1
|
Bayat S, Wild J, Winkler T. Lung functional imaging. Breathe (Sheff) 2023; 19:220272. [PMID: 38020338 PMCID: PMC10644108 DOI: 10.1183/20734735.0272-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary functional imaging modalities such as computed tomography, magnetic resonance imaging and nuclear imaging can quantitatively assess regional lung functional parameters and their distributions. These include ventilation, perfusion, gas exchange at the microvascular level and biomechanical properties, among other variables. This review describes the rationale, strengths and limitations of the various imaging modalities employed for lung functional imaging. It also aims to explain some of the most commonly measured parameters of regional lung function. A brief review of evidence on the role and utility of lung functional imaging in early diagnosis, accurate lung functional characterisation, disease phenotyping and advancing the understanding of disease mechanisms in major respiratory disorders is provided.
Collapse
Affiliation(s)
- Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, STROBE Laboratory, INSERM UA07, Grenoble, France
| | - Jim Wild
- POLARIS, Imaging Group, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Venegas JG. Measuring Anatomical Distributions of Ventilation and Aerosol Deposition with PET-CT. J Aerosol Med Pulm Drug Deliv 2023; 36:210-227. [PMID: 37585546 PMCID: PMC10623465 DOI: 10.1089/jamp.2023.29086.jgv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
In disease, lung function and structure are heterogeneous, and aerosol transport and local deposition vary significantly among parts of the lung. Understanding such heterogeneity is relevant to aerosol medicine and for quantifying mucociliary clearance from different parts of the lung. In this chapter, we describe positron emission tomography (PET) imaging methods to quantitatively assess the deposition of aerosol and ventilation distribution within the lung. The anatomical information from computed tomography (CT) combined with the PET-deposition data allows estimates of airway surface concentration and peripheral tissue dosing in bronchoconstricted asthmatic subjects. A theoretical framework is formulated to quantify the effects of heterogeneous ventilation, uneven aerosol ventilation distribution in bifurcations, and varying escape from individual airways along a path of the airway tree. The framework is applied to imaging data from bronchoconstricted asthmatics to assess the contributions of these factors to the unevenness in lobar deposition. Results from this analysis show that the heterogeneity of ventilation contributes on average to more than one-third of the variability in interlobar deposition. Actual contribution of ventilation in individual lungs was variable and dependent on the breathing rate used by the subject during aerosol inhalation; the highest contribution was in patients breathing slowly. In subjects breathing faster, contribution of ventilation was reduced, with more expanded lobes showing lower deposition per unit ventilation than less expanded ones in these subjects. The lobar change in expansion measured from two static CT scans, which is commonly used as a surrogate for ventilation, did not correlate with aerosol deposition or with PET-measured ventilation. This suggests that dynamic information is needed to provide proper estimates of ventilation for asthmatic subjects. We hope that the enhanced understanding of the causes of heterogeneity in airway and tissue dosing using the tools presented here will help to optimize therapeutic effectiveness of inhalation therapy while minimizing toxicity.
Collapse
Affiliation(s)
- Jose G. Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Research Institute, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
4
|
Winkler T, Kohli P, Kelly VJ, Kehl EG, Witkin AS, Rodriguez-Lopez JM, Hibbert KA, Kone MT, Systrom DM, Waxman AB, Venegas JG, Channick RN, Harris RS. Perfusion imaging heterogeneity during NO inhalation distinguishes pulmonary arterial hypertension (PAH) from healthy subjects and has potential as an imaging biomarker. Respir Res 2022; 23:325. [PMID: 36457013 PMCID: PMC9714016 DOI: 10.1186/s12931-022-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Without aggressive treatment, pulmonary arterial hypertension (PAH) has a 5-year mortality of approximately 40%. A patient's response to vasodilators at diagnosis impacts the therapeutic options and prognosis. We hypothesized that analyzing perfusion images acquired before and during vasodilation could identify characteristic differences between PAH and control subjects. METHODS We studied 5 controls and 4 subjects with PAH using HRCT and 13NN PET imaging of pulmonary perfusion and ventilation. The total spatial heterogeneity of perfusion (CV2Qtotal) and its components in the vertical (CV2Qvgrad) and cranio-caudal (CV2Qzgrad) directions, and the residual heterogeneity (CV2Qr), were assessed at baseline and while breathing oxygen and nitric oxide (O2 + iNO). The length scale spectrum of CV2Qr was determined from 10 to 110 mm, and the response of regional perfusion to O2 + iNO was calculated as the mean of absolute differences. Vertical gradients in perfusion (Qvgrad) were derived from perfusion images, and ventilation-perfusion distributions from images of 13NN washout kinetics. RESULTS O2 + iNO significantly enhanced perfusion distribution differences between PAH and controls, allowing differentiation of PAH subjects from controls. During O2 + iNO, CV2Qvgrad was significantly higher in controls than in PAH (0.08 (0.055-0.10) vs. 6.7 × 10-3 (2 × 10-4-0.02), p < 0.001) with a considerable gap between groups. Qvgrad and CV2Qtotal showed smaller differences: - 7.3 vs. - 2.5, p = 0.002, and 0.12 vs. 0.06, p = 0.01. CV2Qvgrad had the largest effect size among the primary parameters during O2 + iNO. CV2Qr, and its length scale spectrum were similar in PAH and controls. Ventilation-perfusion distributions showed a trend towards a difference between PAH and controls at baseline, but it was not statistically significant. CONCLUSIONS Perfusion imaging during O2 + iNO showed a significant difference in the heterogeneity associated with the vertical gradient in perfusion, distinguishing in this small cohort study PAH subjects from controls.
Collapse
Affiliation(s)
- Tilo Winkler
- grid.38142.3c000000041936754XDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
| | - Puja Kohli
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Vanessa J. Kelly
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Ekaterina G. Kehl
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Alison S. Witkin
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Josanna M. Rodriguez-Lopez
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Kathryn A. Hibbert
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Mamary T. Kone
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - David M. Systrom
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Aaron B. Waxman
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Jose G. Venegas
- grid.38142.3c000000041936754XDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
| | - Richard N. Channick
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - R. Scott Harris
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
5
|
A Window on the Lung: Molecular Imaging as a Tool to Dissect Pathophysiologic Mechanisms of Acute Lung Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:1510507. [PMID: 31531003 PMCID: PMC6732639 DOI: 10.1155/2019/1510507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022]
Abstract
In recent years, imaging has given a fundamental contribution to our understanding of the pathophysiology of acute lung diseases. Several methods have been developed based on computed tomography (CT), positron emission tomography (PET), and magnetic resonance (MR) imaging that allow regional, in vivo measurement of variables such as lung strain, alveolar size, metabolic activity of inflammatory cells, ventilation, and perfusion. Because several of these methods are noninvasive, they can be successfully translated from animal models to patients. The aim of this paper is to review the advances in knowledge that have been accrued with these imaging modalities on the pathophysiology of acute respiratory distress syndrome (ARDS), ventilator-induced lung injury (VILI), asthma and chronic obstructive pulmonary disease (COPD).
Collapse
|
6
|
Winkler T. Airway Transmural Pressures in an Airway Tree During Bronchoconstriction in Asthma. ACTA ACUST UNITED AC 2019; 2:0110051-110056. [PMID: 32328574 DOI: 10.1115/1.4042478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/20/2018] [Indexed: 11/08/2022]
Abstract
Airway transmural pressure in healthy homogeneous lungs with dilated airways is approximately equal to the difference between intraluminal and pleural pressure. However, bronchoconstriction causes airway narrowing, parenchymal distortion, dynamic hyperinflation, and the emergence of ventilation defects (VDefs) affecting transmural pressure. This study aimed to investigate the changes in transmural pressure caused by bronchoconstriction in a bronchial tree. Transmural pressures before and during bronchoconstriction were estimated using an integrative computational model of bronchoconstriction. Briefly, this model incorporates a 12-generation symmetric bronchial tree, and the Anafi and Wilson model for the individual airways of the tree. Bronchoconstriction lead to the emergence of VDefs and a relative increase in peak transmural pressures of up to 84% compared to baseline. The highest increase in peak transmural pressure occurred in a central airway outside of VDefs, and the lowest increase was 27% in an airway within VDefs illustrating the heterogeneity in peak transmural pressures within a bronchial tree. Mechanisms contributing to the increase in peak transmural pressures include increased regional ventilation and dynamic hyperinflation both leading to increased alveolar pressures compared to baseline. Pressure differences between intraluminal and alveolar pressure increased driven by the increased airway resistance and its contribution to total transmural pressure reached up to 24%. In conclusion, peak transmural pressure in lungs with VDefs during bronchoconstriction can be substantially increased compared to dilated airways in healthy homogeneous lungs and is highly heterogeneous. Further insights will depend on the experimental studies taking these conditions into account.
Collapse
Affiliation(s)
- Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 e-mail:
| |
Collapse
|
7
|
Kelly VJ, Hibbert KA, Kohli P, Kone M, Greenblatt EE, Venegas JG, Winkler T, Harris RS. Hypoxic Pulmonary Vasoconstriction Does Not Explain All Regional Perfusion Redistribution in Asthma. Am J Respir Crit Care Med 2017. [PMID: 28644040 DOI: 10.1164/rccm.201612-2438oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Regional hypoventilation in bronchoconstricted patients with asthma is spatially associated with reduced perfusion, which is proposed to result from hypoxic pulmonary vasoconstriction (HPV). OBJECTIVES To determine the role of HPV in the regional perfusion redistribution in bronchoconstricted patients with asthma. METHODS Eight patients with asthma completed positron emission tomographic/computed tomographic lung imaging at baseline and after bronchoconstriction, breathing either room air or 80% oxygen (80% O2) on separate days. Relative perfusion, specific ventilation (sV), and gas fraction (Fgas) in the 25% of the lung with the lowest specific ventilation (sVlow) and the remaining lung (sVhigh) were quantified and compared. MEASUREMENTS AND MAIN RESULTS In the sVlow region, bronchoconstriction caused a significant decrease in sV under both room air and 80% O2 conditions (baseline vs. bronchoconstriction, mean ± SD, 1.02 ± 0.20 vs. 0.35 ± 0.19 and 1.03 ± 0.20 vs. 0.32 ± 0.16, respectively; P < 0.05). In the sVlow region, relative perfusion decreased after bronchoconstriction under room air conditions and also, to a lesser degree, under 80% O2 conditions (1.02 ± 0.19 vs. 0.72 ± 0.08 [P < 0.001] and 1.08 ± 0.19 vs. 0.91 ± 0.12 [P < 0.05], respectively). The Fgas increased after bronchoconstriction under room air conditions only (0.99 ± 0.04 vs. 1.00 ± 0.02; P < 0.05). The sVlow subregion analysis indicated that some of the reduction in relative perfusion after bronchoconstriction under 80% O2 conditions occurred as a result of the presence of regional hypoxia. However, relative perfusion was also significantly reduced in sVlow subregions that were hyperoxic under 80% O2 conditions. CONCLUSIONS HPV is not the only mechanism that contributes to perfusion redistribution in bronchoconstricted patients with asthma, suggesting that another nonhypoxia mechanism also contributes. We propose that this nonhypoxia mechanism may be either direct mechanical interactions and/or unidentified intercellular signaling between constricted airways, the parenchyma, and the surrounding vasculature.
Collapse
Affiliation(s)
- Vanessa J Kelly
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Kathryn A Hibbert
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Puja Kohli
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Mamary Kone
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Elliot E Greenblatt
- 2 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and.,3 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jose G Venegas
- 2 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Tilo Winkler
- 2 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - R Scott Harris
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
8
|
Baldi S, Hartley R, Brightling C, Gupta S. Asthma. IMAGING 2016. [DOI: 10.1183/2312508x.10002815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Plantier L, Pradel A, Delclaux C. [Mechanisms of non-specific airway hyperresponsiveness: Methacholine-induced alterations in airway architecture]. Rev Mal Respir 2016; 33:735-743. [PMID: 26916468 DOI: 10.1016/j.rmr.2015.10.742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
Multiple mechanisms drive non-specific airway hyperresponsiveness in asthma. At the organ level, methacholine inhalation induces a complex bronchomotor response involving both bronchoconstriction and, to some extent, paradoxical bronchodilatation. This response is heterogeneous both serially, along a single bronchial axis, and in parallel, among lung regions. The bronchomotor response to methacholine induces contraction of distal airways as well as focal airway closure in select lung territories, leading to anatomically defined ventilation defects and decreased vital capacity. In addition, loss of the bronchoprotector and bronchodilator effects of deep inspirations is a key contributor to airway hyperresponsiveness in asthma.
Collapse
Affiliation(s)
- L Plantier
- Service de physiologie-explorations fonctionnelles, hôpital Bichat Claude-Bernard, DHU fibrosis, inflammation, remodeling in cardiovascular, respiratory and renal diseases (FIRE), AP-HP, 75018 Paris, France; Université Paris Diderot, PRES Sorbonne Paris Cité, 75013 Paris, France; Inserm UMR 1152, physiopathologie et épidémiologie des maladies respiratoires, 75018 Paris, France; Inserm UMR 1100, service de pneumologie, centre d'étude des pathologies respiratoires, université François-Rabelais, hôpital Bretonneau, 37000 Tours, France.
| | - A Pradel
- Service d'explorations fonctionnelles respiratoires, hôpital de la Salpêtrière, AP-HP, 75013 Paris, France
| | - C Delclaux
- Service de physiologie-explorations fonctionnelles, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France; Université Paris Descartes, 75006 Paris, France; Centre d'investigation clinique 9201, hôpital européen Georges-Pompidou, AP-HP, Inserm, 75908 Paris, France; Inserm UMR 1141, service de physiologie pédiatrique, hôpital Robert-Debré, AP-HP, 75019 Paris, France
| |
Collapse
|
10
|
Glapiński J, Mroczka J, Polak AG. Analysis of the method for ventilation heterogeneity assessment using the Otis model and forced oscillations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 122:330-340. [PMID: 26363677 DOI: 10.1016/j.cmpb.2015.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Increased heterogeneity of the lung disturbs pulmonary gas exchange. During bronchoconstriction, inflammation of lung parenchyma or acute respiratory distress syndrome, inhomogeneous lung ventilation can become bimodal and increase the risk of ventilator-induced lung injury during mechanical ventilation. A simple index sensitive to ventilation heterogeneity would be very useful in clinical practice. In the case of bimodal ventilation, the index (H) can be defined as the ratio between the longer and shorter time constant characterising regions of contrary mechanical properties. These time constants can be derived from the Otis model fitted to input impedance (Zin) measured using forced oscillations. In this paper we systematically investigated properties of the aforementioned approach. The research included both numerical simulations and real experiments with a dual-lung simulator. Firstly, a computational model mimicking the physical simulator was derived and then used as a forward model to generate synthetic flow and pressure signals. These data were used to calculate the input impedance and then the Otis inverse model was fitted to Zin by means of the Levenberg-Marquardt (LM) algorithm. Finally, the obtained estimates of model parameters were used to compute H. The analysis of the above procedure was performed in the frame of Monte Carlo simulations. For each selected value of H, forward simulations with randomly chosen lung parameters were repeated 1000 times. Resulting signals were superimposed by additive Gaussian noise. The estimated values of H properly indicated the increasing level of simulated inhomogeneity, however with underestimation and variation increasing with H. The main factor responsible for the growing estimation bias was the fixed starting vector required by the LM algorithm. Introduction of a correction formula perfectly reduced this systematic error. The experimental results with the dual-lung simulator confirmed potential of the proposed procedure to properly deduce the lung heterogeneity level. We conclude that the heterogeneity index H can be used to assess bimodal ventilation imbalances in cases when this phenomenon dominates lung properties, however future analyses, including the impact of lung tissue viscoelasticity and distributed airway or tissue inhomogeneity on H estimates, as well as studies in the time domain, are advisable.
Collapse
Affiliation(s)
- Jarosław Glapiński
- Chair of Electronic and Photonic Metrology, Wrocław University of Technology, Wrocław, Poland.
| | - Janusz Mroczka
- Chair of Electronic and Photonic Metrology, Wrocław University of Technology, Wrocław, Poland
| | - Adam G Polak
- Chair of Electronic and Photonic Metrology, Wrocław University of Technology, Wrocław, Poland
| |
Collapse
|
11
|
Hartley R, Baldi S, Brightling C, Gupta S. Novel imaging approaches in adult asthma and their clinical potential. Expert Rev Clin Immunol 2015; 11:1147-62. [PMID: 26289375 DOI: 10.1586/1744666x.2015.1072049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently, imaging in asthma is confined to chest radiography and CT. The emergence of new imaging techniques and tremendous improvement of existing imaging methods, primarily due to technological advancement, has completely changed its research and clinical prospects. In research, imaging in asthma is now being employed to provide quantitative assessment of morphology, function and pathogenic processes at the molecular level. The unique ability of imaging for non-invasive, repeated, quantitative, and in vivo assessment of structure and function in asthma could lead to identification of 'imaging biomarkers' with potential as outcome measures in future clinical trials. Emerging imaging techniques and their utility in the research and clinical setting is discussed in this review.
Collapse
Affiliation(s)
- Ruth Hartley
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Simonetta Baldi
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Chris Brightling
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Sumit Gupta
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK.,b 2 Radiology Department, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| |
Collapse
|
12
|
Wellman TJ, Winkler T, Vidal Melo MF. Modeling of Tracer Transport Delays for Improved Quantification of Regional Pulmonary ¹⁸F-FDG Kinetics, Vascular Transit Times, and Perfusion. Ann Biomed Eng 2015; 43:2722-34. [PMID: 25940652 DOI: 10.1007/s10439-015-1327-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
¹⁸F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary ¹⁸F-FDG kinetics do not account for delays in ¹⁸F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of ¹⁸F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic ¹⁸F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n = 6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. ¹³NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of ¹⁸F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0 to 13.6 s, averaging 6.4 ± 2.9 s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on ¹³NN-PET (R² = 0.92, p < 0.001). By incorporating local vascular transports delays, this model of pulmonary ¹⁸F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation.
Collapse
Affiliation(s)
- Tyler J Wellman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Marcos F Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
| |
Collapse
|
13
|
Hwang SS, Chae YG, Oak C, Jung J, Lee HY, Kim SW, Chun BK, Kim HK, Jung M, Ahn YC, Park. In vivo real-time imaging of airway dynamics during bronchial challenge test. Lasers Surg Med 2015; 47:252-6. [PMID: 25779778 DOI: 10.1002/lsm.22345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Asthmatic patients exhibit airway hyper-responsiveness, which induces bronchoconstriction and results in a ventilation defect. The bronchial challenge test using methacholine is a useful way to measure airway hyper-responsiveness with airway constriction. Anatomical optical coherence tomography has been used to image airway hyper-responsiveness of medium sized bronchus with the aid of an endoscopic probe. Recently, a thoracic window was reported that allows direct visualization of terminal airway such as alveolus. A multi-scale integrated airway dynamics was assessed in this study. We imaged in vivo changes in the right intermedius bronchus and alveolar structure during the bronchial challenge test using two optical coherence tomography systems and correlated the changes with airway resistance. MATERIALS AND METHODS Rabbits intubated with a non-cuffed endotracheal tube on a ventilator sequentially inhaled normal saline and methacholine (2 or 5 μg/ml). The airway resistance was measured by mechanical ventilation and airway structures were monitored by a commercial endoscopic optical coherence tomography system (1,310 nm) and a house-made table-top spectral-domain optical coherence tomography system (850 nm). RESULTS We demonstrated an early decrease in the size of the right intermedius bronchus and alveoli in accordance with increased airway resistance after methacholine inhalation. OCT image after inhalation of 2 μg/ml methacholine showed some segmental narrowing of the right intermedius bronchus and the image after inhalation of 5 μg/ml methacholine showed even greater segmental narrowing. The cross-sectional areas were 7.2 ± 3.3 mm2 (normal saline), 3.7 ± 2.1 mm2 (2 μg/ml methacholine), and 2.4 ± 1.1 mm2 (5 μg/ml methacholine), respectively (P = 0.04). Most of the alveolar space was collapsed under elevated airway resistance with methacholine inhalation. The averaged areas per alveolus at the end of inspiration were 0.0244 ±0.0142 mm2 (normal saline), 0.0046 ±0.0026 mm2 (2 μg/ml methacholine), and 0.0048 ±0.0028 mm2 (5 μg/ml methacholine), respectively (P = 0.03). Methacholine induced a dose-dependent increase in airway resistance (1.1 ± 0.3 cm H2O sec/ml for 2 μg/ml methacholine, 1.5 ± 0.5 cm H2O sec/ml for 5 μg/ml methacholine) (P = 0.03). These results were obtained from normal rabbits during the bronchial challenge test with a non-cuffed endotracheal tube on a ventilator. With this setup increased airway resistance possibly resulted in larger leakage around the endotracheal tube, decreased inhaled volumes, and, in turn, alveolar collapse. CONCLUSION We performed a feasibility study of in vivo visualization of real-time airway dynamics. To our best knowledge, this is the first report of real-time integrated airway dynamics including the right intermedius bronchus and alveoli during a bronchial challenge test. OCT showed bronchial constriction and alveolar collapse with a higher methacholine dose. OCT images correlated with the measured airway resistance. Therefore, OCT could be a potential diagnostic device for airway hyper-responsiveness and airway remodeling.
Collapse
Affiliation(s)
- Sang Seok Hwang
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, Korea; Innovative Biomedical Technology Research Center, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Winkler T, Venegas JG, Harris RS. MATHEMATICAL MODELING OF VENTILATION DEFECTS IN ASTHMA. DRUG DISCOVERY TODAY. DISEASE MODELS 2014; 15:3-8. [PMID: 26744595 PMCID: PMC4698910 DOI: 10.1016/j.ddmod.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Airway narrowing by smooth muscle constriction is a hallmark of asthma attacks that may cause severe difficulties of breathing. However, the causes of asthma and the underlying mechanisms are not fully understood. Bronchoconstriction within a bronchial tree involves complex interactions among the airways that lead to the emergence of regions of poor ventilation (ventilation defects, VDefs) in the lungs. The emphasis of this review is on mathematical modeling of the mechanisms involved in bronchoconstriction and the emergence of the complex airway behavior that leads to VDefs. Additionally, the review discusses characteristic model behaviors and experimental data to demonstrate advances and limitations of different models.
Collapse
Affiliation(s)
- Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jose G. Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - R. Scott Harris
- Department of Medicine, Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Lung [(18)F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch in the early stage of experimental acute smoke inhalation. Anesthesiology 2014; 120:683-93. [PMID: 24051392 DOI: 10.1097/01.anes.0000435742.04859.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute lung injury occurs in a third of patients with smoke inhalation injury. Its clinical manifestations usually do not appear until 48-72 h after inhalation. Identifying inflammatory changes that occur in pulmonary parenchyma earlier than that could provide insight into the pathogenesis of smoke-induced acute lung injury. Furthermore, noninvasive measurement of such changes might lead to earlier diagnosis and treatment. Because glucose is the main source of energy for pulmonary inflammatory cells, the authors hypothesized that its pulmonary metabolism is increased shortly after smoke inhalation, when classic manifestations of acute lung injury are not yet expected. METHODS In five sheep, the authors induced unilateral injury with 48 breaths of cotton smoke while the contralateral lung served as control. The authors used positron emission tomography with: (1) [F]fluorodeoxyglucose to measure metabolic activity of pulmonary inflammatory cells; and (2) [N]nitrogen in saline to measure shunt and ventilation-perfusion distributions separately in the smoke-exposed and control lungs. RESULTS The pulmonary [F]fluorodeoxyglucose uptake rate was increased at 4 h after smoke inhalation (mean ± SD: 0.0031 ± 0.0013 vs. 0.0026 ± 0.0010 min; P < 0.05) mainly as a result of increased glucose phosphorylation. At this stage, there was no worsening in lung aeration or shunt. However, there was a shift of perfusion toward units with lower ventilation-to-perfusion ratio (mean ratio ± SD: 0.82 ± 0.10 vs. 1.12 ± 0.02; P < 0.05) and increased heterogeneity of the ventilation-perfusion distribution (mean ± SD: 0.21 ± 0.07 vs. 0.13 ± 0.01; P < 0 .05). CONCLUSION Using noninvasive imaging, the authors demonstrated that increased pulmonary [F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch occur early after smoke inhalation.
Collapse
|
16
|
Strengell S, Porra L, Sovijärvi A, Suhonen H, Suortti P, Bayat S. Differences in the pattern of bronchoconstriction induced by intravenous and inhaled methacholine in rabbit. Respir Physiol Neurobiol 2013; 189:465-72. [PMID: 24012991 DOI: 10.1016/j.resp.2013.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/27/2022]
Abstract
We measured bronchoconstriction in central bronchi, and in small peripheral airways causing the emergence of ventilation defects (VD), through two delivery routes: intravenous (IV) and inhaled MCh, in 2 groups of rabbits (A: n=5; B: n=4), using synchrotron imaging of regional lung structure and ventilation. We assessed the effect an initial IV challenge on a subsequent inhaled challenge in group B. Inhaled MCh decreased central airway cross-sections (CA) by 13-22%, but increased VD area by 25-49%. IV MCh decreased CA by 44% but increased the area of ventilation defects (VD) by 13% only. An initial IV MCh challenge reduced regional ventilation heterogeneity following a subsequent inhaled MCh challenge, suggesting the role of agonist-receptor interaction in the response pattern. Heterogeneous agonist distribution due to uneven aerosol deposition could explain the different patterns of response between IV and inhaled routes. This mechanism could participate in the emergence of ventilation heterogeneities during bronchial challenge, or exposure to allergen in asthmatic patients.
Collapse
|
17
|
Layachi S, Porra L, Albu G, Trouillet N, Suhonen H, Peták F, Sevestre H, Suortti P, Sovijärvi A, Habre W, Bayat S. Role of cellular effectors in the emergence of ventilation defects during allergic bronchoconstriction. J Appl Physiol (1985) 2013; 115:1057-64. [PMID: 23887899 DOI: 10.1152/japplphysiol.00844.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is not known whether local factors within the airway wall or parenchyma may influence the emergence and spatial distribution of ventilation defects (VDs), thereby modulating the dynamic system behavior of the lung during bronchoconstriction. We assessed the relationship between the distribution of cellular effectors and the emergence of defects in regional ventilation distribution following allergen challenge. We performed high-resolution K-edge subtraction (KES) synchrotron imaging during xenon inhalation and measured the forced oscillatory input impedance in ovalbumin (OVA)-sensitized Brown-Norway rats (n = 12) at baseline and repeatedly following OVA challenge. Histological slices with best anatomic matching to the computed tomographic images were stained with a modified May-Grunwald Giemsa and immunohistochemical staining with monoclonal anti-rat CD68, in six rats. Slides were digitized and total cells and eosinophils were counted in the walls of bronchi and vessels randomly selected within and outside of VDs on the basis of xenon-KES images. Ventilated alveolar area decreased and ventilation heterogeneity, Newtonian resistance, tissue damping, and elastance increased following OVA challenge. Eosinophil, total cell, and CD68+ counts were significantly higher in the bronchial and vascular walls within vs. outside of the VDs. The minimal central airway diameters during OVA-induced bronchoconstriction were correlated with eosinophil (R = -0.85; P = 0.031) and total cell densities (R = -0.82; P = 0.046) in the airway walls within the poorly ventilated zones. Our findings suggest that allergic airway inflammation is locally heterogeneous and is topographically associated with the local emergence of VDs following allergen challenge.
Collapse
Affiliation(s)
- Skander Layachi
- Université de Picardie Jules Verne and Amiens University Hospital, Amiens, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Walker C, Gupta S, Raj V, Siddiqui S, Brightling CE. Imaging advances in asthma. ACTA ACUST UNITED AC 2013; 5:453-65. [PMID: 23484630 DOI: 10.1517/17530059.2011.609886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Asthma is a global burden, affecting 5% of the general adult population, with approximately 5 - 10% suffering from severe asthma. Severe asthma is a complex heterogeneous disease entity, with high morbidity and mortality. Recent years have seen the introduction of a vast array of new imaging technologies, which have provided the ability to comprehensively, non-invasively and functionally assess the lungs. These advances have resulted in a better understanding of the pathophysiology in severe asthma and have the unprecedented potential to unravel the structure-function relationship of severe asthma in the future. AREAS COVERED This review article chronologically describes the technological advances currently used and to be used in the future. The article covers pitfalls in imaging of the airways and lung parenchyma in asthma from chest x-rays, CT scans, MRI, confocal florescence endomicroscopy to computational fluid dynamics. EXPERT OPINION Novel qualitative and quantitative imaging techniques have enabled us to study the large airway architecture in detail, assess the small airway structure and perform functional or novel physiological evaluations. Despite spectacular advances in imaging techniques and the birth of new modalities, there is an urgent need for both proof-of-concept studies, large cross-sectional and longitudinal clinical trials in severe asthma to validate and clinically correlate imaging-derived measures. This will extend our current understanding of the pathophysiology of severe asthma, and unravel the structure-function relationship, with the potential to discover novel severe asthma phenotypes, predict mortality, morbidity and response to existing and novel pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- Carolina Walker
- University of Leicester , Institute for Lung Health, Department of Infection , Inflammation and Immunity, Leicester , UK
| | | | | | | | | |
Collapse
|
19
|
Venegas J, Winkler T, Harris RS. Lung Physiology and Aerosol Deposition Imaged with Positron Emission Tomography. J Aerosol Med Pulm Drug Deliv 2013; 26:1-8. [DOI: 10.1089/jamp.2011.0944] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jose Venegas
- Department of Anesthesia (Bioengineering), MGH/Harvard, Boston, Massachusetts
| | - Tilo Winkler
- Department of Anesthesia (Bioengineering), MGH/Harvard, Boston, Massachusetts
| | - R. Scott Harris
- Department of Pulmonary, Critical Care, and Sleep Medicine, MGH/Harvard, Boston, Massachusetts
| |
Collapse
|
20
|
Harris RS, Fujii-Rios H, Winkler T, Musch G, Vidal Melo MF, Venegas JG. Ventilation defect formation in healthy and asthma subjects is determined by lung inflation. PLoS One 2012; 7:e53216. [PMID: 23285270 PMCID: PMC3532117 DOI: 10.1371/journal.pone.0053216] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/27/2012] [Indexed: 11/18/2022] Open
Abstract
Background Imaging studies have demonstrated that ventilation during bronchoconstriction in subjects with asthma is patchy with large ventilation defective areas (Vdefs). Based on a theoretical model, we postulated that during bronchoconstriction, as smooth muscle force activation increases, a patchy distribution of ventilation should emerge, even in the presence of minimal heterogeneity the lung. We therefore theorized that in normal lungs, Vdefs should also emerge in regions of the lung with reduced expansion. Objective We studied 12 healthy subjects to evaluate whether Vdefs formed during bronchoconstriction, and compared their Vdefs with those observed in 9 subjects with mild asthma. Methods Spirometry, low frequency (0.15 Hz) lung elastance and resistance, and regional ventilation by intravenous 13NN-saline positron emission tomography were measured before and after a challenge with nebulized methacholine. Vdefs were defined as regions with elevated residual 13NN after a period of washout. The average location, ventilation, volume, and fractional gas content of the Vdefs, relative to those of the rest of the lung, were calculated for both groups. Results Consistent with the predictions of the theoretical model, both healthy subjects and those with asthma developed Vdefs. These Vdefs tended to form in regions that, at baseline, had a lower degree of lung inflation and, in healthy subjects, tended to occur in more dependent locations than in subjects with asthma. Conclusion The formation of Vdefs is determined by the state of inflation prior to bronchoconstriction.
Collapse
Affiliation(s)
- R Scott Harris
- Department of Medicine-Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
21
|
Wellman TJ, Winkler T, Costa ELV, Musch G, Harris RS, Venegas JG, Vidal Melo MF. Effect of regional lung inflation on ventilation heterogeneity at different length scales during mechanical ventilation of normal sheep lungs. J Appl Physiol (1985) 2012; 113:947-57. [PMID: 22678958 PMCID: PMC3472483 DOI: 10.1152/japplphysiol.01631.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/01/2012] [Indexed: 01/06/2023] Open
Abstract
Heterogeneous, small-airway diameters and alveolar derecruitment in poorly aerated regions of normal lungs could produce ventilation heterogeneity at those anatomic levels. We modeled the washout kinetics of (13)NN with positron emission tomography to examine how specific ventilation (sV) heterogeneity at different length scales is influenced by lung aeration. Three groups of anesthetized, supine sheep were studied: high tidal volume (Vt; 18.4 ± 4.2 ml/kg) and zero end-expiratory pressure (ZEEP) (n = 6); low Vt (9.2 ± 1.0 ml/kg) and ZEEP (n = 6); and low Vt (8.2 ± 0.2 ml/kg) and positive end-expiratory pressure (PEEP; 19 ± 1 cmH(2)O) (n = 4). We quantified fractional gas content with transmission scans, and sV with emission scans of infused (13)NN-saline. Voxel (13)NN-washout curves were fit with one- or two-compartment models to estimate sV. Total heterogeneity, measured as SD[log(10)(sV)], was divided into length-scale ranges by measuring changes in variance of log(10)(sV), resulting from progressive filtering of sV images. High-Vt ZEEP showed higher sV heterogeneity at <12- (P < 0.01), 12- to 36- (P < 0.01), and 36- to 60-mm (P < 0.05) length scales compared with low-Vt PEEP, with low-Vt ZEEP in between. Increased heterogeneity was associated with the emergence of low sV units in poorly aerated regions, with a high correlation (r = 0.95, P < 0.001) between total heterogeneity and the fraction of lung with slow washout. Regional mean fractional gas content was inversely correlated with regional sV heterogeneity at <12- (r = -0.67), 12- to 36- (r = -0.74), and >36-mm (r = -0.72) length scales (P < 0.001). We conclude that sV heterogeneity at length scales <60 mm increases in poorly aerated regions of mechanically ventilated normal lungs, likely due to heterogeneous small-airway narrowing and alveolar derecruitment. PEEP reduces sV heterogeneity by maintaining lung expansion and airway patency at those small length scales.
Collapse
Affiliation(s)
- Tyler J Wellman
- Department of Biomedical Engineering, Boston University, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Several methods allow regional gas exchange to be inferred from imaging of regional ventilation and perfusion (V/Q) ratios. Each method measures slightly different aspects of gas exchange and has inherent advantages and drawbacks that are reviewed. Single photon emission computed tomography can provide regional measure of ventilation and perfusion from which regional V/Q ratios can be derived. PET methods using inhaled or intravenously administered nitrogen-13 provide imaging of both regional blood flow, shunt, and ventilation. Electric impedance tomography has recently been refined to allow simultaneous measurements of both regional ventilation and blood flow. MRI methods utilizing hyperpolarized helium-3 or xenon-129 are currently being refined and have been used to estimate local PaO(2) in both humans and animals. Microsphere methods are included in this review as they provide measurements of regional ventilation and perfusion in animals. One of their advantages is their greater spatial resolution than most imaging methods and the ability to use them as gold standards against which new imaging methods can be tested. In general, the reviewed methods differ in characteristics such as spatial resolution, possibility of repeated measurements, radiation exposure, availability, expensiveness, and their current stage of development.
Collapse
Affiliation(s)
- Johan Petersson
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Solna, Stockholm, Sweden.
| | | |
Collapse
|
23
|
Effect of positive end-expiratory pressure on regional ventilation distribution during bronchoconstriction in rabbit studied by synchrotron radiation imaging. Crit Care Med 2011; 39:1731-8. [PMID: 21494104 DOI: 10.1097/ccm.0b013e318218a375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the effects of positive end-expiratory pressure on regional ventilation distribution in normal lung and after histamine-induced bronchoconstriction. DESIGN Experimental study. SETTING International research laboratory. SUBJECTS Six healthy New Zealand rabbits weighing 2.5 ± 0.1 kg. INTERVENTIONS Rabbits were anesthetized, tracheostomized, paralyzed, and mechanically ventilated. Synchrotron radiation computed tomography images of tissue density and specific ventilation were acquired using K-edge subtraction imaging with inhaled stable xenon gas in middle and caudal thoracic levels on 0 and 5 cm H(2)O positive end-expiratory pressure at baseline and twice after histamine inhalation. MEASUREMENTS AND MAIN RESULTS At baseline, a positive end-expiratory pressure of 5 cm H(2)O significantly increased lung volume. Histamine inhalation caused patchy areas of decreased specific ventilation, including some areas with no ventilation. After histamine, positive end-expiratory pressure significantly increased the area of well-ventilated lung regions and decreased the heterogeneity of specific ventilation. This improvement went together with a significant but limited increase in the area of hyperinflated lung zones. CONCLUSIONS The findings of this study suggest that in mechanically ventilated rabbit with severely heterogeneous bronchoconstriction, a positive end-expiratory pressure of 5 cm H(2)O significantly improves regional ventilation homogeneity through dilation of flow-limited airways and recruitment of closed airways.
Collapse
|
24
|
Sandberg KL, Pinkerton KE, Poole SD, Minton PA, Sundell HW. Fetal nicotine exposure increases airway responsiveness and alters airway wall composition in young lambs. Respir Physiol Neurobiol 2011; 176:57-67. [DOI: 10.1016/j.resp.2010.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 11/30/2022]
|
25
|
Abstract
Structure-function relationships in the respiratory system are often a result of the emergence of self-organized patterns or behaviors that are characteristic of certain respiratory diseases. Proper description of such self-organized behavior requires network models that include nonlinear interactions among different parts of the system. This review focuses on 2 models that exhibit self-organized behavior: a network model of the lung parenchyma during the progression of emphysema that is driven by mechanical force-induced breakdown, and an integrative model of bronchoconstriction in asthma that describes interactions among airways within the bronchial tree. Both models suggest that the transition from normal to pathologic states is a nonlinear process that includes a tipping point beyond which interactions among the system components are reinforced by positive feedback, further promoting the progression of pathologic changes. In emphysema, the progressive destruction of tissue is irreversible, while in asthma, it is possible to recover from a severe bronchoconstriction. These concepts may have implications for pulmonary medicine. Specifically, we suggest that structure-function relationships emerging from network behavior across multiple scales should be taken into account when the efficacy of novel treatments or drug therapy is evaluated. Multiscale, computational, network models will play a major role in this endeavor.
Collapse
Affiliation(s)
- Tilo Winkler
- Massachusetts General Hospital and Harvard Medical School, Department of Anesthesia, Critical Care and Pain Medicine, Boston, Massachusetts, USA.
| | | |
Collapse
|
26
|
Suga K, Kawakami Y, Koike H, Iwanaga H, Tokuda O, Okada M, Matsunaga N. Lung ventilation–perfusion imbalance in pulmonary emphysema: assessment with automated V/Q quotient SPECT. Ann Nucl Med 2010; 24:269-77. [DOI: 10.1007/s12149-010-0369-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 01/17/2010] [Indexed: 11/27/2022]
|
27
|
Wellman TJ, Winkler T, Costa ELV, Musch G, Harris RS, Venegas JG, Melo MFV. Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen. J Nucl Med 2010; 51:646-53. [PMID: 20237036 DOI: 10.2967/jnumed.109.067926] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Regional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is no established method to assess sVol with PET. We present a method to measure sVol from respiratory-gated PET images of inhaled (13)N-nitrogen ((13)NN), validate the method against regional specific ventilation (sV), and study the effect of region-of-interest (ROI) volume and orientation on the sVol-sV relationship. METHODS Four supine sheep were mechanically ventilated (tidal volume V(T) = 8 mL/kg, respiratory rate adjusted to normocapnia) at low (n = 2, positive end-expiratory pressure = 0) and high (n = 2, positive end-expiratory pressure adjusted to achieve a plateau pressure of 30 cm H(2)O) lung volumes. Respiratory-gated PET scans were obtained after inhaled (13)NN equilibration both at baseline and after a period of mechanical ventilation. We calculated sVol from (13)NN-derived regional fractional gas content at end-inspiration (F(EI)) and end-expiration (F(EE)) using the formula sVol = (F(EI) - F(EE))/(F(EE)[1 - F(EI)]). sV was computed as the inverse of the subsequent (13)NN washout curve time constant. ROIs were defined by dividing the lung field with equally spaced coronal, sagittal, and transverse planes, perpendicular to the ventrodorsal, laterolateral, and cephalocaudal axes, respectively. RESULTS sVol-sV linear regressions for ROIs based on the ventrodorsal axis yielded the highest R(2) (range, 0.71-0.92 for mean ROI volumes from 7 to 162 mL), the cephalocaudal axis the next highest (R(2) = 0.77-0.88 for mean ROI volumes from 38 to 162 mL), and the laterolateral axis the lowest (R(2) = 0.65-0.83 for mean ROI volumes from 8 to 162 mL). ROIs based on the ventrodorsal axis yielded lower standard errors of estimates of sVol from sV than those based on the laterolateral axis or the cephalocaudal axis. CONCLUSION sVol can be computed with PET using the proposed method and is highly correlated with sV. Errors in sVol are smaller for larger ROIs and for orientations based on the ventrodorsal axis.
Collapse
Affiliation(s)
- Tyler J Wellman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Loring SH, Butler JP, Patz S. Science to practice: how do we interpret the transfer of hyperpolarized 129Xe from blood into alveolar gas? Radiology 2009; 252:319-21. [PMID: 19703872 DOI: 10.1148/radiol.2522090555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stephen H Loring
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Hospital, Harvard Medical School, 330 Brookline Ave, Dana 717, Boston, MA 02215, USA.
| | | | | |
Collapse
|
29
|
Harris RS, Winkler T, Musch G, Vidal Melo MF, Schroeder T, Tgavalekos N, Venegas JG. The prone position results in smaller ventilation defects during bronchoconstriction in asthma. J Appl Physiol (1985) 2009; 107:266-74. [PMID: 19443742 DOI: 10.1152/japplphysiol.91386.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of body posture on regional ventilation during bronchoconstriction is unknown. In five subjects with asthma, we measured spirometry, low-frequency (0.15-Hz) lung elastance, and resistance and regional ventilation by intravenous (13)NN-saline positron emission tomography before and after nebulized methacholine. The subjects were imaged prone on 1 day and supine on another, but on both days the methacholine was delivered while prone. From the residual (13)NN after washout, ventilation defective areas were defined, and their location, volume, ventilation, and fractional gas content relative to the rest of the lung were calculated. Independent of posture, all subjects developed ventilation defective areas. Although ventilation within these areas was similarly reduced in both postures, their volume was smaller in prone than supine (25 vs. 41%, P < 0.05). The geometric center of the ventilation defective areas was gravitationally dependent relative to that of the lung in both postures. Mean lung fractional gas content was greater in the prone position before methacholine and did not increase as much as in the supine position after methacholine. In the prone position at baseline, areas that became ventilation defects had lower gas content than the rest of the lung. In both positions at baseline, there was a gradient of gas content in the vertical direction. In asthma, the size and location of ventilation defects is affected by body position and likely affected by small differences in lung expansion during bronchoconstriction.
Collapse
Affiliation(s)
- R Scott Harris
- Department of Medicine, Pulmonary and Critical Care Unit, Bulfinch 148, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bayat S, Porra L, Suhonen H, Suortti P, Sovijärvi ARA. Paradoxical conducting airway responses and heterogeneous regional ventilation after histamine inhalation in rabbit studied by synchrotron radiation CT. J Appl Physiol (1985) 2009; 106:1949-58. [PMID: 19359611 DOI: 10.1152/japplphysiol.90550.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We studied both central conducting airway response and changes in the distribution of regional ventilation induced by inhaled histamine in healthy anesthetized and mechanically ventilated rabbit using a novel xenon-enhanced synchrotron radiation computed tomography (CT) imaging technique, K-edge subtraction imaging (KES). Images of specific ventilation were obtained using serial KES during xenon washin, in three axial lung slices, at baseline and twice after inhalation of histamine aerosol (50 or 125 mg/ml) in two groups of animals (n = 6 each). Histamine inhalation caused large clustered areas of poor ventilation, characterized by a drop in average specific ventilation (sV(m)), but an increase in sV(m) in the remaining lung zones indicating ventilation redistribution. Ventilation heterogeneity, estimated as coefficient of variation (CV) of sV(m) significantly increased following histamine inhalation. The area of ventilation defects and CV were significantly larger with the higher histamine dose. In conducting airways, histamine inhalation caused a heterogeneous airway response combining narrowing and dilatation in individual airways of different generations, with the probability for constriction increasing peripherally. This finding provides further in vivo evidence that airway reactivity in response to inhaled histamine is complex and that airway response may vary substantially with location within the bronchial tree.
Collapse
Affiliation(s)
- Sam Bayat
- Centre Hospitalier Universitaire d'Amiens, Cardiologie et Pneumo-Allergologie Pédiatriques, 80054 Amiens Cedex 1, France.
| | | | | | | | | |
Collapse
|
31
|
Winkler T, Venegas JG. Complex airway behavior and paradoxical responses to bronchoprovocation. J Appl Physiol (1985) 2007; 103:655-63. [PMID: 17478609 DOI: 10.1152/japplphysiol.00041.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heterogeneity of airway constriction and regional ventilation in asthma are commonly studied under the paradigm that each airway's response is independent from other airways. However, some paradoxical effects and contradictions in recent experimental and theoretical findings suggest that considering interactions among serial and parallel airways may be necessary. To examine airway behavior in a bronchial tree with 12 generations, we used an integrative model of bronchoconstriction, including for each airway the effects of pressure, tethering forces, and smooth muscle forces modulated by tidal stretching during breathing. We introduced a relative smooth muscle activation factor (Tr) to simulate increasing and decreasing levels of activation. At low levels of Tr, the model exhibited uniform ventilation and homogeneous airway narrowing. But as Tr reached a critical level, the airway behavior suddenly changed to a dual response with a combination of constriction and dilation. Ventilation decreased dramatically in a group of terminal units but increased in the rest. A local increase of Tr in a single central airway resulted in full closure, while no central airway closed under global elevation of Tr. Lung volume affected the response to both local and global stimulation. Compared with imaging data for local and global stimuli, as well as for the time course of airway lumen caliber during bronchoconstriction recovery, the model predictions were similar. The results illustrate the relevance of dynamic interactions among serial and parallel pathways in airway interdependence, which may be critical for the understanding of pathological conditions in asthma.
Collapse
Affiliation(s)
- Tilo Winkler
- Massachusetts General Hospital and Harvard Medical School, Department of Anesthesia and Critical Care, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
32
|
Abstract
Positron emission tomography (PET) provides three-dimensional images of the distributions of radionuclides that have been inhaled or injected into the lungs. By using radionuclides with short half-lives, the radiation exposure of the subject can be kept small. By following the evolution of the distributions of radionuclides in gases or compounds that participate in lung function, information about such diverse lung functions as regional ventilation, perfusion, shunt, gas fraction, capillary permeability, inflammation, and gene expression can be inferred. Thus PET has the potential to provide information about the links between cellular function and whole lung function in vivo. In this paper, recent advancements in PET methodology and techniques and information about lung function that have been obtained with these techniques are reviewed.
Collapse
Affiliation(s)
- R Scott Harris
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
33
|
Affiliation(s)
- Sally E Wenzel
- National Jewish Medical and Research Center for Immunology, Denver, Colorado, USA.
| | | |
Collapse
|
34
|
Harris RS, Winkler T, Tgavalekos N, Musch G, Melo MFV, Schroeder T, Chang Y, Venegas JG. Regional pulmonary perfusion, inflation, and ventilation defects in bronchoconstricted patients with asthma. Am J Respir Crit Care Med 2006; 174:245-53. [PMID: 16690973 PMCID: PMC2648114 DOI: 10.1164/rccm.200510-1634oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Bronchoconstriction in asthma leads to heterogeneous ventilation and the formation of large and contiguous ventilation defects in the lungs. However, the regional adaptations of pulmonary perfusion (Q) to such ventilation defects have not been well studied. METHODS We used positron emission tomography to assess the intrapulmonary kinetics of intravenously infused tracer nitrogen-13 ((13)NN), and measured the regional distributions of ventilation and perfusion in 11 patients with mild asthma. For each subject, the regional washout kinetics of (13)NN before and during methacholine-induced bronchoconstriction were analyzed. Two regions of interest (ROIs) were defined: one over a spatially contiguous area of high tracer retention (TR) during bronchoconstriction and a second one covering an area of similar size, showing minimal tracer retention (NR). RESULTS Both ROIs demonstrated heterogeneous washout kinetics, which could be described by a two-compartment model with fast and slow washout rates. We found a systematic reduction in regional Q to the TR ROI during bronchoconstriction and a variable and nonsignificant change in relative Q for NR regions. The reduction in regional Q was associated with an increase in regional gas content of the TR ROI, but its magnitude was greater than that anticipated solely by the change in regional lung inflation. CONCLUSION During methacholine-induced bronchoconstriction, perfusion to ventilation defects are systematically reduced by a relative increase in regional pulmonary vascular resistance.
Collapse
Affiliation(s)
- R Scott Harris
- Department of Medicine (Pulmonary and Critical Care Unit and General Medicine Unit), Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Musch G, Venegas JG. Positron emission tomography imaging of regional pulmonary perfusion and ventilation. Ann Am Thorac Soc 2006; 2:522-7, 508-9. [PMID: 16352758 PMCID: PMC2713340 DOI: 10.1513/pats.200508-088ds] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Positron emission tomography (PET) imaging is a noninvasive, quantitative method to assess pulmonary perfusion and ventilation in vivo. The core of this article focuses on the use of [13N]nitrogen (13N2) and PET to assess regional gas exchange. Regional perfusion and shunt can be measured with the 13N2-saline bolus infusion technique. A bolus of 13N2, dissolved in saline solution, is injected intravenously at the start of a brief apnea, while the tracer kinetics in the lung is measured by a sequence of PET frames. Because of its low solubility in blood, virtually all 13N2 delivered to aerated lung regions diffuses into the alveolar airspace, where it accumulates in proportion to regional perfusion during the apnea. In contrast, lung regions that are perfused but are not aerated and do not exchange gas (i.e., "shunting" units) do not retain 13N2 during apnea and the tracer concentration drops after the initial peak. Accurate estimates of regional perfusion and regional shunt can be derived by applying a mathematical model to the pulmonary kinetics of a 13N2-saline bolus. When breathing is resumed, specific alveolar ventilation can be calculated from the tracer washout rate, because 13N2 is eliminated almost exclusively by ventilation. Because of the rapid elimination of the tracer, 13N2 infusion scans can be followed by 13N2 inhalation scans that allow determination of regional gas fraction. This article describes insights into the pathophysiology of acute lung injury, pulmonary embolism, and asthma that have been gained by PET imaging of regional gas exchange.
Collapse
Affiliation(s)
- Guido Musch
- Department of Anesthesia and Critical Care, CLN 309, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| | | |
Collapse
|
36
|
Venegas JG, Schroeder T, Harris S, Winkler RT, Melo MFV. The distribution of ventilation during bronchoconstriction is patchy and bimodal: a PET imaging study. Respir Physiol Neurobiol 2005; 148:57-64. [PMID: 15994134 DOI: 10.1016/j.resp.2005.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Recent PET imaging data from bronchoconstricted sheep (Vidal Melo et al., 2005) showed that V /Q distributions were bimodal and topographically patchy, but including a substantial heterogeneity at scales <2.2 ml. In this paper, we reanalyze the experimental data to establish the contribution of ventilation (V (r)) heterogeneity to the bimodality in V /Q . This analysis demonstrates that the distribution of V (r) during bronchoconstriction was bimodal with large patches of severe hypoventilation occupying an average of 41% of the imaged lung. The degree of hypoventilation to these regions was highly correlated with the degree of oxygenation impairment, but was quite variable amongst animals in spite of consistent degrees of mechanical obstruction. Remarkably, those regions were found to be hyperventilated before methacholine and their degree of hyperventilation was correlated with their degree of hypoventilation during bronchoconstriction. These data suggest that improving the uniformity of ventilation at baseline may be a desirable therapeutic target if the risk of severe hypoxemia during asthma attacks is to be minimized and/or the distribution of inhaled pharmaceuticals is to be optimized.
Collapse
Affiliation(s)
- Jose G Venegas
- Department of Anaesthesia, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
37
|
Permutt S. Current status of functional pulmonary imaging. Acad Radiol 2005; 12:1359-61. [PMID: 16253847 DOI: 10.1016/j.acra.2005.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 08/17/2005] [Accepted: 08/20/2005] [Indexed: 11/18/2022]
Affiliation(s)
- Solbert Permutt
- Department of Medicine, John Hopkins Asthma & Allergy Center, Baltimore, MD 21224, USA.
| |
Collapse
|
38
|
Marcinkowski A, Layfield D, Tgavalekos N, Venegas JG. Enhanced parameter estimation from noisy PET data: Part II--evaluation. Acad Radiol 2005; 12:1448-56. [PMID: 16253857 DOI: 10.1016/j.acra.2005.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 08/10/2005] [Accepted: 08/19/2005] [Indexed: 11/22/2022]
Abstract
RATIONALE AND OBJECTIVES Positron emission tomography (PET) is a minimally invasive imaging modality that provides three-dimensional distribution data for a radioactive tracer concentration within the body. Local functional parameters are estimated from these images by fitting tracer kinetic data with mathematical models. However, in some applications, the reliability of parameter estimates may be hindered by the presence of noise. In the accompanying report in this issue of Academic Radiology, a novel method using principal component analysis (PCA) was presented and used for deriving parametric images of lung function from imaged tracer kinetics of intravenously injected nitrogen 13 (13NN) in saline solution. The PCA method averages 13NN concentrations from groups of voxels (volume elements) selected for their similarity in kinetics, rather than their spatial proximity. The goal of this study is to conduct a Monte Carlo simulation to evaluate the robustness to noise of parameters derived by means of the PCA method. MATERIALS AND METHODS This evaluation involved: (1) generating "noise-free" synthetic PET images from experimental PET data, (2) adding noise to these images, (3) applying the PCA method to yield parametric images, and (4) comparing these parametric images with original noise-free images. RESULTS Local parameters recovered by using the PCA method deviated from noise-free parameters on average by less than 1% for up to 32-fold of expected noise levels. These deviations were much less than those (>10%) recovered by using a direct curve-fitting method. CONCLUSION The novel PCA approach provides robust parametric lung functional images while preserving the spatial resolution of the original images.
Collapse
Affiliation(s)
- Amy Marcinkowski
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | | | | |
Collapse
|
39
|
Tgavalekos NT, Tawhai M, Harris RS, Musch G, Mush G, Vidal-Melo M, Venegas JG, Lutchen KR. Identifying airways responsible for heterogeneous ventilation and mechanical dysfunction in asthma: an image functional modeling approach. J Appl Physiol (1985) 2005; 99:2388-97. [PMID: 16081622 DOI: 10.1152/japplphysiol.00391.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We present an image functional modeling approach, which synthesizes imaging and mechanical data with anatomically explicit computational models. This approach is utilized to identify the relative importance of small and large airways in the simultaneous deterioration of mechanical function and ventilation in asthma. Positron emission tomographic (PET) images provide the spatial distribution and relative extent of ventilation defects in asthmatic subjects postbronchoconstriction. We also measured lung resistance and elastance from 0.15 to 8 Hz. The first step in image functional modeling involves mapping ventilation three-dimensional images to the computational model and identifying the largest sized airways of the model that, if selectively constricted, could precisely match the size and anatomic location of ventilation defects imaged by PET. In data from six asthmatic subjects, these airways had diameters <2.39 mm and mostly <0.44 mm. After isolating and effectively closing airways in the model associated with these ventilation defects, we imposed constriction with various means and standard deviations to the remaining airways to match the measured lung resistance and elastance from the same subject. Our results show that matching both the degree of mechanical impairment and the size and location of the PET ventilation defects requires either constriction of airways <2.4 mm alone, or a simultaneous constriction of small and large airways, but not just large airways alone. Also, whereas larger airway constriction may contribute to mechanical dysfunction during asthma, degradation in ventilation function requires heterogeneous distribution of near closures confined to small airways.
Collapse
|
40
|
Chon D, Simon BA, Beck KC, Shikata H, Saba OI, Won C, Hoffman EA. Differences in regional wash-in and wash-out time constants for xenon-CT ventilation studies. Respir Physiol Neurobiol 2005; 148:65-83. [PMID: 16061426 DOI: 10.1016/j.resp.2005.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/19/2005] [Accepted: 06/07/2005] [Indexed: 11/30/2022]
Abstract
UNLABELLED Xenon-enhanced computed tomography (Xe-CT) has been used to measure regional ventilation by determining the wash-in (WI) and wash-out (WO) rates of stable Xe. We tested the common assumption that WI and WO rates are equal by measuring WO-WI in different anatomic lung regions of six anesthetized, supine sheep scanned using multi-detector-row computed tomography (MDCT). We further investigated the effect of tidal volume, image gating (end-expiratory EE versus end-inspiratory EI), local perfusion, and inspired Xe concentration on this phenomenon. RESULTS WO time constant was greater than WI in all lung regions, with the greatest differences observed in dependent base regions. WO-WI time constant difference was greater during EE imaging, smaller tidal volumes, and with higher Xe concentrations. Regional perfusion did not correlate with WI-WO. We conclude that Xe-WI rate can be significantly different from the WO rate, and the data suggest that this effect may be due to a combination of anatomic and fluid mechanical factors such as Rayleigh-Taylor instabilities set up at interfaces between two gases of different densities.
Collapse
Affiliation(s)
- Deokiee Chon
- Departments of Radiology and Biomedical Engineering, University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Lambert RK, Wilson TA. Smooth muscle dynamics and maximal expiratory flow in asthma. J Appl Physiol (1985) 2005; 99:1885-90. [PMID: 15994242 DOI: 10.1152/japplphysiol.00450.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A computational model for maximal expiratory flow in constricted lungs is presented. The model was constructed by combining a previous computational model for maximal expiratory flow in normal lungs and a previous mathematical model for smooth muscle dynamics. Maximal expiratory flow-volume curves were computed for different levels of smooth muscle activation. The computed maximal expiratory flow-volume curves agree with data in the literature on flow in constricted nonasthmatic subjects. In the model, muscle force during expiration depends on the balance between the decrease in force that accompanies muscle shortening and the recovery of force that occurs during the time course of expiration, and the computed increase in residual volume (RV) depends on the magnitude of force recovery. The model was also used to calculate RV for a vital capacity maneuver with a slow rate of expiration, and RV was found to be further increased for this maneuver. We propose that the measurement of RV for a vital capacity maneuver with a slow rate of expiration would provide a more sensitive test of smooth muscle activation than the measurement of maximal expiratory flow.
Collapse
Affiliation(s)
- Rodney K Lambert
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|