1
|
Decreased Brain pH and Pathophysiology in Schizophrenia. Int J Mol Sci 2021; 22:ijms22168358. [PMID: 34445065 PMCID: PMC8395078 DOI: 10.3390/ijms22168358] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Postmortem studies reveal that the brain pH in schizophrenia patients is lower than normal. The exact cause of this low pH is unclear, but increased lactate levels due to abnormal energy metabolism appear to be involved. Schizophrenia patients display distinct changes in mitochondria number, morphology, and function, and such changes promote anaerobic glycolysis, elevating lactate levels. pH can affect neuronal activity as H+ binds to numerous proteins in the nervous system and alters the structure and function of the bound proteins. There is growing evidence of pH change associated with cognition, emotion, and psychotic behaviors. Brain has delicate pH regulatory mechanisms to maintain normal pH in neurons/glia and extracellular fluid, and a change in these mechanisms can affect, or be affected by, neuronal activities associated with schizophrenia. In this review, we discuss the current understanding of the cause and effect of decreased brain pH in schizophrenia based on postmortem human brains, animal models, and cellular studies. The topic includes the factors causing decreased brain pH in schizophrenia, mitochondria dysfunction leading to altered energy metabolism, and pH effects on the pathophysiology of schizophrenia. We also review the acid/base transporters regulating pH in the nervous system and discuss the potential contribution of the major transporters, sodium hydrogen exchangers (NHEs), and sodium-coupled bicarbonate transporters (NCBTs), to schizophrenia.
Collapse
|
2
|
Pérez-Pedraza E, Mota-Rojas D, Ramírez-Necoechea R, Guerrero-Legarreta I, Martínez-Burnes J, Lezama-García K, Mora-Medina P, Rosas M, Martínez V, González-Lozano M. Effect of the number of incisions and use of local anesthesia on the physiological indicators of surgically-castrated piglets. Int J Vet Sci Med 2018; 6:159-164. [PMID: 30564590 PMCID: PMC6286627 DOI: 10.1016/j.ijvsm.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to determine the effect of local anesthesia and the number of incisions performed on the physiological blood profile of piglets after surgical castration. A total of 60 male piglets were divided into five groups of 12 each, based on the surgical method employed and the use, or not, of local anesthesia, as follows: surgical castration using one horizontal incision in both testicles with (C1+L) and without (C1) local anesthesia; surgical castration using two vertical scrotal incisions with and without local anesthesia (C2+L and C2); and control piglets which were removed from their pens and held head-down by their hind limbs for approximately 90 s to simulate castration (SIM). Reference blood samples were drawn 24 h before castration (RV), immediately after surgery or simulated castration (PC), and at 24 and 48 h post-castration, to determine physiological profiles including; pH, hematocrit, glucose, electrolytes, lactate, pCO2 (mmHg), SO2 (mmHg), and bicarbonate. Results showed increases in lactate and hematocrit immediately after surgical or simulated castration with decreases in pH, HCO3- and base excess (BE). Surgical castration produced marked alterations of the physiological profile, detected by reduced pH and HCO3, higher lactate levels and BE alterations. These changes indicated metabolic acidosis that was greater in the piglets castrated surgically with one horizontal incision than in those castrated with two vertical incisions. More research is needed on the use of lidocaine during surgical castration, as it showed no effect on physiological profile in this study, but did alter hematocrit values.
Collapse
Affiliation(s)
- Efraín Pérez-Pedraza
- Ph.D. Program in Biological and Health Sciences [Programa de Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Assessment of Welfare in Domestic Animals. Department of Animal Production and Agriculture. Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Ramiro Ramírez-Necoechea
- Neurophysiology, Behavior and Assessment of Welfare in Domestic Animals. Department of Animal Production and Agriculture. Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Isabel Guerrero-Legarreta
- Department of Biotechnology, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Julio Martínez-Burnes
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City, Tamaulipas, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Assessment of Welfare in Domestic Animals. Department of Animal Production and Agriculture. Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Patricia Mora-Medina
- Department of Livestock Sciences, FESC, Universidad Nacional Autónoma de México, Cuautitlan Izcalli, State of Mexico, Mexico
| | - Marcelino Rosas
- Biological Sciences Department, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, FESC, State of Mexico, Mexico
| | - Victor Martínez
- Centro de Enseñanza, Investigación y Extensión en Producción Porcina (CEIEPP), FMVZ, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miguel González-Lozano
- Centro de Enseñanza, Investigación y Extensión en Producción Porcina (CEIEPP), FMVZ, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
3
|
Reséndiz-Cruz V, Ramírez-Bribiesca JE, Mota-Rojas D, Guerrero-Legarreta I, Cruz-Monterrosa RG, Hernandez-Sanchez D. The effect of stress on haematologic response and physicochemical parameters of muscle meat in rabbits. J Anim Physiol Anim Nutr (Berl) 2017; 102:e403-e412. [DOI: 10.1111/jpn.12759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/03/2017] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - D. Mota-Rojas
- Universidad Autónoma Metropolitana; Unidad Xochimilco; Coyoacan Mexico
| | | | | | | |
Collapse
|
4
|
Rackelmann N, Matter H, Englert H, Follmann M, Maier T, Weston J, Arndt P, Heyse W, Mertsch K, Wirth K, Bialy L. Discovery and Optimization of 1-Phenoxy-2-aminoindanes as Potent, Selective, and Orally Bioavailable Inhibitors of the Na +/H + Exchanger Type 3 (NHE3). J Med Chem 2016; 59:8812-8829. [PMID: 27606885 DOI: 10.1021/acs.jmedchem.6b00624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design, synthesis, and structure-activity relationship of 1-phenoxy-2-aminoindanes as inhibitors of the Na+/H+ exchanger type 3 (NHE3) are described based on a hit from high-throughput screening (HTS). The chemical optimization resulted in the discovery of potent, selective, and orally bioavailable NHE3 inhibitors with 13d as best compound, showing high in vitro permeability and lacking CYP2D6 inhibition as main optimization parameters. Aligning 1-phenoxy-2-aminoindanes onto the X-ray structure of 13d then provided 3D-QSAR models for NHE3 inhibition capturing guidelines for optimization. These models showed good correlation coefficients and allowed for activity estimation. In silico ADMET models for Caco-2 permeability and CYP2D6 inhibition were also successfully applied for this series. Moreover, docking into the CYP2D6 X-ray structure provided a reliable alignment for 3D-QSAR models. Finally 13d, renamed as SAR197, was characterized in vitro and by in vivo pharmacokinetic (PK) and pharmacological studies to unveil its potential for reduction of obstructive sleep apneas.
Collapse
Affiliation(s)
- Nils Rackelmann
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Hans Matter
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Heinrich Englert
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Markus Follmann
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Thomas Maier
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - John Weston
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Petra Arndt
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Winfried Heyse
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Katharina Mertsch
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Klaus Wirth
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| | - Laurent Bialy
- Sanofi-Aventis Deutschland GmbH, R&D , D-65926, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Sodium/proton exchanger 3 (NHE3) and sudden infant death syndrome (SIDS). Int J Legal Med 2014; 128:939-43. [PMID: 24590378 DOI: 10.1007/s00414-014-0978-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/04/2014] [Indexed: 01/26/2023]
Abstract
The sodium/proton exchanger protein 3 (NHE3) is located in chemosensitive areas of the medulla oblongata and plays an important role in the central control of respiration. Overexpression of NHE3 is correlated with lower respiration and might therefore contribute to the vulnerability of infants dying suddenly and unexpected (sudden infant death syndrome, SIDS). Our aim in this study was to verify already reported genetic variations in the NHE3 gene in an independent SIDS cohort from Switzerland. Two single nucleotide polymorphisms (SNPs) in the promoter region (G1131A and C1197T) and one variation in the coding sequence of exon 16 (C2405T) in the NHE3 gene were analyzed in 160 Caucasian SIDS infants and 192 Swiss adult controls by using a single base extension method (SNaPshot multiplex). No significant differences were detected in the allelic frequencies of the three NHE3 polymorphisms between SIDS cases and controls. We conclude that the three investigated NHE3 SNPs are unlikely to play a major role in the pathogenesis of SIDS in Caucasian infants. However, further genetic investigations in different ethnicities are required to determine whether variations in NHE3 are associated with an increased SIDS risk.
Collapse
|
6
|
Proton pump inhibition increases rapid eye movement sleep in the rat. BIOMED RESEARCH INTERNATIONAL 2014; 2014:162314. [PMID: 24701564 PMCID: PMC3950396 DOI: 10.1155/2014/162314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
Increased bodily CO2 concentration alters cellular pH as well as sleep. The proton pump, which plays an important role in the homeostatic regulation of cellular pH, therefore, may modulate sleep. We investigated the effects of the proton pump inhibitor “lansoprazole” on sleep-wakefulness. Male Wistar rats were surgically prepared for chronic polysomnographic recordings. Two different doses of lansoprazole (low: 1 mg/kg; high: 10 mg/kg) were injected intraperitoneally in the same animal (n = 7) and sleep-wakefulness was recorded for 6 hrs. The changes in sleep-wakefulness were compared statistically. Percent REM sleep amount in the vehicle and lansoprazole low dose groups was 9.26 ± 1.03 and 9.09 ± 0.54, respectively, which increased significantly in the lansoprazole high dose group by 31.75% (from vehicle) and 34.21% (from low dose). Also, REM sleep episode numbers significantly increased in lansoprazole high dose group. Further, the sodium-hydrogen exchanger blocker “amiloride” (10 mg/kg; i.p.) (n = 5) did not alter sleep-wake architecture. Our results suggest that the proton pump plays an important role in REM sleep modulation and supports our view that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep.
Collapse
|
7
|
Ruffin VA, Salameh AI, Boron WF, Parker MD. Intracellular pH regulation by acid-base transporters in mammalian neurons. Front Physiol 2014; 5:43. [PMID: 24592239 PMCID: PMC3923155 DOI: 10.3389/fphys.2014.00043] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022] Open
Abstract
Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions.
Collapse
Affiliation(s)
- Vernon A Ruffin
- Department of Physiology and Biophysics, Case Western Reserve University OH, USA
| | - Ahlam I Salameh
- Department of Physiology and Biophysics, Case Western Reserve University OH, USA
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University OH, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Case Western Reserve University OH, USA
| |
Collapse
|
8
|
Hu MC, Di Sole F, Zhang J, McLeroy P, Moe OW. Chronic regulation of the renal Na(+)/H(+) exchanger NHE3 by dopamine: translational and posttranslational mechanisms. Am J Physiol Renal Physiol 2013; 304:F1169-80. [PMID: 23427139 DOI: 10.1152/ajprenal.00630.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The intrarenal autocrine/paracrine dopamine (DA) system contributes to natriuresis in response to both acute and chronic Na(+) loads. While the acute DA effect is well described, how DA induces natriuresis chronically is not known. We used an animal and a cell culture model to study the chronic effect of DA on a principal renal Na(+) transporter, Na(+)/H(+) exchanger-3 (NHE3). Intraperitoneal injection of Gludopa in rats for 2 days elevated DA excretion and decreased total renal cortical and apical brush-border NHE3 antigen. Chronic treatment of an opossum renal proximal cell line with DA decreased NHE3 activity, cell surface and total cellular NHE3 antigen, but not NHE3 transcript. The decrease in NHE3 antigen was dose and time dependent with maximal inhibition at 16-24 h and half maximal effect at 3 × 10(-7) M. This is in contradistinction to the acute effect of DA on NHE3 (half maximal at 2 × 10(-6) M), which was not associated with changes in total cellular NHE3 protein. The DA-induced decrease in total NHE3 protein was associated with decrease in NHE3 translation and mediated by cis-sequences in the NHE3 5'-untranslated region. DA also decreased cell surface and total cellular NHE3 protein half-life. The DA-induced decrease in total cellular NHE3 was partially blocked by proteasome inhibition but not by lysosome inhibition, and DA increased ubiquitylation of total and surface NHE3. In summary, chronic DA inhibits NHE3 with mechanisms distinct from its acute action and involves decreased NHE3 translation and increased NHE3 degradation, which are novel mechanisms for NHE3 regulation.
Collapse
Affiliation(s)
- Ming Chang Hu
- Dept. of Internal Medicine, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA
| | | | | | | | | |
Collapse
|
9
|
Lukashova V, Jinadasa T, Ilie A, Verbich D, Cooper E, Orlowski J. The Na(+)/H (+) exchanger NHE5 is sorted to discrete intracellular vesicles in the central and peripheral nervous systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:397-410. [PMID: 23224898 DOI: 10.1007/978-1-4614-4756-6_34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pH milieu of the central and peripheral nervous systems is an important determinant of neuronal excitability, function, and survival. In mammals, neural acid-base homeostasis is coordinately regulated by ion transporters belonging to the Na(+)/H(+) exchanger (NHE) and bicarbonate transporter gene families. However, the relative contributions of individual isoforms within the respective families are not fully understood. This report focuses on the NHE family, specifically the plasma membrane-type NHE5 which is preferentially transcribed in brain, but the distribution of the native protein has not been extensively characterized. To this end, we generated a rabbit polyclonal antibody that specifically recognizes NHE5. In both central (cortex, hippocampus) and peripheral (superior cervical ganglia, SCG) nervous tissue of mice, NHE5 immunostaining was punctate and highly concentrated in the somas and to lesser amounts in the dendrites of neurons. Very little signal was detected in axons. Similarly, in primary cultures of differentiated SCG neurons, NHE5 localized predominantly to vesicles in the somatodendritic compartment, though some immunostaining was also evident in punctate vesicles along the axons. NHE5 was also detected predominantly in intracellular vesicles of cultured SCG glial cells. Dual immunolabeling of SCG neurons showed that NHE5 did not colocalize with markers for early endosomes (EEA1) or synaptic vesicles (synaptophysin), but did partially colocalize with the transferrin receptor, a marker of recycling endosomes. Collectively, these data suggest that NHE5 partitions into a unique vesicular pool in neurons that shares some characteristics of recycling endosomes where it may serve as an important regulated store of functional transporters required to maintain cytoplasmic pH homeostasis.
Collapse
|
10
|
|
11
|
Lee HJ, Park HJ, Lee S, Kim YH, Choi I. The sodium-driven chloride/bicarbonate exchanger NDCBE in rat brain is upregulated by chronic metabolic acidosis. Brain Res 2011; 1377:13-20. [DOI: 10.1016/j.brainres.2010.12.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/30/2010] [Accepted: 12/20/2010] [Indexed: 11/27/2022]
|
12
|
Abstract
To determine the role of cellularly generated protons in synaptic signaling, we recorded GABA miniature IPSCs (mIPSCs) from cultured rat cerebellar granule cells (CGCs) while varying the extracellular pH buffering capacity. Consistent with previous reports, we found that increasing pH from 7.4 to 8.0 sped mIPSC rise time and suppressed both amplitude of the current and total charge transferred. Conversely, acidification (from pH 7.4 to 6.8) slowed the rise time and increased current amplitude and total charge transferred. In a manner consistent with alkalinization, increasing the buffering capacity from 3 to 24 mm HEPES at pH 7.4 resulted in faster mIPSC rise time, a 37% reduction in amplitude, and a 48% reduction in charge transferred. Supplementing the normal physiological buffers (24 mm HCO(3)(-)/5%CO(2)) with 10 mm HEPES similarly diminished mIPSCs in a manner consistent with alkalinization, resulting in faster rise time, a 39% reduction in amplitude, and a 51% reduction in charge transferred. These findings suggest the existence of an acidifying synaptic force that is overcome by commonly used concentrations (10 mm) of HEPES buffer. Here we show that Na(+)/H(+) exchanger (NHE) activity appears to, in part, contribute to this synaptic acidification because inhibition of NHE by amiloride or lithium under physiological or weak buffering conditions alters mIPSCs in a manner consistent with alkalinization. These results suggest that acidification of the synaptic cleft occurs physiologically during GABAergic transmission and that NHE plays a critical role in generating the acidic nano-environment at the synapse.
Collapse
|
13
|
Park HJ, Rajbhandari I, Yang HS, Lee S, Cucoranu D, Cooper DS, Klein JD, Sands JM, Choi I. Neuronal expression of sodium/bicarbonate cotransporter NBCn1 (SLC4A7) and its response to chronic metabolic acidosis. Am J Physiol Cell Physiol 2010; 298:C1018-28. [PMID: 20147654 DOI: 10.1152/ajpcell.00492.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The sodium-bicarbonate cotransporter NBCn1 (SLC4A7) is an acid-base transporter that normally moves Na(+) and HCO(3)(-) into the cell. This membrane protein is sensitive to cellular and systemic pH changes. We examined NBCn1 expression and localization in the brain and its response to chronic metabolic acidosis. Two new NBCn1 antibodies were generated by immunizing a rabbit and a guinea pig. The antibodies stained neurons in a variety of rat brain regions, including hippocampal pyramidal neurons, dentate gyrus granular neurons, posterior cortical neurons, and cerebellar Purkinje neurons. Choroid plexus epithelia were also stained. Double immunofluorescence labeling showed that NBCn1 and the postsynaptic density protein PSD-95 were found in the same hippocampal CA3 neurons and partially colocalized in dendrites. PSD-95 was pulled down from rat brain lysates with the GST/NBCn1 fusion protein and was also coimmunoprecipitated with NBCn1. Chronic metabolic acidosis was induced by feeding rats with normal chow or 0.4 M HCl-containing chow for 7 days. Real-time PCR and immunoblot showed upregulation of NBCn1 mRNA and protein in the hippocampus of acidotic rats. NBCn1 immunostaining was enhanced in CA3 neurons, posterior cortical neurons, and cerebellar granular cells. Intraperitoneal administration of N-methyl-d-aspartate caused neuronal death determined by caspase-3 activity, and this effect was more severe in acidotic rats. Administering N-methyl-d-aspartate also inhibited NBCn1 upregulation in acidotic rats. We conclude that NBCn1 in neurons is upregulated by chronic acid loads, and this upregulation is associated with glutamate excitotoxicity.
Collapse
Affiliation(s)
- Hae Jeong Park
- Dept. of Physiology, Emory Univ., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Horner RL, Bradley TD. Update in sleep and control of ventilation 2007. Am J Respir Crit Care Med 2008; 177:947-51. [PMID: 18434334 DOI: 10.1164/rccm.200801-051up] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Iluchev D, Kostianev S, Marinov B. The Breathing Control Puzzle during Chronic Acid–Base Imbalance. Am J Respir Crit Care Med 2008; 177:798; author reply 798. [DOI: 10.1164/ajrccm.177.7.798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Kiwull-Schöne H, Wiemann M. The Breathing Control Puzzle during Chronic Acid–Base Imbalance. Am J Respir Crit Care Med 2008. [DOI: 10.1164/ajrccm.177.7.798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Kiwull-Schöne H, Kiwull P, Manz F, Kalhoff H. Food composition and acid-base balance: alimentary alkali depletion and acid load in herbivores. J Nutr 2008; 138:431S-434S. [PMID: 18203917 DOI: 10.1093/jn/138.2.431s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alkali-enriched diets are recommended for humans to diminish the net acid load of their usual diet. In contrast, herbivores have to deal with a high dietary alkali impact on acid-base balance. Here we explore the role of nutritional alkali in experimentally induced chronic metabolic acidosis. Data were collected from healthy male adult rabbits kept in metabolism cages to obtain 24-h urine and arterial blood samples. Randomized groups consumed rabbit diets ad libitum, providing sufficient energy but variable alkali load. One subgroup (n = 10) received high-alkali food and approximately 15 mEq/kg ammonium chloride (NH4Cl) with its drinking water for 5 d. Another group (n = 14) was fed low-alkali food for 5 d and given approximately 4 mEq/kg NH4Cl daily for the last 2 d. The wide range of alimentary acid-base load was significantly reflected by renal base excretion, but normal acid-base conditions were maintained in the arterial blood. In rabbits fed a high-alkali diet, the excreted alkaline urine (pH(u) > 8.0) typically contained a large amount of precipitated carbonate, whereas in rabbits fed a low-alkali diet, both pH(u) and precipitate decreased considerably. During high-alkali feeding, application of NH4Cl likewise decreased pH(u), but arterial pH was still maintained with no indication of metabolic acidosis. During low-alkali feeding, a comparably small amount of added NH4Cl further lowered pH(u) and was accompanied by a significant systemic metabolic acidosis. We conclude that exhausted renal base-saving function by dietary alkali depletion is a prerequisite for growing susceptibility to NH4Cl-induced chronic metabolic acidosis in the herbivore rabbit.
Collapse
Affiliation(s)
- Heidrun Kiwull-Schöne
- Department of Physiology, Faculty of Medicine, Ruhr-University, 44780 Bochum, Germany.
| | | | | | | |
Collapse
|