeletal elements in intact airways. PLoS One 2014; 9:e94828. [PMID: 24740101 PMCID: PMC3989249 DOI: 10.1371/journal.pone.0094828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/20/2014] [Indexed: 12/24/2022] Open
Abstract
Recent reports suggest that tidal stretches do not cause significant and sustainable dilation of constricted intact airways ex vivo. To better understand the underlying mechanisms, we aimed to map the physiological stretch-induced molecular changes related to cytoskeletal (CSK) structure and contractile force generation through integrin receptors. Using ultrasound, we measured airway constriction in isolated intact airways during 90 minutes of static transmural pressure (Ptm) of 7.5 cmH2O or dynamic variations between Ptm of 5 and 10 cmH20 mimicking breathing. Integrin and focal adhesion kinase activity increased during Ptm oscillations which was further amplified during constriction. While Ptm oscillations reduced β-actin and F-actin formation implying lower CSK stiffness, it did not affect tubulin. However, constriction was amplified when the microtubule structure was disassembled. Without constriction, α-smooth muscle actin (ASMA) level was higher and smooth muscle myosin heavy chain 2 was lower during Ptm oscillations. Alternatively, during constriction, overall molecular motor activity was enhanced by Ptm oscillations, but ASMA level became lower. Thus, ASMA and motor protein levels change in opposite directions due to stretch and contraction maintaining similar airway constriction levels during static and dynamic Ptm. We conclude that physiological Ptm variations affect cellular processes in intact airways with constriction determined by the balance among contractile and CSK molecules and structure.
Collapse
Affiliation(s)
- Erzsébet Bartolák-Suki
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Adam S. LaPrad
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Brian C. Harvey
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Béla Suki
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Kenneth R. Lutchen
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
23
|
Oenema TA, Mensink G, Smedinga L, Halayko AJ, Zaagsma J, Meurs H, Gosens R, Dekkers BGJ. Cross-talk between transforming growth factor-β₁ and muscarinic M₂ receptors augments airway smooth muscle proliferation. Am J Respir Cell Mol Biol 2013; 49:18-27. [PMID: 23449734 DOI: 10.1165/rcmb.2012-0261oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transforming growth factor-β₁ (TGF-β₁) is a central mediator in tissue remodeling processes, including fibrosis and airway smooth muscle (ASM) hyperplasia, as observed in asthma. The mechanisms underlying this response, however, remain unclear because TGF-β₁ exerts only weak mitogenic effects on ASM cells. In this study, we hypothesized that the mitogenic effect of TGF-β₁ on ASM is indirect and requires prolonged exposure to allow for extracellular matrix (ECM) deposition. To address this hypothesis, we investigated the effects of acute and prolonged treatment with TGF-β₁, alone and in combination with the muscarinic receptor agonist methacholine, on human ASM cell proliferation. Acutely, TGF-β₁ exerted no mitogenic effect. However, prolonged treatment (for 7 d) with TGF-β₁ increased ASM cell proliferation and potentiated the platelet-derived growth factor-induced mitogenic response. Muscarinic receptor stimulation with methacholine synergistically enhanced the effect of TGF-β₁. Interestingly, the integrin-blocking peptide Arg-Gly-Asp-Ser, as well as integrin α5β1 function-blocking antibodies, inhibited the effects of TGF-β₁ and its combination with methacholine on cell proliferation. Accordingly, prolonged treatment with TGF-β₁ increased fibronectin expression, which was also synergistically enhanced by methacholine. The synergistic effects of methacholine on TGF-β₁-induced proliferation were reduced by the long-acting muscarinic receptor antagonist tiotropium and the M₂ receptor subtype-selective antagonist gallamine, but not the M₃-selective antagonist DAU5884. In line with these findings, the irreversible Gi protein inhibitor pertussis toxin also prevented the potentiation of TGF-β₁-induced proliferation by methacholine. We conclude that prolonged exposure to TGF-β₁ enhances ASM cell proliferation, which is mediated by extracellular matrix-integrin interactions, and which can be enhanced by muscarinic M₂ receptor stimulation.
Collapse
Affiliation(s)
- Tjitske A Oenema
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dekkers BGJ, Spanjer AIR, van der Schuyt RD, Kuik WJ, Zaagsma J, Meurs H. Focal adhesion kinase regulates collagen I-induced airway smooth muscle phenotype switching. J Pharmacol Exp Ther 2013; 346:86-95. [PMID: 23591997 DOI: 10.1124/jpet.113.203042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased extracellular matrix (ECM) deposition and airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma. Recently, we demonstrated that the ECM protein collagen I, which is increased surrounding asthmatic ASM, induces a proliferative, hypocontractile ASM phenotype. Little is known, however, about the signaling pathways involved. Using bovine tracheal smooth muscle, we investigated the role of focal adhesion kinase (FAK) and downstream signaling pathways in collagen I-induced ASM phenotype modulation. Phosphorylation of FAK was increased during adhesion to both uncoated and collagen I-coated culture dishes, without differences between these matrices. Nor were any differences found in cellular adhesion. Inhibition of FAK activity by overexpression of the FAK deletion mutants FAT (focal adhesion targeting domain) and FRNK (FAK-related nonkinase) attenuated adhesion. After attachment, FAK phosphorylation increased in a time-dependent manner in cells cultured on collagen I, whereas no activation was found on an uncoated plastic matrix. In addition, collagen I increased in a time- and concentration-dependent manner the cell proliferation, which was fully inhibited by FAT and FRNK. Similarly, the specific pharmacologic FAK inhibitor PF-573228 [6-((4-((3-(methanesulfonyl)benzyl)amino)-5-trifluoromethylpyrimidin-2-yl) amino)-3,4-dihydro-1H-quinolin-2-one] as well as specific inhibitors of p38 mitogen-activated protein kinase (MAPK) and Src also fully inhibited collagen I-induced proliferation, whereas partial inhibition was observed by inhibition of phosphatidylinositol-3-kinase (PI3-kinase) and mitogen-activated protein kinase kinase (MEK). The inhibition of cell proliferation by these inhibitors was associated with attenuation of the collagen I-induced hypocontractility. Collectively, the results indicate that induction of a proliferative, hypocontractile ASM phenotype by collagen I is mediated by FAK and downstream signaling pathways.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Wright DB, Trian T, Siddiqui S, Pascoe CD, Johnson JR, Dekkers BG, Dakshinamurti S, Bagchi R, Burgess JK, Kanabar V, Ojo OO. Phenotype modulation of airway smooth muscle in asthma. Pulm Pharmacol Ther 2013; 26:42-9. [DOI: 10.1016/j.pupt.2012.08.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 01/26/2023]
|
26
|
Mfge8 suppresses airway hyperresponsiveness in asthma by regulating smooth muscle contraction. Proc Natl Acad Sci U S A 2012; 110:660-5. [PMID: 23269839 DOI: 10.1073/pnas.1216673110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Airway obstruction is a hallmark of allergic asthma and is caused primarily by airway smooth muscle (ASM) hypercontractility. Airway inflammation leads to the release of cytokines that enhance ASM contraction by increasing ras homolog gene family, member A (RhoA) activity. The protective mechanisms that prevent or attenuate the increase in RhoA activity have not been well studied. Here, we report that mice lacking the gene that encodes the protein Milk Fat Globule-EGF factor 8 (Mfge8(-/-)) develop exaggerated airway hyperresponsiveness in experimental models of asthma. Mfge8(-/-) ASM had enhanced contraction after treatment with IL-13, IL-17A, or TNF-α. Recombinant Mfge8 reduced contraction in murine and human ASM treated with IL-13. Mfge8 inhibited IL-13-induced NF-κB activation and induction of RhoA. Mfge8 also inhibited rapid activation of RhoA, an effect that was eliminated by an inactivating point mutation in the RGD integrin-binding site in recombinant Mfge8. Human subjects with asthma had decreased Mfge8 expression in airway biopsies compared with healthy controls. These data indicate that Mfge8 binding to integrin receptors on ASM opposes the effect of allergic inflammation on RhoA activity and identify a pathway for specific inhibition of ASM hypercontractility in asthma.
Collapse
|
27
|
Ramakrishna L, de Vries VC, Curotto de Lafaille MA. Cross-roads in the lung: immune cells and tissue interactions as determinants of allergic asthma. Immunol Res 2012; 53:213-28. [PMID: 22447350 DOI: 10.1007/s12026-012-8296-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allergic asthma is a chronic disease of the lung characterized by underlying Th2- and IgE-mediated inflammation, structural alterations of the bronchial wall, and airway hyperresponsiveness. Initial allergic sensitization and later development of chronic disease are determined by close interactions between lung structural cells and the resident and migratory immune cells in the lung. Epithelial cells play a crucial role in allergic sensitization by directly influencing dendritic cells induction of tolerant or effector T cells and production of type 2 cytokines by innate immune cells. During chronic disease, the bronchial epithelium, stroma, and smooth muscle become structurally and functionally altered, contributing to the perpetuation of tissue remodeling. Thus, targeting tissue-driven pathology in addition to inflammation may increase the effectiveness of asthma treatment.
Collapse
Affiliation(s)
- Lakshmi Ramakrishna
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, #4-06 Immunos, Singapore
| | | | | |
Collapse
|
28
|
Integrin and GPCR Crosstalk in the Regulation of ASM Contraction Signaling in Asthma. J Allergy (Cairo) 2012; 2012:341282. [PMID: 23056062 PMCID: PMC3465959 DOI: 10.1155/2012/341282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/24/2012] [Indexed: 12/15/2022] Open
Abstract
Airway hyperresponsiveness (AHR) is one of the cardinal features of asthma. Contraction of airway smooth muscle (ASM) cells that line the airway wall is thought to influence aspects of AHR, resulting in excessive narrowing or occlusion of the airway. ASM contraction is primarily controlled by agonists that bind G protein-coupled receptor (GPCR), which are expressed on ASM. Integrins also play a role in regulating ASM contraction signaling. As therapies for asthma are based on symptom relief, better understanding of the crosstalk between GPCRs and integrins holds good promise for the design of more effective therapies that target the underlying cellular and molecular mechanism that governs AHR. In this paper, we will review current knowledge about integrins and GPCRs in their regulation of ASM contraction signaling and discuss the emerging concept of crosstalk between the two and the implication of this crosstalk on the development of agents that target AHR.
Collapse
|
29
|
Moir LM, Black JL, Krymskaya VP. TSC2 modulates cell adhesion and migration via integrin-α1β1. Am J Physiol Lung Cell Mol Physiol 2012; 303:L703-10. [PMID: 22923640 DOI: 10.1152/ajplung.00414.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that the rare and progressive lung disease lymphangioleiomyomatosis (LAM) is metastatic in nature. Dysfunction of the tumor suppressor genes tuberous sclerosis complex (TSC), in particular mutational inactivation of TSC2, enhances both cell proliferation and migration. Although substantial progress has been made in understanding the role of TSC2 in abnormal LAM cell proliferation and its pharmacological targeting, the mechanisms underlying the enhanced migratory capacity in LAM are not well understood. In this study, we examined the role of TSC2 in cell attachment, spreading, and migration, processes that contribute to the metastatic phenotype. Here we show that loss of TSC2 increased both the attachment and spreading of mouse embryonic fibroblasts to the extracellular matrix proteins collagen type I and fibronectin and that reexpression of TSC2 reduced these effects. Integrin-α1β1 modulated cell migration with the β1-subunit involved in cell attachment and spreading as shown by using functional blocking antibodies. Loss of TSC2 increased integrin-α1 expression, and inhibition of this integrin subunit reduced cell migration. The enhanced attachment and spreading were independent of the intracellular signaling pathways mammalian target of rapamycin complex 1 and Rho-associated kinase, as pharmacological inhibition with rapamycin or Y27632, respectively, was without effect. Together, these data demonstrate that TSC2 controls cell migration, attachment, and spreading through the α1β1-integrin receptor and thus suggest a potential therapeutic target for the treatment of increased cell invasiveness in LAM.
Collapse
Affiliation(s)
- Lyn M Moir
- Cell Biology, Woolcock Institute of Medical Research, PO Box M77, Missenden Rd., NSW, 2050, Australia.
| | | | | |
Collapse
|
30
|
Dekkers BGJ, Bos IST, Zaagsma J, Meurs H. Functional consequences of human airway smooth muscle phenotype plasticity. Br J Pharmacol 2012; 166:359-67. [PMID: 22053853 DOI: 10.1111/j.1476-5381.2011.01773.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway smooth muscle (ASM) phenotype plasticity, characterized by reversible switching between contractile and proliferative phenotypes, is considered to contribute to increased ASM mass and airway hyper-responsiveness in asthma. Further, increased expression of collagen I has been observed within the ASM bundle of asthmatics. Previously, we showed that exposure of intact bovine tracheal smooth muscle (BTSM) to collagen I induces a switch from a contractile to a hypocontractile, proliferative phenotype. However, the functional relevance of this finding for intact human ASM has not been established. EXPERIMENTAL APPROACH We investigated the effects of exposure of human tracheal smooth muscle (HTSM) strips to monomeric collagen I and PDGF on contractile responses to methacholine and KCl. Expression of contractile proteins sm-α-actin and sm-MHC was assessed by Western blot analysis. The proliferation of HTSM cells was assessed by cell counting, measuring mitochondrial activity (Alamarblue conversion) and [(3) H]-thymidine incorporation. Proliferation of intact tissue slices was assessed by [(3) H]-thymidine incorporation. KEY RESULTS Culturing HTSM strips in the presence of collagen I or PDGF for 4 days reduced maximal contractile responses to methacholine or KCl and the expression of contractile proteins. Conversely, collagen I and PDGF increased proliferation of HTSM cells and proliferative responses in tissue slices. PDGF additively increased the proliferation of HTSM cells cultured on collagen I; this additive effect was not observed on contractility, contractile protein expression or proliferation of intact tissue. CONCLUSION AND IMPLICATIONS These findings indicate that collagen I and PDGF induce a functionally hypocontractile, proliferative phenotype of human ASM, which may contribute to airway remodelling in asthma.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.
| | | | | | | |
Collapse
|
31
|
Black JL, Panettieri RA, Banerjee A, Berger P. Airway smooth muscle in asthma: just a target for bronchodilation? Clin Chest Med 2012; 33:543-58. [PMID: 22929101 DOI: 10.1016/j.ccm.2012.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Airway smooth muscle (ASM) has long been recognized as the main cell type responsible for bronchial hyperresponsiveness. It has, thus, been considered as a target for bronchodilation. In asthma, however, there is a complex relationship between ASM and inflammatory cells, such as mast cells and T lymphocytes. Moreover, the increased ASM mass in asthmatic airways is one of the key features of airway remodeling. This article aims to review the main concepts about the 3 possible roles of ASM in asthma: (1) contractile tone, (2) inflammatory response, and (3) remodeling.
Collapse
Affiliation(s)
- Judith L Black
- University of Sydney, Discipline of Pharmacology and Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2006, Australia
| | | | | | | |
Collapse
|
32
|
Dekkers BGJ, Pehlic A, Mariani R, Bos IST, Meurs H, Zaagsma J. Glucocorticosteroids and β₂-adrenoceptor agonists synergize to inhibit airway smooth muscle remodeling. J Pharmacol Exp Ther 2012; 342:780-7. [PMID: 22685341 DOI: 10.1124/jpet.112.195867] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to increased airway narrowing in asthma. Increased ASM mass may be caused by exposure to mitogens, including platelet-derived growth factor (PDGF) and collagen type I, which induce a proliferative, hypocontractile ASM phenotype. In contrast, prolonged exposure to insulin induces a hypercontractile phenotype. Glucocorticosteroids and β₂-adrenoceptor agonists synergize to increase glucocorticosteroid receptor translocation in ASM cells; however, the impact of this synergism on phenotype modulation is unknown. Using bovine tracheal smooth muscle, we investigated the effects of the glucocorticosteroids fluticasone (10 nM), budesonide (30 nM), and dexamethasone (0.1-1 μM) and the combination of low concentrations of fluticasone (3-100 pM) and fenoterol (10 nM) on ASM phenotype switching in response to PDGF (10 ng/ml), collagen type I (50 μg/ml), and insulin (1 μM). All glucocorticosteroids inhibited PDGF- and collagen I-induced proliferation and hypocontractility, with the effects of collagen I being less susceptible to glucocorticosteroid action. At 100-fold lower concentrations, fluticasone (100 pM) synergized with fenoterol to prevent PDGF- and collagen I-induced phenotype switching. This inhibition of ASM phenotype switching was associated with a normalization of the PDGF-induced decrease in the cell cycle inhibitors p21(WAF1/CIP1) and p57(KIP2). At this concentration, fluticasone also prevented the insulin-induced hypercontractile phenotype. At even lower concentrations, fluticasone (3 pM) synergized with fenoterol to inhibit this phenotype switch. Collectively, these findings indicate that glucocorticosteroids and β₂-agonists synergistically inhibit ASM phenotype switching, which may contribute to the increased effectiveness of combined treatment with glucocorticosteroids and β₂-agonists in asthma.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Effects of nonocclusive mesenteric hypertension on intestinal function: implications for gastroschisis-related intestinal dysfunction. Pediatr Res 2012; 71:668-74. [PMID: 22476046 PMCID: PMC3974566 DOI: 10.1038/pr.2012.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Infants with gastroschisis (GS) have significant morbidity from dysmotility, feeding intolerance, and are at increased risk of developing intestinal failure. Although the molecular mechanisms regulating GS-related intestinal dysfunction (GRID) are largely unknown, we hypothesized that mechanical constriction (nonocclusive mesenteric hypertension (NMH)) from the abdominal wall defect acts as a stimulus for GRID. The purpose of this study was to determine the effect of NMH on intestinal function and inflammation. METHODS Neonatal rats had placement of a silastic disk to the base of the mesentery (NMH) or no disk placement (Sham). At 24 and 72 h, mesenteric venous pressures (MVPs), intestinal transit, electric impedance, permeability, length, and tissue water content were measured. RESULTS After placement of the silastic disk, there was a significant increase in MVP at both time points. There was also decreased intestinal transit. As compared to Sham animals, NMH animals had significant changes in bowel impedance without an increase in tissue water, suggesting significant intestinal remodeling. NMH rats had significantly increased smooth-muscle thickness and loss of intestinal length as compared with Sham rats. DISCUSSION NMH may be an initiating factor for GRID. Measurement of MVP and/or bowel impedance may be a way to assess severity and monitor progression and/or resolution of GRID.
Collapse
|
34
|
Effects of decorin and biglycan on human airway smooth muscle cell adhesion. Matrix Biol 2012; 31:101-12. [DOI: 10.1016/j.matbio.2011.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/01/2011] [Accepted: 11/09/2011] [Indexed: 01/01/2023]
|
35
|
Abstract
Airway smooth muscle has classically been of interest for its contractile response linked to bronchoconstriction. However, terminally differentiated smooth muscle cells are phenotypically plastic and have multifunctional capacity for proliferation, cellular hypertrophy, migration, and the synthesis of extracellular matrix and inflammatory mediators. These latter properties of airway smooth muscle are important in airway remodeling which is a structural alteration that compounds the impact of contractile responses on limiting airway conductance. In this overview, we describe the important signaling components and the functional evidence supporting a view of smooth muscle cells at the core of fibroproliferative remodeling of hollow organs. Signal transduction components and events are summarized that control the basic cellular processes of proliferation, cell survival, apoptosis, and cellular migration. We delineate known intracellular control mechanisms and suggest future areas of interest to pursue to more fully understand factors that regulate normal myocyte function and airway remodeling in obstructive lung diseases.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| | | | | | | | | |
Collapse
|
36
|
The pivotal role of airway smooth muscle in asthma pathophysiology. J Allergy (Cairo) 2011; 2011:742710. [PMID: 22220184 PMCID: PMC3246780 DOI: 10.1155/2011/742710] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/30/2011] [Indexed: 12/13/2022] Open
Abstract
Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function.
Collapse
|
37
|
Alkhouri H, Hollins F, Moir LM, Brightling CE, Armour CL, Hughes JM. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma. Allergy 2011; 66:1231-41. [PMID: 21557752 DOI: 10.1111/j.1398-9995.2011.02616.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. OBJECTIVES To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. METHODS Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. RESULTS Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. CONCLUSIONS Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma.
Collapse
Affiliation(s)
- H Alkhouri
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Husain M, Boermans HJ, Karrow NA. Mesenteric lymph node transcriptome profiles in BALB/c mice sensitized to three common food allergens. BMC Genomics 2011; 12:12. [PMID: 21211037 PMCID: PMC3023748 DOI: 10.1186/1471-2164-12-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/06/2011] [Indexed: 12/14/2022] Open
Abstract
Background Food allergy is a serious health concern among infants and young children. Although immunological mechanism of food allergy is well documented, the molecular mechanism(s) involved in food allergen sensitization have not been well characterized. Therefore, the present study analyzed the mesenteric lymph node (MLN) transcriptome profiles of BALB/c mice in response to three common food allergens. Results Microarray analysis identified a total of 1361, 533 and 488 differentially expressed genes in response to β-lactoglobulin (BLG) from cow's milk, ovalbumin (OVA) from hen's egg white and peanut agglutinin (PNA) sensitizations, respectively (p < 0.05). A total of 150 genes were commonly expressed in all antigen sensitized groups. The expression of seven representative genes from microarray experiment was validated by real-time RT-PCR. All allergens induced significant ear swelling and serum IgG1 concentrations, whereas IgE concentrations were increased in BLG- and PNA-treated mice (p < 0.05). Treatment with OVA and PNA significantly induced plasma histamine concentrations (p < 0.05). The PCA demonstrated the presence of allergen-specific IgE in the serum of previously sensitized and challenged mice. Conclusions Immunological profiles indicate that the allergen dosages used are sufficient to sensitize the BALB/c mice and to conduct transcriptome profiling. Microarray studies identified several differentially expressed genes in the sensitization phase of the food allergy. These findings will help to better understand the underlying molecular mechanism(s) of food allergen sensitizations and may be useful in identifying the potential biomarkers of food allergy.
Collapse
Affiliation(s)
- Mainul Husain
- Department of Animal & Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
39
|
Guildford AL, Stewart HJS, Morris C, Santin M. Substrate-induced phenotypic switches of human smooth muscle cells: an in vitro study of in-stent restenosis activation pathways. J R Soc Interface 2010; 8:641-9. [PMID: 21106574 DOI: 10.1098/rsif.2010.0532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In-stent restenosis is a clinical complication following coronary angioplasty caused by the implantation of the metal device in the atherosclerotic vessel. Histological examination has shown a clear contribution of both inflammatory and smooth muscle cells (SMCs) to the deposition of an excess of neointimal tissue. However, the sequence of events leading to clinically relevant restenosis is unknown. This paper aims to study the phenotype of SMCs when adhering on substrates and exposed to biochemical stimuli typical of the early phases of stent implantation. In particular, human SMC phenotype was studied when adhering on extracellular matrix-like material (collagen-rich gel), thrombus-like material (fibrin gel) and stent material (stainless steel) in the presence or absence of a platelet-derived growth factor (PDGF) stimulus. Cells on the collagen and fibrin-rich substrates maintained their contractile phenotype. By contrast, cells on stainless steel acquired a secretory phenotype with a proliferation rate 50 per cent higher than cells on the natural substrates. Cells on stainless steel also showed an increase in PDGF-BB receptor expression, thus explaining the increase in proliferation observed when cells were subject to PDGF-BB stimuli. The stainless steel substrate also promoted a different pattern of β1-integrin localization and an altered expression of hyaluronan (HA) synthase isoforms where the synthesis of high-molecular-weight HA seemed to be favoured. These findings highlighted the induction of a phenotypic pattern in SMC by the stainless steel substrate whereby the formation of a HA-rich neointimal tissue is enhanced.
Collapse
Affiliation(s)
- Anna L Guildford
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | | | | | | |
Collapse
|
40
|
Schuliga M, Ong SC, Soon L, Zal F, Harris T, Stewart AG. Airway smooth muscle remodels pericellular collagen fibrils: implications for proliferation. Am J Physiol Lung Cell Mol Physiol 2010; 298:L584-92. [DOI: 10.1152/ajplung.00312.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway wall remodeling comprises a broad range of structural changes including increases in the volume of airway smooth muscle (ASM) and fibrillar collagen. The impact of fibrillar collagen remodeling on ASM proliferation was investigated. Human ASM cultured on type I fibrillar collagen remodeled the collagen substrate by both degradation (collagenolysis) and formation of networks comprised of thicker reticular collagen fibrils (fibrillogenesis). In cultures maintained on fibrillar collagen, the levels of matrix metalloproteases (MMPs) -1 and -14 mRNA and active MMP-2 were higher than in cultures maintained on nonfibrillar type I collagen (gelatin) or plastic. Although there was no apparent increase in cytotoxicity or apoptosis, the number of ASM was lower on fibrillar collagen than on gelatin or plastic for control conditions. Furthermore, maintenance on fibrillar collagen attenuated basic fibroblast growth factor-stimulated increases in cell number and the percentage of cells entering S-phase. In cultures maintained on fibrillar collagen, the MMP inhibitor ilomastat (2.5 μM) 1) attenuated collagenolysis, 2) enhanced fibrillogenesis, and 3) inhibited proliferation. In contrast, knockdown of the β1-integrin gene in ASM maintained on fibrillar collagen led to an increase in proliferation and reduced MMP-1 and -14 expression. Thus, ASM remodel the pericellular environment by degrading collagen fibrils and spinning them into larger collagen assemblies. Moreover, the collagen fibrils limit proliferation and activate autocrine MMPs in a β-integrin-dependent manner, suggesting a potential negative feedback on modeling executed through fibrillar collagen activation of β1-integrins.
Collapse
Affiliation(s)
- Michael Schuliga
- Department of Pharmacology, University of Melbourne, Parkville, Victoria; and
| | - Siau Chi Ong
- Department of Pharmacology, University of Melbourne, Parkville, Victoria; and
| | - Lilian Soon
- Department of Anatomy and Cell Biology, University of Sydney, Sydney, New South Wales, Australia
| | - Fatemeh Zal
- Department of Pharmacology, University of Melbourne, Parkville, Victoria; and
| | - Trudi Harris
- Department of Pharmacology, University of Melbourne, Parkville, Victoria; and
| | - Alastair G. Stewart
- Department of Pharmacology, University of Melbourne, Parkville, Victoria; and
| |
Collapse
|
41
|
Dekkers BGJ, Bos IST, Gosens R, Halayko AJ, Zaagsma J, Meurs H. The integrin-blocking peptide RGDS inhibits airway smooth muscle remodeling in a guinea pig model of allergic asthma. Am J Respir Crit Care Med 2009; 181:556-65. [PMID: 20019343 DOI: 10.1164/rccm.200907-1065oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. The mechanisms driving these changes are, however, incompletely understood. Recently, an important role for extracellular matrix proteins in regulating ASM proliferation and contractility has been found, suggesting that matrix proteins and their integrins actively modulate airway remodeling. OBJECTIVES To investigate the role of RGD (Arg-Gly-Asp)-binding integrins in airway remodeling in an animal model of allergic asthma. METHODS Using a guinea pig model of allergic asthma, the effects of topical application of the integrin-blocking peptide RGDS (Arg-Gly-Asp-Ser) and its negative control GRADSP (Gly-Arg-Ala-Asp-Ser-Pro) were assessed on markers of ASM remodeling, fibrosis, and inflammation induced by repeated allergen challenge. In addition, effects of these peptides on human ASM proliferation and maturation were investigated in vitro. MEASUREMENTS AND MAIN RESULTS RGDS attenuated allergen-induced ASM hyperplasia and hypercontractility as well as increased pulmonary expression of smooth muscle myosin heavy chain and the proliferative marker proliferating cell nuclear antigen (PCNA). No effects were observed for GRADSP. The RGDS effects were ASM selective, as allergen-induced eosinophil and neutrophil infiltration as well as fibrosis were unaffected. In cultured human ASM cells, we demonstrated that proliferation induced by collagen I, fibronectin, serum, and platelet-derived growth factor requires signaling via RGD-binding integrins, particularly of the alpha(5)beta(1) subtype. In addition, RGDS inhibited smooth muscle alpha-actin accumulation in serum-deprived ASM cells. CONCLUSIONS This is the first study indicating that integrins modulate ASM remodeling in an animal model of allergic asthma, which can be inhibited by a small peptide containing the RGD motif.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res 2009; 690:24-39. [PMID: 19769993 PMCID: PMC2923754 DOI: 10.1016/j.mrfmmm.2009.09.005] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/12/2022]
Abstract
Allergic asthma is a complex and chronic inflammatory disorder which is associated with airway hyper-responsiveness and tissue remodelling of the airway structure. Although originally thought to be a Th2-driven inflammatory response to inhaled innocuous allergen, the immune response in asthma is now considered highly heterogeneous. There are now various in vivo systems which have been designed to examine the pathways leading to the development of this chronic immune response and reflect, in part this heterogeneity. Furthermore, the emergence of endogenous immunoregulatory pathways and active pro-resolving mediators hold great potential for future therapeutic intervention. In this review, the key cellular and molecular mediators relating to chronic allergic airway disease are discussed, as well as emerging players in the regulation of chronic allergic inflammation.
Collapse
Affiliation(s)
- Jenna R Murdoch
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
43
|
Wu J, Du H, Wang X, Mei C, Sieck GC, Qian Q. Characterization of primary cilia in human airway smooth muscle cells. Chest 2009; 136:561-570. [PMID: 19318679 DOI: 10.1378/chest.08-1549] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Considerable evidence indicates a key role for primary cilia of mammalian cells in mechanochemical sensing. Dysfunctions of primary cilia have been linked to the pathogenesis of several human diseases. However, cilia-related research has been limited to a few cell and tissue types; to our knowledge, no literature exists on primary cilia in airway smooth muscle (ASM). The aim of this study was to characterize primary cilia in human ASM. METHODS Primary cilia of human bronchial smooth muscle cells (HBSMCs) were examined using immunofluorescence confocal microscopy, and scanning and transmission electron microscopy. HBSMC migration and injury repair were examined by scratch-wound and epidermal growth factor (EGF)-induced migration assays. RESULTS Cross-sectional images of normal human bronchi revealed that primary cilia of HBSMCs within each ASM bundle aggregated at the same horizontal level, forming a "cilium layer." Individual cilia of HBSMCs projected into extracellular matrix and exhibited varying degrees of deflection. Mechanochemical sensing molecules, polycystins, and alpha2-, alpha5-, and beta1-integrins were enriched in cilia, as was EGF receptor, known to activate jointly with integrins during cell migration. Migration assays demonstrated a ciliary contribution to HBSMC migration and wound repair. CONCLUSIONS The primary cilia of ASM cells exert a role in sensing and transducing extracellular mechanochemical signals and in ASM injury repair. Defects in ASM ciliary function could potentially affect airway wall maintenance and/or remodeling, possibly relating to the genesis of bronchiectasis in autosomal dominant polycystic kidney disease, a disease of ciliopathy.
Collapse
Affiliation(s)
- Jun Wu
- Kidney Institute of the China People's Liberation Army, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Hui Du
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN
| | - Xiangling Wang
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN
| | - Changlin Mei
- Kidney Institute of the China People's Liberation Army, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Gary C Sieck
- Department of Medicine, and the Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Qi Qian
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN; Department of Medicine, and the Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN.
| |
Collapse
|
44
|
Weckmann M, Trian T, Oliver BG. Reconstruction is not renovation - the role of remodeling in asthma. J Asthma Allergy 2009; 2:33-42. [PMID: 21437142 PMCID: PMC3048608 DOI: 10.2147/jaa.s4016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The chronicity of asthma results not only in persistent lung inflammation but also in changes in structure and composition of this vital organ. These changes are most commonly referred to as remodeling, and include epithelial dysplasia, angiogenesis, changes in the extracellular matrix and increased smooth muscle mass. In this review we summarize recent findings on the contribution of remodeling to the pathological phenotype of asthma. We discuss how and why current treatment (such as corticosteroids) options fail to adequately treat remodeling.
Collapse
Affiliation(s)
- Markus Weckmann
- Department of Pharmacology, The University of Sydney, Sydney, Australia; Woolcock Institute of Medical Research, Camperdown, NSW-2050, Australia; Bosch Research Institute, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
45
|
Dekkers BGJ, Schaafsma D, Tran T, Zaagsma J, Meurs H. Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype. Am J Respir Cell Mol Biol 2009; 41:494-504. [PMID: 19213874 DOI: 10.1165/rcmb.2008-0251oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway smooth muscle (ASM) plays a key role in the development of airway hyperresponsiveness and remodeling in asthma, which may involve maturation of ASM cells to a hypercontractile phenotype. In vitro studies have indicated that long-term exposure of bovine tracheal smooth muscle (BTSM) to insulin induces a functional hypercontractile, hypoproliferative phenotype. Similarly, the extracellular matrix protein laminin has been found to be involved in both the induction and maintenance of a contractile ASM phenotype. Using BTSM, we now investigated the role of laminins in the insulin-induced hypercontractile, hypoproliferative ASM phenotype. The results demonstrate that insulin-induced hypercontractility after 8 days of tissue culture was fully prevented by combined treatment of BTSM-strips with the laminin competing peptides Tyr-Ile-Gly-Ser-Arg (YIGSR) and Arg-Gly-Asp-Ser (RGDS). YIGSR also prevented insulin-induced increases in sm-myosin expression and abrogated the suppressive effects of prolonged insulin treatment on platelet-derived growth factor-induced DNA synthesis in cultured cells. In addition, insulin time-dependently increased laminin alpha2, beta1, and gamma1 chain protein, but not mRNA abundance in BTSM strips. Moreover, as previously found for contractile protein accumulation, signaling through PI3-kinase- and Rho kinase-dependent pathways was required for the insulin-induced increase in laminin abundance and contractility. Collectively, our results indicate a critical role for beta1-containing laminins, likely laminin-211, in the induction of a hypercontractile, hypoproliferative ASM phenotype by prolonged insulin exposure. Increased laminin production by ASM could be involved in the increased ASM contractility and contractile protein expression in asthma. Moreover, the results may be of interest for the use of inhaled insulin administrations by diabetics.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Burgess JK. The role of the extracellular matrix and specific growth factors in the regulation of inflammation and remodelling in asthma. Pharmacol Ther 2009; 122:19-29. [PMID: 19141302 DOI: 10.1016/j.pharmthera.2008.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 12/12/2022]
Abstract
Asthma is a disease characterised by persistent inflammation and structural changes in the airways, referred to as airway remodelling. The mechanisms underlying these processes may be interdependent or they may be separate processes that are driven by common factors. The levels of a variety of growth factors (including transforming growth factor beta, granulocyte macrophage colony stimulating factor, and vascular endothelial growth factor) are known to be changed in the asthmatic airway. These and other growth factors can contribute to the development and persistence of inflammation and remodelling. One of the prominent features of the structural changes of the airways is the increased deposition and alterations in the composition of the extracellular matrix proteins. These proteins include fibronectin, many different collagen types and hyaluronan. There is a dynamic relationship between the extracellular matrix proteins and the airway mesenchymal cells such that the changes in the extracellular matrix proteins can also contribute to the persistence of inflammation and the airway remodelling. This review aims to summarise the role growth factors and extracellular matrix proteins play in the regulation of inflammation and airway remodelling in the asthmatic airway.
Collapse
Affiliation(s)
- Janette K Burgess
- Discipline of Pharmacology, The University of Sydney, Woolcock Institute of Medical Research and the Cooperative Research Centre for Asthma and Airways, Sydney, NSW Australia.
| |
Collapse
|
47
|
Hirota JA, Nguyen TTB, Schaafsma D, Sharma P, Tran T. Airway smooth muscle in asthma: phenotype plasticity and function. Pulm Pharmacol Ther 2008; 22:370-8. [PMID: 19114115 DOI: 10.1016/j.pupt.2008.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 11/14/2008] [Accepted: 12/10/2008] [Indexed: 10/24/2022]
Abstract
Clinical asthma is characterized by reversible airway obstruction which is commonly due to an exaggerated airway narrowing referred to as airway hyperresponsiveness (AHR). Although debate exists on the complex etiology of AHR, it is clear that airway smooth muscle (ASM) mediated airway narrowing is a major contributor to airway dysfunction. More importantly, it is now appreciated that smooth muscle is far from being a simple cell with only contractile ability properties. Rather, it is more versatile with the capacity to exhibit numerous cellular functions as it adapts to the microenvironment to which it is exposed. The emerging ability of individual smooth muscle cells to undergo changes in their phenotype (phenotype plasticity) and function (functional plasticity) in response to physiological and pathological cues is an important and active area of research. This article provides a brief review of the current knowledge and emerging concepts in the field of ASM phenotype and function both under healthy and asthmatic conditions.
Collapse
Affiliation(s)
- Jeremy A Hirota
- Firestone Institute for Respiratory Health, McMaster University, Ontario, Canada
| | | | | | | | | |
Collapse
|
48
|
Burgess JK, Ceresa C, Johnson SR, Kanabar V, Moir LM, Nguyen TTB, Oliver BGG, Schuliga M, Ward J. Tissue and matrix influences on airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:379-87. [PMID: 19135163 DOI: 10.1016/j.pupt.2008.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 11/14/2008] [Accepted: 12/10/2008] [Indexed: 01/01/2023]
Abstract
Asthma is characterized by structural changes in the airways - airway remodelling. These changes include an increase in the bulk of the airway smooth muscle (ASM) and alterations in the profile of extracellular matrix (ECM) proteins in the airway wall. The mechanisms leading to airway remodelling are not well understood. ASM cells have the potential to play a key role in these processes through the production and release of ECM proteins. The ASM cells and ECM proteins are each able to influence the behaviour and characteristics of the other. The modified ECM profile in the asthmatic airway may contribute to the altered behaviour of the ASM cells, such responses to ECM proteins are modulated through the cell surface expression of integrin receptors. ASM cells from asthmatic individuals express different levels of some integrin subunits compared to nonasthmatic ASM cells, which have the potential to further influence their responses to the ECM proteins in the airways. ECM homeostasis requires the presence and activation of matrix metalloproteinases and their tissue inhibitors, which in turn modulate the interaction of the ASM cells and the ECM proteins. Furthermore, the complex interactions of the ASM cells and the ECM in the asthmatic airways and the role played by external stimuli, such as viral infections, to modulate airway remodelling are currently unknown. This review summarises our current understanding of the influence of the ECM on ASM function.
Collapse
Affiliation(s)
- Janette K Burgess
- Discipline of Pharmacology, Bosch Institute, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Misior AM, Deshpande DA, Loza MJ, Pascual RM, Hipp JD, Penn RB. Glucocorticoid- and protein kinase A-dependent transcriptome regulation in airway smooth muscle. Am J Respir Cell Mol Biol 2008; 41:24-39. [PMID: 19059887 DOI: 10.1165/rcmb.2008-0266oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoids (GCs) and protein kinase A (PKA)-activating agents (beta-adrenergic receptor agonists) are mainstream asthma therapies based on their ability to prevent or reverse excessive airway smooth muscle (ASM) constriction. Their abilities to regulate another important feature of asthma--excessive ASM growth--are poorly understood. Recent studies have suggested that GCs render agents of inflammation such as IL-1 beta and TNF-alpha mitogenic to ASM, via suppression of (antimitogenic) induced cyclooxygenase-2-dependent PKA activity. To further explore the mechanistic basis of these observations, we assessed the effects of epidermal growth factor and IL-1 beta stimulation, and the modulatory effects of GC treatment and PKA inhibition, on the ASM transcriptome by microarray analysis. Results demonstrate that ASM stimulated with IL-1 beta, in a manner that is often cooperative with stimulation with epidermal growth factor, exhibit a profound capacity to function as immunomodulatory cells. Moreover, results implicate an important role for induced autocrine/paracrine factors (many whose regulation was minimally affected by GCs or PKA inhibition) as regulators of both airway inflammation and ASM growth. Induction of numerous chemokines, in conjunction with regulation of proteases and agents of extracellular matrix remodeling, is suggested as an important mechanism promoting upregulated G protein-coupled receptor signaling capable of stimulating ASM growth. Additional functional assays suggest that intracellular PKA plays a critical role in suppressing the promitogenic effects of induced autocrine factors in ASM. Finally, identification and comparison of GC- and PKA-sensitive genes in ASM provide insight into the complementary effects of beta-agonist/GC combination therapies, and suggest specific genes as important targets for guiding the development of new generations of GCs and adjunct asthma therapies.
Collapse
Affiliation(s)
- Anna M Misior
- Wake Forest University Health Sciences, Department of Internal Medicine and Center for Human Genomics, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
50
|
Pharmacology of airway smooth muscle proliferation. Eur J Pharmacol 2008; 585:385-97. [PMID: 18417114 DOI: 10.1016/j.ejphar.2008.01.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/11/2008] [Accepted: 01/24/2008] [Indexed: 02/03/2023]
Abstract
Airway smooth muscle thickening is a pathological feature that contributes significantly to airflow limitation and airway hyperresponsiveness in asthma. Ongoing research efforts aimed at identifying the mechanisms responsible for the increased airway smooth muscle mass have indicated that hyperplasia of airway smooth muscle, due in part to airway myocyte proliferation, is likely a major factor. Airway smooth muscle proliferation has been studied extensively in culture and in animal models of asthma, and these studies have revealed that a variety of receptors and mediators contributes to this response. This review aims to provide an overview of the receptors and mediators that control airway smooth muscle cell proliferation, with emphasis on the intracellular signalling mechanisms involved.
Collapse
|