1
|
Atochina-Vasserman E, Meshanni J, Stevenson E, Zhang D, Sun R, Ona N, Reagan E, Abramova E, Guo CJ, Wilkinson M, Baboo I, Yang Y, Pan L, Maurya D, Percec V, Li Y, Gow A, Weissman D. Targeted delivery of TGF-β mRNA to lung parenchyma using one-component ionizable amphiphilic Janus Dendrimers. RESEARCH SQUARE 2024:rs.3.rs-4656663. [PMID: 39041040 PMCID: PMC11261981 DOI: 10.21203/rs.3.rs-4656663/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Current clinical strategies for the delivery of pulmonary therapeutics to the lung are primarily targeted to the upper portions of the airways. However, targeted delivery to the lower regions of the lung is necessary for the treatment of parenchymal lung injury and disease. Here, we have developed an mRNA therapeutic for the lower lung using one-component Ionizable Amphiphilic Janus Dendrimers (IAJDs) as a delivery vehicle. We deliver an anti-inflammatory cytokine mRNA, transforming growth factor-beta (TGF-β), to produce transient protein expression in the lower regions of the lung. This study highlights IAJD's potential for precise, effective, and safe delivery of TGF-β mRNA to the lung. This delivery system offers a promising approach for targeting therapeutics to the specific tissues, a strategy necessary to fill the current clinical gap in treating parenchymal lung injury and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Nathan Ona
- University of Pennsylvania Perelman School of Medicine
| | - Erin Reagan
- University of Pennsylvania Perelman School of Medicine
| | | | | | | | - Ishana Baboo
- University of Pennsylvania Perelman School of Medicine
| | - Yuzi Yang
- East China University of Science and Technology
| | - Liuyan Pan
- East China University of Science and Technology
| | - Devendra Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania
| | | | | | | | | |
Collapse
|
2
|
Egger C, Cannet C, Gérard C, Suply T, Ksiazek I, Jarman E, Beckmann N. Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis. Eur J Pharmacol 2017; 809:64-72. [DOI: 10.1016/j.ejphar.2017.05.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/29/2022]
|
3
|
Liang J, Li N, Zhang Y, Hou C, Yang X, Shimizu T, Wang X, Ikenaka K, Fan K, Ma J. Disinhibition of Cathepsin C Caused by Cystatin F Deficiency Aggravates the Demyelination in a Cuprizone Model. Front Mol Neurosci 2016; 9:152. [PMID: 28066178 PMCID: PMC5175397 DOI: 10.3389/fnmol.2016.00152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
Although the precise mechanism underlying initial lesion development in multiple sclerosis (MS) remains unclear, CNS inflammation has long been associated with demyelination, and axonal degeneration. The activation of microglia/macrophages, which serve as innate immune cells in the CNS, is the first reaction to even minor pathologic changes in the CNS and is considered an initial pathogenic event in MS. Microglial activation accompanies a variety of gene expressions, including cystatin F (Cys F), which belongs to the cystatin superfamily and is one of the cathepsin inhibitors. In our previous study we showed that Cys F has a unique expression pattern in microglia/macrophages in the demyelination process. Specifically, the timing of Cys F induction correlated with ongoing demyelination, and the sites of Cys F expression overlapped with areas of remyelination. Cys F induction ceased in chronic demyelination when remyelination capacity was lost, suggesting that Cys F expressed by microglia/macrophages may play an important role in demyelination and/or remyelination. The functional role of Cys F in demyelinating disease of the CNS, however, is unclear. Cys F gene knockout mice were used in the current study to clarify the functional role of Cys F in the demyelination process in a cuprizone-induced demyelination animal model. We demonstrated that absence of the Cys F gene and the resulting disinhibition of cathepsin C (Cat C) aggravates the demyelination, and this finding may be related to the increased expression of the glia-derived chemokine, CXCL2, which may attract inflammatory cells to sites of myelin sheath damage. This effect was reversed by knock down of the Cat C gene. The findings gain further insight to function of Cat C in pathophysiology of MS, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future.
Collapse
Affiliation(s)
- Junjie Liang
- Graduate School of Dalian Medical UniversityDalian, China; Cardiovascular Division, Hailar People's HospitalHailar, China
| | - Ning Li
- Graduate School of Dalian Medical UniversityDalian, China; Department of Surgery, Wafangdian Central HospitalDalian, China
| | - Yanli Zhang
- Department of Anatomy, Dalian Medical University Dalian, China
| | - Changyi Hou
- Graduate School of Dalian Medical University Dalian, China
| | - Xiaohan Yang
- Liaoning Provincial Key Laboratory of Brain Diseases Dalian, China
| | | | - Xiaoyu Wang
- Department of Linguistics and Modern Languages, Chinese University of Hong Kong Shatin, Hong Kong, China
| | - Kazuhiro Ikenaka
- Department of Neurobiology and Bioinformatics, National Institute for Physiological Sciences Aichi, Japan
| | - Kai Fan
- Department of Anatomy, Dalian Medical University Dalian, China
| | - Jianmei Ma
- Department of Anatomy, Dalian Medical University Dalian, China
| |
Collapse
|
4
|
Yonezawa R, Yamamoto S, Takenaka M, Kage Y, Negoro T, Toda T, Ohbayashi M, Numata T, Nakano Y, Yamamoto T, Mori Y, Ishii M, Shimizu S. TRPM2 channels in alveolar epithelial cells mediate bleomycin-induced lung inflammation. Free Radic Biol Med 2016; 90:101-13. [PMID: 26600069 DOI: 10.1016/j.freeradbiomed.2015.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 02/04/2023]
Abstract
Lung inflammation is a major adverse effect of therapy with the antitumor drug bleomycin (BLM). Transient receptor potential melastatin 2 (TRPM2) is a Ca(2+)-permeable channel that is activated by oxidative stress through the production of ADP-ribose. We herein investigated whether TRPM2 channels contributed to BLM-induced lung inflammation. The intratracheal instillation of BLM into wild-type (WT) mice increased the number of polymorphonuclear leukocytes (PMNs) and inflammatory cytokine levels in the lung. Increases in inflammatory markers in WT mice were markedly reduced in trpm2 knockout (KO) mice, which demonstrated that the activation of TRPM2 channels was involved in BLM-induced lung inflammation. The expression of TRPM2 mRNA was observed in alveolar macrophages, alveolar epithelial cells, and lung fibroblasts. Actually, TRPM2 protein was expressed in lung tissues. Of these, TRPM2 channels in epithelial cells were activated by the addition of H2O2 following a BLM pretreatment, resulting in the secretion of macrophage inflammatory protein-2 (MIP-2). The H2O2-induced activation of TRPM2 by the BLM pretreatment was blocked by the poly(ADP-ribose) polymerase (PARP) inhibitors PJ34 and 3-aminobenzamide. The accumulation of poly(ADP-ribose) in the nucleus, a marker for ADP-ribose production, was strongly induced by H2O2 following the BLM pretreatment. Furthermore, administration of PRAP inhibitors into WT mice markedly reduced recruitment of inflammatory cells and MIP-2 secretion induced by BLM instillation. These results suggest that the induction of MIP-2 secretion through the activation of TRPM2 channels in alveolar epithelial cells is an important mechanism in BLM-induced lung inflammation, and the TRPM2 activation is likely to be mediated by ADP-ribose production via PARP pathway. TRPM2 channels may be new therapeutic target for BLM-induced lung inflammation.
Collapse
Affiliation(s)
- Ryo Yonezawa
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo 164-8530, Japan
| | - Shinichiro Yamamoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo 164-8530, Japan; Department of Molecular Cell Biology and Medicine, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Miki Takenaka
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Yukiko Kage
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Takaharu Negoro
- Department of Pharmacogenomics, Showa University School of Pharmacy, Tokyo, Japan
| | - Takahiro Toda
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Yokohama College of Pharmacy, Yokohama, Japan
| | - Masayuki Ohbayashi
- Division of Clinical Pharmacy, Department of Pharmacotherapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Tomohiro Numata
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasuko Nakano
- Department of Pharmacogenomics, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshinori Yamamoto
- Division of Clinical Pharmacy, Department of Pharmacotherapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masakazu Ishii
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Shunichi Shimizu
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo 164-8530, Japan; Laboratory of Pharmacology, Department of Clinical Pharmacy, Yokohama College of Pharmacy, Yokohama, Japan.
| |
Collapse
|
5
|
Dreymueller D, Uhlig S, Ludwig A. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2014; 308:L325-43. [PMID: 25480335 DOI: 10.1152/ajplung.00294.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute and chronic lung inflammation is driven and controlled by several endogenous mediators that undergo proteolytic conversion from surface-expressed proteins to soluble variants by a disintegrin and metalloproteinase (ADAM)-family members. TNF and epidermal growth factor receptor ligands are just some of the many substrates by which these proteases regulate inflammatory or regenerative processes in the lung. ADAM10 and ADAM17 are the most prominent members of this protease family. They are constitutively expressed in most lung cells and, as recent research has shown, are the pivotal shedding enzymes mediating acute lung inflammation in a cell-specific manner. ADAM17 promotes endothelial and epithelial permeability, transendothelial leukocyte migration, and inflammatory mediator production by smooth muscle and epithelial cells. ADAM10 is critical for leukocyte migration and alveolar leukocyte recruitment. ADAM10 also promotes allergic asthma by driving B cell responses. Additionally, ADAM10 acts as a receptor for Staphylococcus aureus (S. aureus) α-toxin and is crucial for bacterial virulence. ADAM8, ADAM9, ADAM15, and ADAM33 are upregulated during acute or chronic lung inflammation, and recent functional or genetic analyses have linked them to disease development. Pharmacological inhibitors that allow us to locally or systemically target and differentiate ADAM-family members in the lung suppress acute and asthmatic inflammatory responses and S. aureus virulence. These promising results encourage further research to develop therapeutic strategies based on selected ADAMs. These studies need also to address the role of the ADAMs in repair and regeneration in the lung to identify further therapeutic opportunities and possible side effects.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Park HJ, Yang MJ, Oh JH, Yang YS, Kwon MS, Song CW, Yoon S. Genome-wide transcriptional response during the development of bleomycin-induced pulmonary fibrosis in sprague-dawley rats. Toxicol Res 2013; 26:137-47. [PMID: 24278517 PMCID: PMC3834473 DOI: 10.5487/tr.2010.26.2.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 01/28/2023] Open
Abstract
Pulmonary fibrosis is a common consequence of many lung diseases and a leading cause of morbidity and mortality. The molecular mechanisms underlying the development of pulmonary fibrosis remain poorly understood. One model used successfully to study pulmonary fibrosis over the past few decades is the bleomycin-induced pulmonary fibrosis model. We aimed to identify the genes associated with fibrogenesis using an Affymetrix GeneChip system in a bleomycin-induced rat model for pulmonary fibrosis. To confirm fibrosis development, several analyses were performed, including cellular evaluations using bronchoalveolar lavage fluid, measurement of lactate dehydrogenase activity, and histopathological examinations. Common aspects of pulmonary fibrosis such as prolonged inflammation, immune cell infiltration, emergence of fibroblasts, and deposition of extracellular matrix and connective tissue elements were observed. Global gene expression analysis revealed significantly altered expression of genes (≥ 1.5-fold, p < 0.05.) in a time-dependent manner during the development of pulmonary fibrosis. Our results are consistent with previous results of well-documented gene expression. Interestingly, the expression of triggering receptor expressed on myeloid cells 2 (Trem2) , secreted phosphoprotein 1 (Spp1) , and several proteases such as Tpsab1, Mcpt1, and Cma1 was considerably induced in the lung after bleomycin treatment, despite little evidence that they are involved in pulmonary fibrogenesis. These data will aid in our understanding of fibrogenic mechanisms and contribute to the identification of candidate biomarkers of fibrotic disease development.
Collapse
Affiliation(s)
- Han-Jin Park
- Division of Research and Development, Korea Institute of Toxicology, Daejeon 305-343
| | | | | | | | | | | | | |
Collapse
|
7
|
Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S, Copin MC, Wallaert B, Glowacki F, Dewaeles E, Milosevic J, Maurizio J, Tedrow J, Marcet B, Lo-Guidice JM, Kaminski N, Barbry P, Luedde T, Perrais M, Mari B, Pottier N. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet 2013; 9:e1003291. [PMID: 23459460 PMCID: PMC3573122 DOI: 10.1371/journal.pgen.1003291] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 12/16/2012] [Indexed: 01/06/2023] Open
Abstract
As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. Fibrosis is the final common pathway in virtually all forms of chronic organ failure, including lung, liver, and kidney, and is a leading cause of morbidity and mortality worldwide. Fibrosis results from the excessive activity of fibroblasts, in particular a differentiated form known as myofibroblast that is responsible for the excessive and persistent accumulation of scar tissue and ultimately organ failure. Idiopathic Lung Fibrosis (IPF) is a chronic and often rapidly fatal pulmonary disorder of unknown origin characterized by fibrosis of the supporting framework (interstitium) of the lungs. Given the poor prognosis of IPF patients, new insights into the biology of (myo)fibroblasts is of major interest to develop new therapeutics aimed at reducing (myo)fibroblast activity to slow or even reverse disease progression, thereby preserving organ function and prolonging life. MicroRNAs (miRNAs), a class of non-coding RNA recently identified, are associated with normal cellular processes; and deregulation of miRNAs plays a causative role in a vast array of complex diseases. In this study, we identified a particular miRNA: miR-199a-5p that governs lung fibroblast activation and ultimately lung fibrosis. Overall we showed that miR-199a-5p is a major regulator of fibrosis with strong therapeutic potency to treat fibroproliferative diseases such as IPF.
Collapse
Affiliation(s)
| | - Imène Sarah Henaoui
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
| | | | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Sébastien Aubert
- Institut National de la Santé et de la Recherche Médicale, U837, Jean-Pierre Aubert Research Center, Equipe 5 “Mucines, Différentiation et Cancérogenèse Épithéliales”, Lille, France
- Pôle de Pathologie, CHRU Lille, Lille, France
- Faculté de Médecine, Université de Lille 2, Lille, France
| | - Marie-Christine Copin
- Institut National de la Santé et de la Recherche Médicale, U837, Jean-Pierre Aubert Research Center, Equipe 5 “Mucines, Différentiation et Cancérogenèse Épithéliales”, Lille, France
- Pôle de Pathologie, CHRU Lille, Lille, France
- Faculté de Médecine, Université de Lille 2, Lille, France
| | - Benoit Wallaert
- Service de Pneumologie et Immunoallergologie, CHRU Lille, Lille, France
| | | | - Edmone Dewaeles
- EA4483, Faculté de Médecine de Lille, Pole Recherche, Lille, France
| | - Jadranka Milosevic
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Julien Maurizio
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
| | - John Tedrow
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Brice Marcet
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
| | | | - Naftali Kaminski
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Pascal Barbry
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Perrais
- Institut National de la Santé et de la Recherche Médicale, U837, Jean-Pierre Aubert Research Center, Equipe 5 “Mucines, Différentiation et Cancérogenèse Épithéliales”, Lille, France
- Faculté de Médecine, Université de Lille 2, Lille, France
| | - Bernard Mari
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
- * E-mail: (B Mari) (BM); (N Pottier) (NP)
| | - Nicolas Pottier
- EA4483, Faculté de Médecine de Lille, Pole Recherche, Lille, France
- * E-mail: (B Mari) (BM); (N Pottier) (NP)
| |
Collapse
|
8
|
Lee YJ, Lee SH, Youn YS, Choi JY, Song KS, Cho MS, Kang JL. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice. Toxicol Appl Pharmacol 2012; 263:61-72. [PMID: 22687607 DOI: 10.1016/j.taap.2012.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 12/31/2022]
Abstract
Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Manali ED, Moschos C, Triantafillidou C, Kotanidou A, Psallidas I, Karabela SP, Roussos C, Papiris S, Armaganidis A, Stathopoulos GT, Maniatis NA. Static and dynamic mechanics of the murine lung after intratracheal bleomycin. BMC Pulm Med 2011; 11:33. [PMID: 21627835 PMCID: PMC3128859 DOI: 10.1186/1471-2466-11-33] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 05/31/2011] [Indexed: 01/14/2023] Open
Abstract
Background Despite its widespread use in pulmonary fibrosis research, the bleomycin mouse model has not been thoroughly validated from a pulmonary functional standpoint using new technologies. Purpose of this study was to systematically assess the functional alterations induced in murine lungs by fibrogenic agent bleomycin and to compare the forced oscillation technique with quasi-static pressure-volume curves in mice following bleomycin exposure. Methods Single intratracheal injections of saline (50 μL) or bleomycin (2 mg/Kg in 50 μL saline) were administered to C57BL/6 (n = 40) and Balb/c (n = 32) mice. Injury/fibrosis score, tissue volume density (TVD), collagen content, airway resistance (RN), tissue damping (G) and elastance coefficient (H), hysteresivity (η), and area of pressure-volume curve (PV-A) were determined after 7 and 21 days (inflammation and fibrosis stage, respectively). Statistical hypothesis testing was performed using one-way ANOVA with LSD post hoc tests. Results Both C57BL/6 and Balb/c mice developed weight loss and lung inflammation after bleomycin. However, only C57BL/6 mice displayed cachexia and fibrosis, evidenced by increased fibrosis score, TVD, and collagen. At day 7, PV-A increased significantly and G and H non-significantly in bleomycin-exposed C57BL/6 mice compared to saline controls and further increase in all parameters was documented at day 21. G and H, but not PV-A, correlated well with the presence of fibrosis based on histology, TVD and collagen. In Balb/c mice, no change in collagen content, histology score, TVD, H and G was noted following bleomycin exposure, yet PV-A increased significantly compared to saline controls. Conclusions Lung dysfunction in the bleomycin model is more pronounced during the fibrosis stage rather than the inflammation stage. Forced oscillation mechanics are accurate indicators of experimental bleomycin-induced lung fibrosis. Quasi-static PV-curves may be more sensitive than forced oscillations at detecting inflammation and fibrosis.
Collapse
Affiliation(s)
- Effrosyni D Manali
- 2nd Pulmonary Department, Attikon General Hospital, National and Kapodistrian University of Athens Medical School, Haidari, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang W, Xia W, Mao J, Xu D, Chen J, Feng S, Wang J, Li H, Theisen CF, Petersen JM, Thórólfsson M, Rasmussen HB, Junker F, Boel E, Su J. High level expression, purification and activation of human dipeptidyl peptidase I from mammalian cells. Protein Expr Purif 2011; 76:59-64. [DOI: 10.1016/j.pep.2010.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
|
11
|
Gill SE, Huizar I, Bench EM, Sussman SW, Wang Y, Khokha R, Parks WC. Tissue inhibitor of metalloproteinases 3 regulates resolution of inflammation following acute lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:64-73. [PMID: 20008147 DOI: 10.2353/ajpath.2010.090158] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tissue inhibitor of metalloproteinases 3 (TIMP3) inhibits not only matrix metalloproteinases but also a disintegrin and metalloproteinase domain family members and thus contributes to controlling diverse processes mediated by proteolysis. We used Timp3(-/-) mice to assess the role of this inhibitor in acute lung injury. After bleomycin-induced injury, inflammation, as indicated by the influx of neutrophils in bronchoalveolar lavage (BAL), peaked at 7 days post-injury in the wild-type mice and began to wane thereafter; however, in Timp3(-/-) mice, inflammation persisted up to 28 days. Furthermore, although the level of chemokines in BAL and lung homogenate was similar in both genotypes, BAL from Timp3(-/-) mice 7, 14, and 28 days post-injury had increased neutrophil chemotactic activity compared with wild-type BAL. At day 14, a higher percentage of apoptotic neutrophils were present in wild-type mice compared with Timp3(-/-) mice, further suggesting that TIMP3 constrains continued neutrophil influx. In addition, total matrix metalloproteinase activity was increased in lungs from Timp3(-/-) mice, and treatment of mice with a synthetic inhibitor of metalloproteinases rescued the enhanced neutrophilia phenotype. These data demonstrate that TIMP3 regulates neutrophil influx in the lung following injury through its ability to inhibit metalloproteinase activity and indicates that TIMP3 functions to promote the resolution of inflammation in the lung.
Collapse
Affiliation(s)
- Sean E Gill
- Center for Lung Biology, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Pottier N, Maurin T, Chevalier B, Puisségur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B, Barbry P, Mari B. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One 2009; 4:e6718. [PMID: 19701459 PMCID: PMC2726943 DOI: 10.1371/journal.pone.0006718] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury.
Collapse
Affiliation(s)
- Nicolas Pottier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
- EA2679, Faculté de Médecine H. Warembourg, Pôle Recherche, Lille, France
| | - Thomas Maurin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Benoit Chevalier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Marie-Pierre Puisségur
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Kevin Lebrigand
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Karine Robbe-Sermesant
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Thomas Bertero
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | | | - Elisabeth Courcot
- EA2679, Faculté de Médecine H. Warembourg, Pôle Recherche, Lille, France
| | - Géraldine Rios
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Sandra Fourre
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | | | - Brice Marcet
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Bruno Cardinaud
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Pascal Barbry
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
- * E-mail: (PB); (BM)
| | - Bernard Mari
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
- * E-mail: (PB); (BM)
| |
Collapse
|
13
|
Uh ST. Idiopathic Pulmonary Fibrosis: New Concept of Pathogenesis and Treatment. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2009. [DOI: 10.5124/jkma.2009.52.1.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Soo-Taek Uh
- Department of Respiratory and Allergy Medicine, Soonchunhyang University College of Medicine, Korea.
| |
Collapse
|
14
|
Defamie V, Cursio R, Le Brigand K, Moreilhon C, Saint-Paul MC, Laurens M, Crenesse D, Cardinaud B, Auberger P, Gugenheim J, Barbry P, Mari B. Gene expression profiling of human liver transplants identifies an early transcriptional signature associated with initial poor graft function. Am J Transplant 2008; 8:1221-36. [PMID: 18522548 DOI: 10.1111/j.1600-6143.2008.02249.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Liver ischemia-reperfusion injury occurring in orthotopic liver transplantation (OLT) may be responsible for early graft failure. Molecular mechanisms underlying initial poor graft function (IPGF) have been poorly documented in human. The purpose of this study was to identify the major transcriptional alterations occurring in human livers during OLT. Twenty-one RNA extracts derived from liver transplant biopsies taken after graft reperfusion were compared with 7 RNA derived from normal control livers. Three hundred seventy-one genes were significantly modulated and classified in molecular pathways relevant to liver metabolism, inflammatory response, cell proliferation and liver protection. Grafts were then subdivided into two groups based on their peak levels of serum aspartate amino transferase within 72 h after OLT (group 1, non-IPGF: 14 patients; group 2, IPGF: 7 patients). The two corresponding data sets were compared using a supervised prediction method. A new set of genes able to correctly classify 71% of the patients was defined. These genes were functionally associated with oxidative stress, inflammation and inhibition of cell proliferation. This study provides a comprehensive picture of the transcriptional events associated with human OLT and IPGF. We anticipate that such alterations provide a framework for the elucidation of the molecular mechanisms leading to IPGF.
Collapse
Affiliation(s)
- V Defamie
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, 660, Route des Lucioles F-06560 Sophia Antipolis, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wells AU, Hogaboam CM. Update in Diffuse Parenchymal Lung Disease 2007. Am J Respir Crit Care Med 2008; 177:580-4. [DOI: 10.1164/rccm.200801-056up] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|