1
|
Kamiya M, Carter H, Espindola MS, Doyle TJ, Lee JS, Merriam LT, Zhang F, Kawano-Dourado L, Sparks JA, Hogaboam CM, Moore BB, Oldham WM, Kim EY. Immune mechanisms in fibrotic interstitial lung disease. Cell 2024; 187:3506-3530. [PMID: 38996486 PMCID: PMC11246539 DOI: 10.1016/j.cell.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 07/14/2024]
Abstract
Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.
Collapse
Affiliation(s)
- Mari Kamiya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Carter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena S Espindola
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tracy J Doyle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leticia Kawano-Dourado
- Hcor Research Institute, Hcor Hospital, Sao Paulo - SP 04004-030, Brazil; Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, São Paulo - SP 05403-900, Brazil
| | - Jeffrey A Sparks
- Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Le Guen P, Tardivon C, Laouénan C, Debray MP, Nicaise Roland P, Taillé C, Borie R, Ottaviani S, Guenther A, Dieudé P, Crestani B. Anti-mutated citrullinated vimentin antibodies are increased in IPF patients. Respir Med Res 2024; 85:101081. [PMID: 38232658 DOI: 10.1016/j.resmer.2023.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024]
Abstract
INTRO An increased prevalence of serum anti-MCV antibody is observed in the serum of patients with idiopathic pulmonary fibrosis (IPF) but the clinical relevance of these antibodies is unknown. METHODS Patients from our center with a diagnosis of IPF according to the 2018 ATS/ERS/JRS/ALAT guidelines and at least one anti-MCV assay available were selected. All patients were part of the prospective cohort European IPF registry and selected between 03/2010 and 03/2018. We constituted two groups of patients according to the anti-MCV status at baseline to compare their characteristics at baseline and the evolution of lung function, survival and/or transplantation status. RESULTS Anti-MCV data were available for 101 patients, of whom 86 had complete clinical data available. Twenty-nine (34 %) patients had a positive anti-MCV assay (MCV+), at a low level in most patients (29 UI/mL [IQR 25-40]), and 57 (66 %) patients a negative assay (MCV-). MCV+ patients were 20 men and 9 women, with a median age of 73 years [IQR 67-78]. MCV- patients were 49 men and 8 women with a median age of 72 years [IQR 64-77]. Sixty-two (75 %) patients were ex-smokers and 5 (6 %) were active smokers. Median cumulative tobacco smoke exposure was 22.5 (15.0-38.6) and was similar in both groups. Lung function test results and HRCT pattern distribution was similar in both groups at baseline. The median duration of follow-up was 3.5 years [IQR 2.1-5.0]. Lung function decline was similar in both groups. During the study period, 31 (36 %) patients died or have been transplanted with no difference in transplant-free survival status between the two groups. CONCLUSION Low level anti-MCV autoimmunity was prevalent in IPF patients.
Collapse
Affiliation(s)
- Pierre Le Guen
- Service de Pneumologie A, Hôpital Bichat, APHP and Université Paris Cité, INSERM, PHERE, F-75018 Paris, France
| | - Coralie Tardivon
- AP-HP, Hôpital Bichat, Département d'Epidémiologie Biostatistique et Recherche Clinique, INSERM CIC-EC 1425, F-75018 Paris, France
| | - Cédric Laouénan
- Université Paris Cité, INSERM, IAME, AP-HP, Hôpital Bichat, Département d'Epidémiologie Biostatistique et Recherche Clinique, F-75018 Paris, France
| | - Marie-Pierre Debray
- Service de Radiologie, Hôpital Bichat, APHP and Université Paris Cité, INSERM, PHERE, F-75018 Paris, France
| | - Pascale Nicaise Roland
- Service d'Immunologie, Autoimmunité, Hypersensibilité et Biothérapies A Hôpital Bichat, APHP and Université Paris Cité, INSERM, PHERE, F-75018 Paris, France
| | - Camille Taillé
- Service de Pneumologie A, Hôpital Bichat, APHP and Université Paris Cité, INSERM, PHERE, F-75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, Hôpital Bichat, APHP and Université Paris Cité, INSERM, PHERE, F-75018 Paris, France
| | - Sébastien Ottaviani
- Service de Rhumatologie, Hôpital Bichat, APHP, and Université Paris Cité, INSERM, PHERE, F-75018 Paris, France
| | - Andreas Guenther
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany
| | - Philippe Dieudé
- Service de Rhumatologie, Hôpital Bichat, APHP, and Université Paris Cité, INSERM, PHERE, F-75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP and Université Paris Cité, INSERM, PHERE, F-75018 Paris, France.
| |
Collapse
|
3
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Leuschner G, Semenova A, Mayr CH, Kapellos TS, Ansari M, Seeliger B, Frankenberger M, Kneidinger N, Hatz RA, Hilgendorff A, Prasse A, Behr J, Mann M, Schiller HB. Mass spectrometry-based autoimmune profiling reveals predictive autoantigens in idiopathic pulmonary fibrosis. iScience 2023; 26:108345. [PMID: 38026226 PMCID: PMC10661358 DOI: 10.1016/j.isci.2023.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmunity plays a role in certain types of lung fibrosis, notably connective tissue disease-associated interstitial lung disease (CTD-ILD). In idiopathic pulmonary fibrosis (IPF), an incurable and fatal lung disease, diagnosis typically requires clinical exclusion of autoimmunity. However, autoantibodies of unknown significance have been detected in IPF patients. We conducted computational analysis of B cell transcriptomes in published transcriptomics datasets and developed a proteomic Differential Antigen Capture (DAC) assay that captures plasma antibodies followed by affinity purification of lung proteins coupled to mass spectrometry. We analyzed antibody capture in two independent cohorts of IPF and CTL-ILD patients over two disease progression time points. Our findings revealed significant upregulation of specific immunoglobulins with V-segment bias in IPF across multiple cohorts. We identified a predictive autoimmune signature linked to reduced transplant-free survival in IPF, persisting over time. Notably, autoantibodies against thrombospondin-1 were associated with decreased survival, suggesting their potential as predictive biomarkers.
Collapse
Affiliation(s)
- Gabriela Leuschner
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximilian University Munich, CPC-M bioArchive, Munich, Asklepios Clinics, Gauting, Germany
| | - Anna Semenova
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christoph H. Mayr
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Theodore S. Kapellos
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Meshal Ansari
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Benjamin Seeliger
- Department of Pneumology, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marion Frankenberger
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximilian University Munich, CPC-M bioArchive, Munich, Asklepios Clinics, Gauting, Germany
| | - Nikolaus Kneidinger
- Department of Internal Medicine V, Ludwig-Maximilian University Munich, CPC-M bioArchive, Munich, Asklepios Clinics, Gauting, Germany
| | - Rudolf A. Hatz
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU), Munich, and Asklepios Medical Center, Member of the German Center for Lung Research (DZL), Gauting, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Center for Comprehensive Developmental Care (CDeCLMU), Hospital of the Ludwig-Maximilians University (LMU), Member of the German Center for Lung Research (DZL), CPC-M bioArchive, Munich, Germany
| | - Antje Prasse
- Department of Pneumology, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jürgen Behr
- Department of Internal Medicine V, Ludwig-Maximilian University Munich, CPC-M bioArchive, Munich, Asklepios Clinics, Gauting, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany
| | - Herbert B. Schiller
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
5
|
Dieudonné Y, Silvestrini MA, Dossier A, Meignin V, Jouenne F, Mahévas T, Bouaziz JD, Jackson MA, Mordant P, Poirot J, Onodi F, Calvani J, Hourseau M, Evrard D, Berisha M, Perrin F, Danel C, Borie R, Galicier L, Mourah S, Bengoufa D, Oksenhendler E, Grootenboer-Mignot S, Boutboul D. Paraneoplastic pemphigus uncovers distinct clinical and biological phenotypes of western unicentric Castleman disease. Br J Haematol 2023. [PMID: 37221131 DOI: 10.1111/bjh.18847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/25/2023]
Abstract
Unicentric Castleman disease (UCD) is a lymphoproliferative disease of unknown cause. Paraneoplastic pemphigus (PNP) is a major complication shown to be associated with a poor prognosis, with particular severity in patients with bronchiolitis obliterans (BO). This study describes the clinical and biological characteristics of UCD-PNP patients in a large Western cohort. A total of 148 patients diagnosed with UCD were identified, including 14 patients with a defined PNP. PNP was significantly associated with myasthenia gravis (MG) and FDC sarcoma during follow-up (FDCS). PNP was also significantly associated with reduced survival. These data, together with a multivariate analysis by principal components, led to the identification of UCD-PNP as a group at risk of MG, FDCS and death. PDGFRB sequencing performed on UCD lesions from six patients found the gain-of-function p.N666S variant in two. Interestingly, both patients had hyaline-vascular UCD subtype, were in the UCD-PNP subgroup and had FDCS. Sera from 25 UCD-PNP patients and 6 PNP patients without UCD were tested for PNP-associated autoantibodies. Sera from UCD-PNP patients had a strong reactivity against the N-terminal domain of recombinant periplakin (rPPL, 82%) and showed reactivity against at least two domains of rPPL. These features were not found in patients with UCD alone or in the PNP group without UCD. These data indicate that UCD-PNP patients belong to a subgroup sharing strong clinical and biological identity that might help to decipher the different dynamics of UCD natural history.
Collapse
Affiliation(s)
- Yannick Dieudonné
- Department of Clinical Immunology and Internal Medicine, National Reference Centre for Systemic Autoimmune Diseases (CNR RESO), Strasbourg University Hospital, Strasbourg, France
- INSERM UMR-S1109, Université de Strasbourg, Strasbourg, France
| | | | - Antoine Dossier
- Department of Internal Medicine, Hôpital Bichat, Université Paris Cité, Paris, France
| | - Véronique Meignin
- Department of Pathology, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Fanélie Jouenne
- Laboratoire de Génomique des Tumeurs et Pharmacologie, INSERM UMR-S976, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Thibault Mahévas
- Department of Dermatology, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Jean-David Bouaziz
- Department of Dermatology, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | | | - Pierre Mordant
- Department of Thoracic Surgery, Vascular Surgery, and Lung Transplantation, Hôpital Bichat, Université Paris Cité, Paris, France
| | - Justine Poirot
- U976 HIPI, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Fanny Onodi
- U976 HIPI, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Julien Calvani
- Department of Pathology, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Muriel Hourseau
- Department of Pathology, Hôpital Bichat, Université Paris Cité, Paris, France
| | - Diane Evrard
- Department of Otorhinolaryngology, Hôpital Bichat, Université Paris Cité, Paris, France
| | - Mirlinda Berisha
- National Reference Centre for Castleman Disease, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - François Perrin
- Department of Internal Medicine, Centre Hospitalier de Saint-Nazaire, Saint-Nazaire, France
| | - Claire Danel
- Department of Pathology, Hôpital Bichat, Université Paris Cité, Paris, France
| | - Raphael Borie
- Inserm, PHERE, F-75018 Paris, et Hôpital Bichat, APHP, Service de Pneumologie A, FHU APOLLO, Université Paris Cité, Paris, France
| | - Lionel Galicier
- National Reference Centre for Castleman Disease, Hôpital Saint Louis, Université Paris Cité, Paris, France
- Clinical Immunology Department, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Samia Mourah
- Laboratoire de Génomique des Tumeurs et Pharmacologie, INSERM UMR-S976, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Djaouida Bengoufa
- Immunology laboratory, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Eric Oksenhendler
- National Reference Centre for Castleman Disease, Hôpital Saint Louis, Université Paris Cité, Paris, France
- Clinical Immunology Department, Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Sabine Grootenboer-Mignot
- Department of Immunology, Auto-Immunity and Hypersensitivity, Hôpital Bichat, Université Paris Cité, Paris, France
| | - David Boutboul
- U976 HIPI, Hôpital Saint Louis, Université Paris Cité, Paris, France
- National Reference Centre for Castleman Disease, Hôpital Saint Louis, Université Paris Cité, Paris, France
- Clinical Immunology Department, Hôpital Saint Louis, Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Mukherjee M, Kolb M. A novel take on idiopathic pulmonary fibrosis disease progression: localised autoimmunity. Eur Respir J 2023; 61:61/5/2300653. [PMID: 37208038 DOI: 10.1183/13993003.00653-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Affiliation(s)
- Manali Mukherjee
- Department of Medicine, McMaster University and Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Martin Kolb
- Department of Medicine, McMaster University and Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON, Canada
| |
Collapse
|
7
|
Sánchez J, Sánchez Biol A, Múnera Biol M, García E, López JF. Immunoglobulin E and G autoantibodies against eosinophil proteins in children and adults with asthma and healthy subjects. World Allergy Organ J 2023; 16:100742. [PMID: 36941898 PMCID: PMC10024149 DOI: 10.1016/j.waojou.2023.100742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background Autoimmune IgG response has been described in the pathogenesis of asthma in adults, but IgE autoimmunity has been little explored. Considering high levels of blood eosinophils and immunoglobulin E in asthmatic patients, the possibility of IgE autoantibody response to eosinophil proteins arises. Objective To explore the presence of IgE and IgG autoantibodies against Eosinophil peroxidase (EPX) and Eosinophil cationic protein (ECP). Methods Three steps were followed: 1) The frequency of IgE and IgG autoantibodies against EPX and ECP was investigated among asthmatic and healthy subjects. 2) The ability of IgE autoantibodies to induce an inflammatory response (basophil activation) was performed. 3) The capacity of autoantibodies to identify patients with severe asthma was evaluated. Results Asthmatic and healthy subjects had IgE and IgG autoantibodies against EPX and ECP. Anti-EPX IgE was significantly higher in asthmatic patients. Severe asthmatic patients had a higher frequency and higher levels of IgE and IgG autoantibodies compared to healthy subjects. There was not a correlation between autoantibodies and blood eosinophils. Children younger than 14 years of age had IgE and IgG autoantibodies against to EPX and ECP. IgE autoantibodies to EPX and ECP induced basophil activation in asthmatic patients. Conclusion In this study, we identify for the first time IgE autoantibodies against EPX and ECP in adults and children patients with asthma; IgE and IgG autoantibodies against EPX and ECP could serve as a predictive biomarker of the clinical severity.
Collapse
Affiliation(s)
- Jorge Sánchez
- Group of Clinical and Experimental Allergy, Clinic “IPS Universitaria”, University of Antioquia. Medellín, Colombia
- Corresponding author. Department of Allergology and Pediatrics, Faculty of Medicine, University of Antioquia. Medellín, Colombia.
| | - Andres Sánchez Biol
- Group of Clinical and Experimental Allergy, Clinic “IPS Universitaria”, University of Antioquia. Medellín, Colombia
- Faculty of Medicine, Corporation University “Rafael Nuñez”, Cartagena, Colombia
| | - Marlon Múnera Biol
- Faculty of Medicine, Corporation University “Rafael Nuñez”, Cartagena, Colombia
| | - Elizabeth García
- Universidad de Los Andes, Fundación Santa Fe de Bogota, Unidad Medica quirúrgica ORL. Bogota, Colombia
| | - Juan-Felipe López
- Group of Clinical and Experimental Allergy, Clinic “IPS Universitaria”, University of Antioquia. Medellín, Colombia
| |
Collapse
|
8
|
Goodwin AT, Noble PW, Tatler AL. Plasma cells: a feasible therapeutic target in pulmonary fibrosis? Eur Respir J 2022; 60:60/5/2201748. [PMID: 36423920 DOI: 10.1183/13993003.01748-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Amanda T Goodwin
- Centre for Respiratory Research, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Paul W Noble
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amanda L Tatler
- Centre for Respiratory Research, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
10
|
Weill A, Descamps V, Chasset F, Mahévas T, Bourgault-Villada I, Wolkenstein P, Chollet-Martin S, Ingen-Housz-Oro S, Grootenboer-Mignot S. Erythema multiforme associated with anti-plakin antibodies: a multicentric retrospective case series. J Eur Acad Dermatol Venereol 2022; 36:2438-2442. [PMID: 35607912 DOI: 10.1111/jdv.18259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Erythema multiforme (EM) is a muco-cutaneous inflammatory disease mainly triggered by herpes simplex virus (HSV) recurrences. Association of EM and circulating auto-antibodies against plakins (anti-PLK-Abs [EM-PLK+]) has been reported. However, little is known about this subset of EM. OBJECTIVES We aimed to describe the clinical and immunological features and response to treatment of EM-PLK+. METHODS We conducted a retrospective multicentric study of EM-PLK+ selected from the database of the immunological laboratory of Bichat hospital, Paris, France, from January 2009 to December 2020. Anti-PLK-Abs were detected in ≥1 immunological tests: immunofluorescence assay, immunoblotting and/or ELISA. Patients with alternative diagnoses were excluded. RESULTS We included 29 patients (16 women, median age 25 [range 2-58] years). EM-PLK+ were mostly major (EM with ≥2 mucosal involvements; n = 24, 83%) and relapsing (≥2 flares; n = 23, 79%). Cutaneous lesions were target (n = 13, 54%) and target-like lesions (n = 9, 38%) with usual topography (acral, n = 19, 79%; limbs, n = 21, 88%). Mucosal lesions affected the mouth (n = 27, 96%) and genitalia (n = 19, 68%), with a median of 2 [range 0-5] mucous membranes. EM-PLK+ were suspected as certain or possible postherpetic (EM-HSV) in 19 cases (65.5%); no triggering factors were detected in 9 (31%) patients. Desmoplakin-I/II Abs were the most frequent anti-PLK-Abs (n = 20, 69%); envoplakin and periplakin Abs were detected in 11 and 9 cases. Relapsing EM-PLK+ (n = 23) were still active (≥1 flare within 6 months) in 13 (57%) patients despite immunosuppressive therapy (n = 8, 62%). Antiviral drugs were ineffective in preventing relapse in 15/16 (94%) EM-HSV. CONCLUSION The rationale for anti-PLK-Ab detection in EM is not elucidated. More systematic research of anti-PLK-Abs is warranted to better understand whether this association reflects humoral immune activity in a subset of EM or is fortuitous, related to an epitope spreading process. However, EM-PLK+ seems to be associated with major and relapsing subtypes, and difficult-to-treat cases.
Collapse
Affiliation(s)
- A Weill
- Department of Dermatology, CHU Henri Mondor, AP-HP, Créteil, France.,Referral Center for Toxic Bullous Dermatoses and Severe Drug Reactions TOXIBUL, Créteil, France.,Referral Center for Auto-Immune Bullous Diseases (MALIBUL), AP-HP, Paris, France
| | - V Descamps
- Department of Dermatology, CHU Bichat, AP-HP, Paris, France
| | - F Chasset
- Faculty of Medicine, Department of Dermatology, CHU Tenon, AP-HP, Sorbonne Université, Paris, France
| | - T Mahévas
- Department of Dermatology, CHU Saint-Louis, AP-HP, Paris, France
| | - I Bourgault-Villada
- Department of Dermatology, CHU Ambroise Paré, AP-HP, Boulogne Billancourt, France
| | - P Wolkenstein
- Department of Dermatology, CHU Henri Mondor, AP-HP, Créteil, France.,Referral Center for Toxic Bullous Dermatoses and Severe Drug Reactions TOXIBUL, Créteil, France.,Referral Center for Auto-Immune Bullous Diseases (MALIBUL), AP-HP, Paris, France.,Univ Paris Est Créteil Epiderm E, Créteil, France
| | | | - S Ingen-Housz-Oro
- Department of Dermatology, CHU Henri Mondor, AP-HP, Créteil, France.,Referral Center for Toxic Bullous Dermatoses and Severe Drug Reactions TOXIBUL, Créteil, France.,Referral Center for Auto-Immune Bullous Diseases (MALIBUL), AP-HP, Paris, France.,Univ Paris Est Créteil Epiderm E, Créteil, France
| | - S Grootenboer-Mignot
- Referral Center for Auto-Immune Bullous Diseases (MALIBUL), AP-HP, Paris, France.,Department of Immunobiology, CHU Bichat, AP-HP, Paris, France
| |
Collapse
|
11
|
Deng K, Luo Q, Liang Z, Long F, Han Q, Wang F, Huang S, Liao L, Lin T, Chen R. Are sputum autoantibodies more clinically relevant in idiopathic pulmonary fibrosis than serum autoantibodies? JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:3. [PMID: 35342449 PMCID: PMC8943581 DOI: 10.4103/jrms.jrms_219_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/25/2019] [Accepted: 08/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The adaptive immune system plays a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) has been reported previously. However, the association between airway and circulating autoantibodies (AAbs) levels is unclear. The aim of this study is to investigate the link between the AAb levels in airway and circulation in stable patients with IPF. MATERIALS AND METHODS From June 2016 to March 2017, 21 stable IPF patients and 22 healthy volunteers were recruited. We established Luminex interacting AAbs with bead-antigen complex to detect the immunoglobulin G antibodies levels of ten autoantigens which were matched serum (Se) and sputum (Sp) samples collected from recruited subjects, including Smith (Sm), Anti-ribosomal P antibody (P0), Sjögren syndrome type A antigen (SSA), La/Sjögren syndrome type B antigen (SSB), DNA topoisomerase (Scl-70), histidyl-tRNA synthetase (Jo-1), U1 small nuclear ribonucleoprotein (U1-SnRNP), thyroid peroxidase, Proteinase 3, and Myeloperoxidase. Spearman's rank correlation matrix was applied to explore the associations of Ab profiles between Se and Sp. RESULTS For IPF patients, Spearman's correlation matrix showed multiple intercorrelations among Sp-AAbs and Sp-AAbs (P < 0.05), while only the levels of AAb against Sm and anti-La in Se were correlated with those Sp-AAb counterparts (P < 0.05). For healthy individuals, only anti-La in Se was associated with those Sp-AAb counterparts (P < 0.05). For IPF patients, there was a positive correlation between carbon monoxide diffusing capacity (DLCO)% predicted and Sp-anti-P0 level (r = 0.464, P = 0.034). Forced vital capacity% predicted was positively correlated with Sp-anti-Scl-70 level (r = 0.466, P = 0.033). CONCLUSION Comparing to Se-AAbs, Sp-AAbs are more associated with clinical parameters in the patients with IPF. In order to better understand the role of autoimmunity in the pathogenesis of IPF, detection of Sp-AAbs for local autoimmune responses may be a good choice.
Collapse
Affiliation(s)
- Kuimiao Deng
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qun Luo
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Liang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Long
- State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Qian Han
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fengyan Wang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuyu Huang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liyue Liao
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tingting Lin
- School of Nursing, Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Kulkarni T, Valentine VG, Fei F, Tran-Nguyen TK, Quesada-Arias LD, Mkorombindo T, Pham HP, Simmons SC, Dsouza KG, Luckhardt T, Duncan SR. Correlates of survival after autoantibody reduction therapy for acute IPF exacerbations. PLoS One 2021; 16:e0260345. [PMID: 34813613 PMCID: PMC8610261 DOI: 10.1371/journal.pone.0260345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND No medical treatment has proven efficacy for acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF), and this syndrome has a very high mortality. Based on data indicating humoral autoimmune processes are involved in IPF pathogenesis, we treated AE-IPF patients with an autoantibody reduction regimen of therapeutic plasma exchange, rituximab, and intravenous immunoglobulin. This study aimed to identify clinical and autoantibody determinants associated with survival after autoantibody reduction in AE-IPF. METHODS Twenty-four(24) AE-IPF patients received the autoantibody reduction regimen. Plasma anti-epithelial autoantibody titers were determined by HEp-2 indirect immunofluorescence assays in 22 patients. RESULTS Mean age of the patients was 70 + 7 years old, and 70% were male. Beneficial clinical responses that occurred early during therapy were a favorable prognostic indicator: supplemental O2 flows needed to maintain resting SaO2>92% significantly decreased and/or walk distances increased among all 10 patients who survived for at least one year. Plasma anti-HEp-2 autoantibody titers were ~-three-fold greater in survivors compared to non-survivors (p<0.02). Anti-HEp-2 titers >1:160 were present in 75% of the evaluable one-year survivors, compared to 29% of non-survivors, and 10 of 12 patients (83%) with anti-HEP-2 titers <1:160 died during the observation period (Hazard Ratio = 3.3, 95% Confidence Interval = 1.02-10.6, p = 0.047). CONCLUSIONS Autoantibody reduction therapy is associated with rapid reduction of supplemental oxygen requirements and/or improved ability to ambulate in many AE-IPF patients. Facile anti-epithelial autoantibody assays may help identify those most likely to benefit from these treatments.
Collapse
Affiliation(s)
- Tejaswini Kulkarni
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Vincent G. Valentine
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Fei Fei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Thi K. Tran-Nguyen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Luisa D. Quesada-Arias
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Takudzwa Mkorombindo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Huy P. Pham
- Department of Pathology, University of Southern California, Los Angeles, CA, United States of America
| | - Sierra C. Simmons
- Department of Pathology, Michigan Pathology Specialists, Spectrum Health Hospitals, Grand Rapids, MI, United States of America
| | - Kevin G. Dsouza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Tracy Luckhardt
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Steven R. Duncan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
13
|
Boustani K, Ghai P, Invernizzi R, Hewitt RJ, Maher TM, Li QZ, Molyneaux PL, Harker JA. Autoantibodies are present in the bronchoalveolar lavage but not circulation in patients with fibrotic interstitial lung disease. ERJ Open Res 2021; 8:00481-2021. [PMID: 35174247 PMCID: PMC8841989 DOI: 10.1183/23120541.00481-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/23/2021] [Indexed: 11/09/2022] Open
Abstract
Background Fibrotic interstitial lung disease (fILD) has previously been associated with the presence of autoantibody. While studies have focused on systemic autoimmunity, the role of local autoantibodies in the airways remains unknown. We therefore extensively characterised the airway and peripheral autoantibody profiles in patients with fILD, and assessed association with disease severity and outcome. Methods Bronchoalveolar lavage (BAL) fluid was collected from a cohort of fILD patients and total BAL antibody concentrations were quantified. An autoantigen microarray was used to measure IgG and IgA autoantibodies against 122 autoantigens in BAL from 40 idiopathic pulmonary fibrosis (IPF), 20 chronic hypersensitivity pneumonitis (CHP), 20 connective tissue disease-associated ILD (CTD-ILD) patients and 20 controls. Results A subset of patients with fILD but not healthy controls had a local autoimmune signature in their BAL that was not present systemically, regardless of disease. The proportion of patients with IPF with a local autoantibody signature was comparable to that of CTD-ILD, which has a known autoimmune pathology, identifying a potentially novel subset of patients. The presence of an airway autoimmune signature was not associated with reduced survival probability or changes in lung function in the cohort as a whole. Patients with IPF had increased BAL total IgA and IgG1 while subjects with CHP had increased BAL IgA, IgG1 and IgG4. In patients with CHP, increased BAL total IgA was associated with reduced survival probability. Conclusion Airway autoantibodies that are not present systemically identify a group of patients with fILD and the mechanisms by which these autoantibodies contribute to disease requires further investigation. Autoantibodies are present in the bronchoalveolar lavage but not circulation in patients with fibrotic interstitial lung diseasehttps://bit.ly/3CNvKjj
Collapse
|
14
|
McQuiston A, Emtiazjoo A, Angel P, Machuca T, Christie J, Atkinson C. Set Up for Failure: Pre-Existing Autoantibodies in Lung Transplant. Front Immunol 2021; 12:711102. [PMID: 34456920 PMCID: PMC8385565 DOI: 10.3389/fimmu.2021.711102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Lung transplant patients have the lowest long-term survival rates compared to other solid organ transplants. The complications after lung transplantation such as primary graft dysfunction (PGD) and ultimately chronic lung allograft dysfunction (CLAD) are the main reasons for this limited survival. In recent years, lung-specific autoantibodies that recognize non-HLA antigens have been hypothesized to contribute to graft injury and have been correlated with PGD, CLAD, and survival. Mounting evidence suggests that autoantibodies can develop during pulmonary disease progression before lung transplant, termed pre-existing autoantibodies, and may participate in allograft injury after transplantation. In this review, we summarize what is known about pulmonary disease autoantibodies, the relationship between pre-existing autoantibodies and lung transplantation, and potential mechanisms through which pre-existing autoantibodies contribute to graft injury and rejection.
Collapse
Affiliation(s)
- Alexander McQuiston
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Amir Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Tiago Machuca
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Jason Christie
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carl Atkinson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
16
|
Wesley T, Berzins S, Kannourakis G, Ahmed N. The attributes of plakins in cancer and disease: perspectives on ovarian cancer progression, chemoresistance and recurrence. Cell Commun Signal 2021; 19:55. [PMID: 34001250 PMCID: PMC8127266 DOI: 10.1186/s12964-021-00726-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
The plakin family of cytoskeletal proteins play an important role in cancer progression yet are under-studied in cancer, especially ovarian cancer. These large cytoskeletal proteins have primary roles in the maintenance of cytoskeletal integrity but are also associated with scaffolds of intermediate filaments and hemidesmosomal adhesion complexes mediating signalling pathways that regulate cellular growth, migration, invasion and differentiation as well as stress response. Abnormalities of plakins, and the closely related spectraplakins, result in diseases of the skin, striated muscle and nervous tissue. Their prevalence in epithelial cells suggests that plakins may play a role in epithelial ovarian cancer progression and recurrence. In this review article, we explore the roles of plakins, particularly plectin, periplakin and envoplakin in disease-states and cancers with emphasis on ovarian cancer. We discuss the potential role the plakin family of proteins play in regulating cancer cell growth, survival, migration, invasion and drug resistance. We highlight potential relationships between plakins, epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) and discuss how interaction of these processes may affect ovarian cancer progression, chemoresistance and ultimately recurrence. We propose that molecular changes in the expression of plakins leads to the transition of benign ovarian tumours to carcinomas, as well as floating cellular aggregates (commonly known as spheroids) in the ascites microenvironment, which may contribute to the sustenance and progression of the disease. In this review, attempts have been made to understand the crucial changes in plakin expression in relation to progression and recurrence of ovarian cancer. Video Abstract
Collapse
Affiliation(s)
- Tamsin Wesley
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Stuart Berzins
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia. .,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia. .,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3052, Australia. .,Centre for Reproductive Health, The Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Melbourne, VIC, 3168, Australia.
| |
Collapse
|
17
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive lung scarring due to unknown injurious stimuli ultimately leading to respiratory failure. Diagnosis is complex and requires a combination of clinical, laboratory, radiological, and histological investigations, along with exclusion of known causes of lung fibrosis. The current understanding of the disease etiology suggests an interaction between genetic factors and epigenetic alterations in susceptible, older individuals. Prognosis is dismal and current treatment options include anti-fibrotic agents that only slow down disease progression and carry considerable side effects that hamper patients' quality of life. Therefore, the need for new, more effective treatments, alone or in combination with existing pharmacotherapy, is sorely needed. Regenerative medicine, the potential use of cell therapies to treat destructive diseases that cause architectural distortion to the target organ, has also emerged as an alternative therapeutic for lung diseases with unfavorable prognosis such as IPF. Mesenchymal stem cells (MSCs) and type II alveolar epithelial cells (AEC2s) have been used and their safety has been demonstrated. In the case of MSCs, both homogenic and allogeneic sources have been used and both are considered viable options without immunosuppressive therapy, taking into consideration the absence of immunogenicity and HLA response. AEC2s have been used in one trial with promising results but their use requires a deceased donor and immunosuppressive pre-treatment. In this review, we briefly summarize the current state of knowledge regarding the pathogenesis of IPF, and the background and rationale for using MSCs or AEC2s as potential treatment options. We list and describe the clinical trials completed to date and provide a comparison of their methods and results as well as a possible way forward.
Collapse
|
18
|
d'Alessandro M, Bergantini L, Cameli P, Fanetti M, Alderighi L, Armati M, Refini RM, Alonzi V, Sestini P, Bargagli E. Immunologic responses to antifibrotic treatment in IPF patients. Int Immunopharmacol 2021; 95:107525. [PMID: 33714885 DOI: 10.1016/j.intimp.2021.107525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease limited to the lungs. Immunological dysregulation may significantly participate in the pathophysiology of IPF. The immunological responses to nintedanib therapy in IPF patients were investigated for the first time in this study. MATERIALS AND METHODS Fifty IPF patients (median age (IQR) 69 (65-75) years; 38 males), were selected retrospectively. Flowcytometry analysis were performed to phenotype immunological biomarkers in peripheral blood from IPF patients after 1 year of antifibrotic therapy and a group of healthy volunteers. RESULTS Before starting antifibrotic treatment, IPF patients showed increased CD1d+CD5+ (p = 0.0460), Treg (p = 0.0354), T effector (CD25highCD127high) (p = 0.0336), central cells (CD4+CD45RA-) (p = 0.0354), effector cells (CD4+CD45RA+) (p = 0.0249) and follicular cell percentages (p = 0.0006), notably Tfh1 (p = 0.0412) and Tfh17 (p = 0.0051) cell percentages, in respect with healthy controls (HC). After nintedanib therapy, Breg (p = 0.0302), T effector (p = 0.0468), Th17.1 (p = 0.0146) and follicular cells (p = 0.0006), notably Tfh1 (p = 0.0006) and Tfh17 (p = 0.0182) cell percentages, were significantly decreased. In the logistic regression, Tfh panel showed a significant area under the receiver operating characteristics curve (AUROC) to distinguish IPF than HC (90.5%), as well as t0 and t1 (99.3%). CONCLUSION In conclusion, the immunological results obtained in this study demonstrate that nintedanib significantly helps to restore immunological responses in IPF patients. These findings will be useful in the search for biomarkers predictive of response to antifibrotic treatment.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy.
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Matteo Fanetti
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Lorenzo Alderighi
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Martina Armati
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Valerio Alonzi
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Piersante Sestini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena 53100, Italy
| |
Collapse
|
19
|
Antoniou KM, Tsitoura E, Vasarmidi E, Symvoulakis EK, Aidinis V, Tzilas V, Tzouvelekis A, Bouros D. Precision medicine in idiopathic pulmonary fibrosis therapy: From translational research to patient-centered care. Curr Opin Pharmacol 2021; 57:71-80. [PMID: 33556824 DOI: 10.1016/j.coph.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible fibrotic chronic lung disease affecting predominantly older adults, with a history of smoking. The current model of disease natural course is that recurrent injury of the alveolar epithelium in the context of advanced aging/cellular senescence is followed by defective re-epithelialization and scar tissue formation. Currently, two drugs, nintedanib and pirfenidone, that modify disease progression have been approved worldwide for the treatment of IPF. However, despite treatment, patients with IPF are not cured, and eventually, disease advances in most treated patients. Enhancing biogenomic and metabolic research output, its translation into clinical precision and optimal service delivery through patient-centeredness are key elements to support effective IPF care. In this review, we summarize therapeutic options currently investigated for IPF based on the major pathogenetic pathways and molecular targets that drive pulmonary fibrosis.
Collapse
Affiliation(s)
- Katerina M Antoniou
- Molecular & Cellular Pneumonology Laboratory, Department of Respiratory Medicine, Faculty of Medicine, University of Crete, Greece.
| | - Eliza Tsitoura
- Molecular & Cellular Pneumonology Laboratory, Department of Respiratory Medicine, Faculty of Medicine, University of Crete, Greece
| | - Eirini Vasarmidi
- Molecular & Cellular Pneumonology Laboratory, Department of Respiratory Medicine, Faculty of Medicine, University of Crete, Greece
| | | | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Vassilis Tzilas
- Center for Diseases of the Chest, Athens Medical Center, Athens, Greece
| | | | - Demosthenes Bouros
- Center for Diseases of the Chest, Athens Medical Center, Athens, Greece; Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
20
|
Khan T, Dasgupta S, Ghosh N, Chaudhury K. Proteomics in idiopathic pulmonary fibrosis: the quest for biomarkers. Mol Omics 2021; 17:43-58. [PMID: 33073811 DOI: 10.1039/d0mo00108b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating chronic progressive and fibrosing lung disease that culminates in the destruction of alveolar integrity and dismal prognosis. Its etiology is unknown and pathophysiology remains unclear. While great advances have been made in elucidating the pathogenesis mechanism, considerable gaps related to information on pathogenetic pathways and key protein targets involved in the clinical course of the disease exist. These issues need to be addressed for better clinical management of this highly challenging disease. Omics approach has revolutionized the entire area of disease understanding and holds promise in its translation to clinical biomarker discovery. This review outlines the contribution of proteomics towards identification of important biomarkers in IPF in terms of their clinical utility, i.e. prognosis, differential diagnosis, disease progression and treatment monitoring. The major dysregulated pathways associated with IPF are also discussed. Based on numerous proteomics studies on human and animal models, it is proposed that IPF pathogenesis involves complex interactions of several pathways such as oxidative stress, endoplasmic reticulum stress, unfolded protein response, coagulation system, inflammation, abnormal wounding, fibroblast proliferation, fibrogenesis and deposition of extracellular matrix. These pathways and their key path-changing mediators need further validation in large well-planned multi-centric trials at various geographical locations for successful development of clinical biomarkers of this confounding disease.
Collapse
Affiliation(s)
- Tila Khan
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
21
|
Bordag N, Biasin V, Schnoegl D, Valzano F, Jandl K, Nagy BM, Sharma N, Wygrecka M, Kwapiszewska G, Marsh LM. Machine Learning Analysis of the Bleomycin Mouse Model Reveals the Compartmental and Temporal Inflammatory Pulmonary Fingerprint. iScience 2020; 23:101819. [PMID: 33319168 PMCID: PMC7725744 DOI: 10.1016/j.isci.2020.101819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The bleomycin mouse model is the extensively used model to study pulmonary fibrosis; however, the inflammatory cell kinetics and their compartmentalization is still incompletely understood. Here we assembled historical flow cytometry data, totaling 303 samples and 16 inflammatory-cell populations, and applied advanced data modeling and machine learning methods to conclusively detail these kinetics. Three days post-bleomycin, the inflammatory profile was typified by acute innate inflammation, pronounced neutrophilia, especially of SiglecF+ neutrophils, and alveolar macrophage loss. Between 14 and 21 days, rapid responders were increasingly replaced by T and B cells and monocyte-derived alveolar macrophages. Multicolour imaging revealed the spatial-temporal cell distribution and the close association of T cells with deposited collagen. Unbiased immunophenotyping and data modeling exposed the dynamic shifts in immune-cell composition over the course of bleomycin-triggered lung injury. These results and workflow provide a reference point for future investigations and can easily be applied in the analysis of other datasets.
Collapse
Affiliation(s)
- Natalie Bordag
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz 8010, Austria
| | - Valentina Biasin
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz 8010, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz 8010, Austria
| | - Diana Schnoegl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz 8010, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz 8010, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz 8010, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz 8010 Austria
| | - Bence M. Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz 8010, Austria
| | - Neha Sharma
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz 8010, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz 8010, Austria
| | - Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen 35392, Germany. Member of German Center for Lung Research
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz 8010, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz 8010 Austria
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz 8010, Austria
| |
Collapse
|
22
|
Miles T, Hoyne GF, Knight DA, Fear MW, Mutsaers SE, Prêle CM. The contribution of animal models to understanding the role of the immune system in human idiopathic pulmonary fibrosis. Clin Transl Immunology 2020; 9:e1153. [PMID: 32742653 PMCID: PMC7385431 DOI: 10.1002/cti2.1153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary fibrosis occurs in a heterogeneous group of lung disorders and is characterised by an excessive deposition of extracellular matrix proteins within the pulmonary interstitium, leading to impaired gas transfer and a loss of lung function. In the past 10 years, there has been a dramatic increase in our understanding of the immune system and how it contributes to fibrogenic processes within the lung. This review will compare some of the models used to investigate the pathogenesis and treatment of pulmonary fibrosis, in particular those used to study immune cell pathogenicity in idiopathic pulmonary fibrosis, highlighting their advantages and disadvantages in dissecting human disease.
Collapse
Affiliation(s)
- Tylah Miles
- Institute for Respiratory Health Nedlands WA Australia.,Centre for Respiratory Health School of Biomedical Sciences University of Western Australia Nedlands WA Australia
| | - Gerard F Hoyne
- Centre for Cell Therapy and Regenerative Medicine School of Biomedical Sciences University of Western Australia Nedlands WA Australia.,School of Health Sciences University of Notre Dame Australia Fremantle WA Australia
| | - Darryl A Knight
- Providence Health Care Research Institute Vancouver BC Canada.,University of British Columbia Vancouver BC Canada
| | - Mark W Fear
- Burn Injury Research Unit School of Biomedical Sciences The University of Western Australia Crawley WA Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health Nedlands WA Australia.,Centre for Respiratory Health School of Biomedical Sciences University of Western Australia Nedlands WA Australia.,Centre for Cell Therapy and Regenerative Medicine School of Biomedical Sciences University of Western Australia Nedlands WA Australia
| | - Cecilia M Prêle
- Centre for Respiratory Health School of Biomedical Sciences University of Western Australia Nedlands WA Australia.,Centre for Cell Therapy and Regenerative Medicine School of Biomedical Sciences University of Western Australia Nedlands WA Australia.,Ear Science Institute Australia Nedlands WA Australia
| |
Collapse
|
23
|
Cargnoni A, Romele P, Bonassi Signoroni P, Farigu S, Magatti M, Vertua E, Toschi I, Cesari V, Silini AR, Stefani FR, Parolini O. Amniotic MSCs reduce pulmonary fibrosis by hampering lung B-cell recruitment, retention, and maturation. Stem Cells Transl Med 2020; 9:1023-1035. [PMID: 32452646 PMCID: PMC7445028 DOI: 10.1002/sctm.20-0068] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests a mechanistic link between inflammation and the development and progression of fibrotic processes. Mesenchymal stromal cells derived from the human amniotic membrane (hAMSCs), which display marked immunomodulatory properties, have been shown to reduce bleomycin‐induced lung fibrosis in mice, possibly by creating a microenvironment able to limit the evolution of chronic inflammation to fibrosis. However, the ability of hAMSCs to modulate immune cells involved in bleomycin‐induced pulmonary inflammation has yet to be elucidated. Herein, we conducted a longitudinal study of the effects of hAMSCs on alveolar and lung immune cell populations upon bleomycin challenge. Immune cells collected through bronchoalveolar lavage were examined by flow cytometry, and lung tissues were used to study gene expression of markers associated with different immune cell types. We observed that hAMSCs increased lung expression of T regulatory cell marker Foxp3, increased macrophage polarization toward an anti‐inflammatory phenotype (M2), and reduced the antigen‐presentation potential of macrophages and dendritic cells. For the first time, we demonstrate that hAMSCs markedly reduce pulmonary B‐cell recruitment, retention, and maturation, and counteract the formation and expansion of intrapulmonary lymphoid aggregates. Thus, hAMSCs may hamper the self‐maintaining inflammatory condition promoted by B cells that continuously act as antigen presenting cells for proximal T lymphocytes in injured lungs. By modulating B‐cell response, hAMSCs may contribute to blunting of the chronicization of lung inflammatory processes with a consequent reduction of the progression of the fibrotic lesion.
Collapse
Affiliation(s)
- Anna Cargnoni
- Centro di Ricerca E, Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Pietro Romele
- Centro di Ricerca E, Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | - Serafina Farigu
- Centro di Ricerca E, Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Marta Magatti
- Centro di Ricerca E, Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Elsa Vertua
- Centro di Ricerca E, Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Ivan Toschi
- Dip. Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Valentina Cesari
- Dip. Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Antonietta R Silini
- Centro di Ricerca E, Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Francesca R Stefani
- Centro di Ricerca E, Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Centro di Ricerca E, Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy.,Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
24
|
Kaza V, Zhu C, Feng L, Torres F, Bollineni S, Mohanka M, Banga A, Joerns J, Mohanakumar T, Terada LS, Li QZ. Pre-existing self-reactive IgA antibodies associated with primary graft dysfunction after lung transplantation. Transpl Immunol 2020; 59:101271. [PMID: 32007544 DOI: 10.1016/j.trim.2020.101271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Primary graft Dysfunction (PGD) results in significant mortality and morbidity after lung transplantation (LT). The objective of this study was to evaluate if pre-existing antibodies to self-antigens in sera of LT recipients are associated with PGD. METHODS The serum profiles of IgG and IgA autoantibodies were analyzed using a customized proteomic microarray bearing 124 autoantigens. Autoantibodies were analyzed using Mann-Whitney U test or Fisher exact test. The association of the autoantibodies with clinical phenotypes and survival was analyzed by Kaplan-Meier Survival Analysis. Receiver operating curve characteristics (ROC) were calculated to evaluate the predictive value of the autoantibodies for PGD. RESULTS 51 patients were included in this study. Autoantigen microarray analysis on the pre-transplantation samples identified 17 IgA and 3 IgG autoantibodies which were significantly higher in recipients who developed PGD compared to those who did not (adjusted p < .05 and fold change>1.5). 6 IgA Abs were significantly associated with survival. Taken as a panel, an elevation of 6 IgA Abs had significant predictive value for PGD. Area under the curve value for the panel was 0.9413 for PGD with ROC analysis. Notably, 6 of the 17 IgA autoantigen targets are belong to proteoglycan family of extracellular matrix proteins. CONCLUSION Pre-existing IgG and IgA autoantibodies in LT patients correlate with PGD and with survival in a single center, small cohort of lung transplant recipients. Further validation is needed to confirm the findings in the study.
Collapse
Affiliation(s)
- Vaidehi Kaza
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390-8814, United States of America.
| | - Chengsong Zhu
- Department of Immunology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Leying Feng
- Department of Immunology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Fernando Torres
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390-8814, United States of America
| | - Srinivas Bollineni
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390-8814, United States of America
| | - Manish Mohanka
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390-8814, United States of America
| | - Amit Banga
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390-8814, United States of America
| | - John Joerns
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390-8814, United States of America
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States of America
| | - Lance S Terada
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390-8814, United States of America
| | - Quan-Zhen Li
- Department of Immunology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.
| |
Collapse
|
25
|
Asai Y, Chiba H, Nishikiori H, Kamekura R, Yabe H, Kondo S, Miyajima S, Shigehara K, Ichimiya S, Takahashi H. Aberrant populations of circulating T follicular helper cells and regulatory B cells underlying idiopathic pulmonary fibrosis. Respir Res 2019; 20:244. [PMID: 31694639 PMCID: PMC6836348 DOI: 10.1186/s12931-019-1216-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Background T follicular helper (Tfh) cells have been identified as a new category of helper T cells, which express CXCR5 on their surface and induce the production of antigen-specific antibodies. Many investigations have found morbid proliferation and/or activation of Tfh cells in systemic autoimmune and allergic diseases. It is also known that Tfh cells are regulated by regulatory B (Breg) cells in the deteriorating such diseases. Recently, CXCL13, a ligand of CXCR5, has been reported to increase in the peripheral blood and lungs of patients with idiopathic pulmonary fibrosis (IPF). This study aimed to investigate the involvement of Tfh cells and Breg cells in IPF. Methods Peripheral blood samples were obtained from 18 patients with IPF. We isolated heparinized peripheral blood mononuclear cells and investigated the proportions of Breg cells, Tfh cells, PD-1+ICOS+ Tfh cells (activated form of Tfh cells), and the Tfh-cell subsets by flow cytometry. These cell profiles were compared with those of 21 healthy controls. Furthermore, we investigated the correlations between profiles of lymphocytes and lung physiology. Results The median proportions of Tfh cells per total CD4+ T cells and of PD-1+ICOS+ proportion of Tfh cells per total Tfh cells was significantly more in the IPF patients (20.4 and 5.2%, respectively) compared with healthy controls (15.4 and 2.1%, respectively; p = 0.042 and p = 0.004, respectively). The proportion of Tfh2 cells per total Tfh cells was significantly higher and the proportion of Tfh17 was smaller in the IPF patients than healthy controls. The percentage of Breg cells to total B cells was significantly decreased in the IPF patients (median, 8.5%) compared with that in the controls (median, 19.7%; p < 0.001). The proportion of Breg cells was positively correlated with the annual relative change in diffusing capacity of the lungs for carbon monoxide in the IPF patients (r = 0.583, p = 0.018). Conclusion Proliferation and activation of Tfh cells and a decrease in Breg cells were observed in the peripheral blood of patients with IPF. The profile of the Tfh-cell subset also changed. Specific humoral immunity aberration would likely underlie complicated pathophysiology of IPF.
Collapse
Affiliation(s)
- Yuichiro Asai
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hayato Yabe
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.,Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shun Kondo
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Satsuki Miyajima
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Katsunori Shigehara
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.,Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, 1-37, South 1-West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
26
|
Heukels P, van Hulst JAC, van Nimwegen M, Boorsma CE, Melgert BN, von der Thusen JH, van den Blink B, Hoek RAS, Miedema JR, Neys SFH, Corneth OBJ, Hendriks RW, Wijsenbeek MS, Kool M. Enhanced Bruton's tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis. Respir Res 2019; 20:232. [PMID: 31651327 PMCID: PMC6814043 DOI: 10.1186/s12931-019-1195-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Rationale Idiopathic Pulmonary Fibrosis (IPF) is thought to be triggered by repeated alveolar epithelial cell injury. Current evidence suggests that aberrant immune activation may contribute. However, the role of B-cell activation remains unclear. We determined the phenotype and activation status of B-cell subsets and evaluated the contribution of activated B-cells to the development of lung fibrosis both in humans and in mice. Methods B-cells in blood, mediastinal lymph node, and lung single-cell suspensions of IPF patients and healthy controls (HC) were characterized using 14-color flow cytometry. Mice were exposed to bleomycin to provoke pulmonary fibrosis. Results More IgA+ memory B-cells and plasmablasts were found in blood (n = 27) and lungs (n = 11) of IPF patients compared to HC (n = 21) and control lungs (n = 9). IPF patients had higher levels of autoreactive IgA in plasma, which correlated with an enhanced decline of forced vital capacity (p = 0.002, r = − 0.50). Bruton’s tyrosine kinase expression was higher in circulating IPF B-cells compared to HC, indicating enhanced B-cell activation. Bleomycin-exposed mice had increased pulmonary IgA+ germinal center and plasma cell proportions compared to control mice. The degree of lung fibrosis correlated with pulmonary germinal center B-cell proportions (p = 0.010, r = 0.88). Conclusion Our study demonstrates that IPF patients have more circulating activated B-cells and autoreactive IgA, which correlate with disease progression. These B-cell alterations were also observed in the widely used mouse model of experimental pulmonary fibrosis. Autoreactive IgA could be useful as a biomarker for disease progression in IPF.
Collapse
Affiliation(s)
- Peter Heukels
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands. .,Department of Pulmonary Medicine, Amphia hospital Breda, Breda, The Netherlands.
| | - Jennifer A C van Hulst
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Carian E Boorsma
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands.,GRIAC research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Rogier A S Hoek
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Jelle R Miedema
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Marlies S Wijsenbeek
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Tzouvelekis A, Karampitsakos T, Bouros E, Tzilas V, Liossis SN, Bouros D. Autoimmune Biomarkers, Antibodies, and Immunologic Evaluation of the Patient with Fibrotic Lung Disease. Clin Chest Med 2019; 40:679-691. [DOI: 10.1016/j.ccm.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Larson ED, Magno JPM, Steritz MJ, Llanes EGDV, Cardwell J, Pedro M, Roberts TB, Einarsdottir E, Rosanes RAQ, Greenlee C, Santos RAP, Yousaf A, Streubel SO, Santos ATR, Ruiz AG, Lagrana-Villagracia SM, Ray D, Yarza TKL, Scholes MA, Anderson CB, Acharya A, Gubbels SP, Bamshad MJ, Cass SP, Lee NR, Shaikh RS, Nickerson DA, Mohlke KL, Prager JD, Cruz TLG, Yoon PJ, Abes GT, Schwartz DA, Chan AL, Wine TM, Cutiongco-de la Paz EM, Friedman N, Kechris K, Kere J, Leal SM, Yang IV, Patel JA, Tantoco MLC, Riazuddin S, Chan KH, Mattila PS, Reyes-Quintos MRT, Ahmed ZM, Jenkins HA, Chonmaitree T, Hafrén L, Chiong CM, Santos-Cortez RLP. A2ML1 and otitis media: novel variants, differential expression, and relevant pathways. Hum Mutat 2019; 40:1156-1171. [PMID: 31009165 DOI: 10.1002/humu.23769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.
Collapse
Affiliation(s)
- Eric D Larson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jose Pedrito M Magno
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines
| | - Matthew J Steritz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Erasmo Gonzalo D V Llanes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Jonathan Cardwell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Melquiadesa Pedro
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Tori Bootpetch Roberts
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Rose Anne Q Rosanes
- Department of Community Dentistry, College of Dentistry, University of the Philippines Manila, Manila, Philippines
| | - Christopher Greenlee
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Ayesha Yousaf
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sven-Olrik Streubel
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Amanda G Ruiz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Sheryl Mae Lagrana-Villagracia
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Dylan Ray
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Talitha Karisse L Yarza
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Melissa A Scholes
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Catherine B Anderson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Samuel P Gubbels
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Stephen P Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc. and Department of Anthropology, Sociology and History, University of San Carlos, Cebu, Philippines
| | - Rehan S Shaikh
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Jeremy D Prager
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Teresa Luisa G Cruz
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Patricia J Yoon
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Generoso T Abes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Abner L Chan
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Todd M Wine
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Eva Maria Cutiongco-de la Paz
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Norman Friedman
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Katerina Kechris
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, Colorado
| | - Juha Kere
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Janak A Patel
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Ma Leah C Tantoco
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Saima Riazuddin
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenny H Chan
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Petri S Mattila
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Rina T Reyes-Quintos
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Herman A Jenkins
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Tasnee Chonmaitree
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Charlotte M Chiong
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Center for Children's Surgery, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
29
|
Intrapulmonary Autoantibodies to HSP72 Are Associated with Improved Outcomes in IPF. J Immunol Res 2019; 2019:1845128. [PMID: 31098385 PMCID: PMC6487088 DOI: 10.1155/2019/1845128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
Rationale Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic interstitial lung disease, with high mortality. Currently, the aetiology and the pathology of IPF are poorly understood, with both innate and adaptive responses previously being implicated in the disease pathogenesis. Heat shock proteins (Hsp) and antibodies to Hsp in patients with IPF have been suggested as therapeutic targets and prognostic biomarkers, respectively. We aimed to study the relationship between the expression of Hsp72 and anti-Hsp72 antibodies in the BAL fluid and serum Aw disease progression in patients with IPF. Methods A novel indirect ELISA to measure anti-Hsp72 IgG was developed and together with commercially available ELISAs used to detect Hsp72 IgG, Hsp72 IgGAM, and Hsp72 antigen, in the serum and BALf of a cohort of IPF (n = 107) and other interstitial lung disease (ILD) patients (n = 66). Immunohistochemistry was used to detect Hsp72 in lung tissue. The cytokine expression from monocyte-derived macrophages was measured by ELISA. Results Anti-Hsp72 IgG was detectable in the serum and BALf of IPF (n = 107) and other ILDs (n = 66). Total immunoglobulin concentrations in the BALf showed an excessive adaptive response in IPF compared to other ILDs and healthy controls (p = 0.026). Immunohistochemistry detection of C4d and Hsp72 showed that these antibodies may be targeting high expressing Hsp72 type II alveolar epithelial cells. However, detection of anti-Hsp72 antibodies in the BALf revealed that increasing concentrations were associated with improved patient survival (adjusted HR 0.62, 95% CI 0.45-0.85; p = 0.003). In vitro experiments demonstrate that anti-Hsp72 complexes stimulate macrophages to secrete CXCL8 and CCL18. Conclusion Our results indicate that intrapulmonary anti-Hsp72 antibodies are associated with improved outcomes in IPF. These may represent natural autoantibodies, and anti-Hsp72 IgM and IgA may provide a beneficial role in disease pathogenesis, though the mechanism of action for this has yet to be determined.
Collapse
|
30
|
Prevalence of antibodies to lung self-antigens (Kα1 tubulin and collagen V) and donor specific antibodies to HLA in lung transplant recipients and implications for lung transplant outcomes: Single center experience. Transpl Immunol 2019; 54:65-72. [PMID: 30794945 DOI: 10.1016/j.trim.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE For patients with end stage lung disease, lung transplantation (LT) remains the only definitive treatment option. Long term survival post LT is limited by acute and chronic allograft dysfunction. Antibodies to lung self-antigens Kα1Tubulin and collagen V (autoantibodies) have been implicated in adverse outcomes post LT. The aim of our study was to determine the prevalence of autoantibodies in pre- and post-transplant sera, evaluate the impact on post-transplant outcomes. METHODS In a prospective observational cohort analysis, 44 patients were enrolled who received LT between 09/01/2014 and 10/31/2015. Pre- and post-transplant sera were analyzed using enzyme-linked immunosorbent assay (ELISA) for the presence of antibodies to collagen I, collagen V, and K-alpha 1 tubulin. The outcome variables are presence of primary graft dysfunction (PGD), cumulative acute cellular rejection (ACR), treatment with pulse steroids for clinical rejection, association with DSA, and onset of Bronchiolitis Obliterans Syndrome (BOS). RESULTS In our cohort, 33 patients (75%) tested positive for the presence of autoantibodies. Pre-transplant autoantibodies were present in 23 patients (70%). Only a small percentage (26%) cleared these antibodies with standard immunosuppression. Some developed de novo post-transplant (n = 10). PGD was observed in 34% of our cohort, however the presence of autoantibodies did not correlate with increase in the incidence or severity of PGD. The prevalence of donor specific antibodies (DSA) in the entire cohort was 73%, with an increased prevalence of DSA noted in the autoantibody positive group (78.7% vs. 54.5%) than in the autoantibody negative group. BOS was observed in 20% of the cohort, with a median time to onset of 291 days' post-transplant. Patients with pre-transplant autoantibodies had a statistically significant decrease in BOS-free survival (p = 0.029 by log-rank test). CONCLUSIONS In our cohort, we observed a high prevalence of autoantibodies and DSA in lung transplant recipients. Pre-transplant autoantibodies were associated with de novo development of DSA along with a decrease in BOS-free survival. Limitations to our study include the small sample size and single center enrollment, along with limited time for follow-up.
Collapse
|
31
|
Borie R, Bouvry D, Cottin V, Gauvain C, Cazes A, Debray MP, Cadranel J, Dieude P, Degot T, Dominique S, Gamez AS, Jaillet M, Juge PA, Londono-Vallejo A, Mailleux A, Mal H, Boileau C, Menard C, Nunes H, Prevot G, Quetant S, Revy P, Traclet J, Wemeau-Stervinou L, Wislez M, Kannengiesser C, Crestani B. Regulator of telomere length 1 ( RTEL1) mutations are associated with heterogeneous pulmonary and extra-pulmonary phenotypes. Eur Respir J 2019; 53:13993003.00508-2018. [PMID: 30523160 DOI: 10.1183/13993003.00508-2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/06/2018] [Indexed: 01/10/2023]
Abstract
Regulator of telomere length 1 (RTEL1) mutations have been evidenced in 5-9% of familial pulmonary fibrosis; however, the phenotype of patients with interstitial lung disease (ILD) and RTEL1 mutations is poorly understood.Whole exome sequencing was performed in 252 probands with ILD and we included all patients with ILD and RTEL1 mutation. RTEL1 expression was evaluated by immunochemistry in the lungs of controls, as well as in RTEL1 and telomerase reverse transcriptase (TERT) mutation carriers.We identified 35 subjects from 17 families. Median age at diagnosis of ILD was 53.1 years (range 28.0-80.6). The most frequent pulmonary diagnoses were idiopathic pulmonary fibrosis (n=20, 57%), secondary ILD (n=7, 20%) and unclassifiable fibrosis or interstitial pneumonia with autoimmune features (n=7, 20%). The median transplant-free and overall survival periods were 39.2 months and 45.3 months, respectively. Forced vital capacity at diagnosis was the only factor associated with decreased transplant-free survival. Extra-pulmonary manifestations were less frequent as compared to other telomere-related gene mutation carriers. A systematic analysis of the literature identified 110 patients with ILD and RTEL1 mutations (including this series) and confirmed the heterogeneity of the pulmonary phenotype, the prevalence of non-idiopathic diseases and the low prevalence of extra-pulmonary manifestations.Immunohistochemistry showed that RTEL1 was expressed by bronchial and alveolar epithelial cells, as well as by alveolar macrophages and lymphocytes, but not by fibroblasts.
Collapse
Affiliation(s)
- Raphael Borie
- Service de Pneumologie A, Hôpital Bichat, AP-HP, DHU FIRE, Paris, France.,Unité 1152, INSERM, Université Paris Diderot, Paris, France
| | - Diane Bouvry
- Service de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Vincent Cottin
- Service de Pneumologie, Hôpital Louis Pradel, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Aurélie Cazes
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Service d'Anatomopathologie, Hôpital Bichat, AP-HP, Paris, France
| | - Marie-Pierre Debray
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Service de Radiologie, Hôpital Bichat, AP-HP, Paris, France
| | | | - Philippe Dieude
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Service de Rhumatologie, Hôpital Bichat, AP-HP, Paris, France.,Université Paris Diderot, Paris, France
| | - Tristan Degot
- Service de Pneumologie, CHU Strasbourg, Strasbourg, France
| | | | | | | | | | - Arturo Londono-Vallejo
- UMR 3244 (Telomere and Cancer Lab), CNRS, Institut Curie, PSL Research University, Sorbonne Universités, Paris, France
| | | | - Hervé Mal
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Service de Pneumologie B, Hôpital Bichat, AP-HP, Paris, France
| | - Catherine Boileau
- Université Paris Diderot, Paris, France.,Laboratoire de Génétique, Hôpital Bichat, AP-HP, Paris, France
| | | | - Hilario Nunes
- Service de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
| | | | | | - Patrick Revy
- UMR 1163 (Laboratory of Genome Dynamics in the Immune System), INSERM, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Julie Traclet
- Service de Pneumologie, Hôpital Tenon, AP-HP, Paris, France
| | - Lidwine Wemeau-Stervinou
- Service de Pneumologie, Centre de Compétence des Maladies Pulmonaires Rares, CHRU de Lille, Lille, France
| | - Marie Wislez
- Service de Pneumologie, Unité d'Oncologie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Caroline Kannengiesser
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Université Paris Diderot, Paris, France.,Laboratoire de Génétique, Hôpital Bichat, AP-HP, Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, AP-HP, DHU FIRE, Paris, France.,Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Université Paris Diderot, Paris, France
| |
Collapse
|
32
|
Heukels P, Moor C, von der Thüsen J, Wijsenbeek M, Kool M. Inflammation and immunity in IPF pathogenesis and treatment. Respir Med 2019; 147:79-91. [DOI: 10.1016/j.rmed.2018.12.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/21/2018] [Accepted: 12/29/2018] [Indexed: 12/11/2022]
|
33
|
The Role of Immunity and Inflammation in IPF Pathogenesis. Respir Med 2019. [PMCID: PMC7120022 DOI: 10.1007/978-3-319-99975-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
IPF is thought to be a consequence of repetitive micro-injury to ageing alveolar epithelium by factors including tobacco smoke, environmental exposures, microbial colonisation/infection, microaspiration, endoplasmic reticulum stress and oxidative stress, with resultant aberrant wound healing. Though partially effective antifibrotic therapies have focused attention away from older inflammation-based hypotheses for IPF pathogenesis, innate and adaptive immune cells and processes may play roles potentially in initiation and/or disease progression in IPF and/or in IPF acute exacerbations, based on multiple lines of evidence. Members of the Toll-like family of innate immune receptors have been implicated in IPF pathogenesis, including a potential modulatory role for the lung microbiome. A variety of chemokines are associated with the presence of IPF, and an imbalance of angiogenic chemokines has been linked to vascular remodelling in the disease. Subsets of circulating monocytes, including fibrocytes and segregated-nucleus-containing atypical monocytes (SatM), have been identified that may facilitate progression of fibrosis, and apoptosis-resistant pulmonary macrophages have been shown to demonstrate pro-fibrotic potential. Inflammatory cells that have been somewhat dismissed as irrelevant to IPF pathogenesis are being re-evaluated in light of new mechanistic data, such as activated neutrophils which release their chromatin in a process termed NETosis, which appears to mediate age-related murine lung fibrosis. A greater understanding is needed of the role of lymphoid aggregates, a histologic feature of IPF lungs found in close proximity to fibroblastic foci and highly suggestive of the presence of chronic immune responses in IPF, as are well-characterised activated circulating T lymphocytes and distinct autoantibodies that have been observed in IPF. There is a pressing need to discern whether or not the indisputably present immune dysregulation of IPF constitutes cause or effect in the ongoing search for more effective therapeutic strategies.
Collapse
|
34
|
Kwapiszewska G, Gungl A, Wilhelm J, Marsh LM, Thekkekara Puthenparampil H, Sinn K, Didiasova M, Klepetko W, Kosanovic D, Schermuly RT, Wujak L, Weiss B, Schaefer L, Schneider M, Kreuter M, Olschewski A, Seeger W, Olschewski H, Wygrecka M. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur Respir J 2018; 52:13993003.00564-2018. [DOI: 10.1183/13993003.00564-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 11/05/2022]
Abstract
Despite the beneficial effects of pirfenidone in treating idiopathic pulmonary fibrosis (IPF), it remains unclear if lung fibroblasts (FB) are the main therapeutic target.To resolve this question, we employed a comparative transcriptomic approach and analysed lung homogenates (LH) and FB derived from IPF patients treated with or without pirfenidone.In FB, pirfenidone therapy predominantly affected growth and cell division pathways, indicating a major cellular metabolic shift. In LH samples, pirfenidone treatment was mostly associated with inflammation-related processes. In FB and LH, regulated genes were over-represented in the Gene Ontology node “extracellular matrix”. We identified lower expression of cell migration-inducing and hyaluronan-binding protein (CEMIP) in both LH and FB from pirfenidone-treated IPF patients. Plasma levels of CEMIP were elevated in IPF patients compared to healthy controls and decreased after 7 months of pirfenidone treatment. CEMIP expression in FB was downregulated in a glioma-associated oncogene homologue-dependent manner and CEMIP silencing in IPF FB reduced collagen production and attenuated cell proliferation and migration.Cumulatively, our approach indicates that pirfenidone exerts beneficial effects via its action on multiple pathways in both FB and other pulmonary cells, through its ability to control extracellular matrix architecture and inflammatory reactions.
Collapse
|
35
|
Correll KA, Edeen KE, Redente EF, Zemans RL, Edelman BL, Danhorn T, Curran‐Everett D, Mikels‐Vigdal A, Mason RJ. TGF beta inhibits HGF, FGF7, and FGF10 expression in normal and IPF lung fibroblasts. Physiol Rep 2018; 6:e13794. [PMID: 30155985 PMCID: PMC6113132 DOI: 10.14814/phy2.13794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
TGF beta is a multifunctional cytokine that is important in the pathogenesis of pulmonary fibrosis. The ability of TGF beta to stimulate smooth muscle actin and extracellular matrix gene expression in fibroblasts is well established. In this report, we evaluated the effect of TGF beta on the expression of HGF, FGF7 (KGF), and FGF10, important growth and survival factors for the alveolar epithelium. These growth factors are important for maintaining type II cells and for restoration of the epithelium after lung injury. Under conditions of normal serum supplementation or serum withdrawal TGF beta inhibited fibroblast expression of HGF, FGF7, and FGF10. We confirmed these observations with genome wide RNA sequencing of the response of control and IPF fibroblasts to TGF beta. In general, gene expression in IPF fibroblasts was similar to control fibroblasts. Reduced expression of HGF, FGF7, and FGF10 is another means whereby TGF beta impairs epithelial healing and promotes fibrosis after lung injury.
Collapse
Affiliation(s)
| | | | | | - Rachel L. Zemans
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUniversity of MichiganAnn ArborMichigan
| | | | | | | | | | | |
Collapse
|
36
|
Desai O, Winkler J, Minasyan M, Herzog EL. The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:43. [PMID: 29616220 PMCID: PMC5869935 DOI: 10.3389/fmed.2018.00043] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
The contribution of the immune system to idiopathic pulmonary fibrosis (IPF) remains poorly understood. While most sources agree that IPF does not result from a primary immunopathogenic mechanism, evidence gleaned from animal modeling and human studies suggests that innate and adaptive immune processes can orchestrate existing fibrotic responses. This review will synthesize the available data regarding the complex role of professional immune cells in IPF. The role of innate immune populations such as monocytes, macrophages, myeloid suppressor cells, and innate lymphoid cells will be discussed, as will the activation of these cells via pathogen-associated molecular patterns derived from invading or commensural microbes, and danger-associated molecular patterns derived from injured cells and tissues. The contribution of adaptive immune responses driven by T-helper cells and B cells will be reviewed as well. Each form of immune activation will be discussed in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area.
Collapse
Affiliation(s)
- Omkar Desai
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Julia Winkler
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Maksym Minasyan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
37
|
Besnard V, Dagher R, Madjer T, Joannes A, Jaillet M, Kolb M, Bonniaud P, Murray LA, Sleeman MA, Crestani B. Identification of periplakin as a major regulator of lung injury and repair in mice. JCI Insight 2018. [PMID: 29515024 DOI: 10.1172/jci.insight.90163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Periplakin is a component of the desmosomes that acts as a cytolinker between intermediate filament scaffolding and the desmosomal plaque. Periplakin is strongly expressed by epithelial cells in the lung and is a target antigen for autoimmunity in idiopathic pulmonary fibrosis. The aim of this study was to determine the role of periplakin during lung injury and remodeling in a mouse model of lung fibrosis induced by bleomycin. We found that periplakin expression was downregulated in the whole lung and in alveolar epithelial cells following bleomycin-induced injury. Deletion of the Ppl gene in mice improved survival and reduced lung fibrosis development after bleomycin-induced injury. Notably, Ppl deletion promoted an antiinflammatory alveolar environment linked to profound changes in type 2 alveolar epithelial cells, including overexpression of antiinflammatory cytokines, decreased expression of profibrotic mediators, and altered cell signaling with a reduced response to TGF-β1. These results identify periplakin as a previously unidentified regulator of the response to injury in the lung.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Kolb
- Department of Medecine, Firestone Institute for respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, Canada
| | | | - Lynne A Murray
- MedImmune Ltd, Granta Park, Cambridgeshire, United Kingdom.,Respiratory, Inflammation, Autoimmunity (RIA) IMED Biotech unit, AstraZeneca, Gothenburg, Sweden
| | | | - Bruno Crestani
- INSERM U1152, Paris, France.,Université Paris Diderot, LABEX INFLAMEX, Paris, France.,Assistance Publique-Hôpitaux de Paris, DHU FIRE, Hôpital Bichat, Paris, France
| |
Collapse
|
38
|
Beltramo G, Thabut G, Peron N, Nicaise P, Cazes A, Debray MP, Joannes A, Castier Y, Mailleux AA, Frija J, Pradère P, Justet A, Borie R, Dombret MC, Taille C, Aubier M, Crestani B. Anti-parietal cell autoimmunity is associated with an accelerated decline of lung function in IPF patients. Respir Med 2018; 135:15-21. [PMID: 29414448 DOI: 10.1016/j.rmed.2017.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/26/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autoantibodies against lung epithelial antigens are often detected in patients with Idiopathic Pulmonary Fibrosis (IPF). Anti-Parietal Cell Antibodies (APCA) target the H+/K+ATPase (proton pump). APCA prevalence and lung H+/K+ATPase expression was never studied in IPF patients. METHODS We retrospectively collected clinical, lung function and imaging data from APCA positive patients (APCA+IPF) and compared them with APCA negative IPF patients matched on the date of diagnostic assessment. H+/K+ATPase expression was assessed with immunohistochemistry and PCR. RESULTS Among 138 IPF patients diagnosed between 2007 and 2014 and tested for APCA, 19 (13.7%) APCA+ patients were identified. APCA+IPF patients were 16 men and 3 women, mean age 71 years. The median titer of APCA was 1:160. A pernicious anemia was present in 5 patients and preceded the fibrosis in 3 cases. With a mean follow up of 31 months, 2 patients had an exacerbation and 7 patients died. As compared with 19 APCA- IPF patients, APCA+IPF patients had a less severe disease with better DLCO (57% vs 43% predicted), preserved PaO2 (85 ± 8 mmHg vs 74 ± 11 mmHg), a lower rate of honeycombing on HRCT (58% vs 89%), but they experienced an accelerated decline of FVC (difference 61.4 ml/year; p = .0002). The H+/K+ATPase was strongly expressed by hyperplastic alveolar epithelial cells in the fibrotic lung. CONCLUSION Anti-parietal cell autoimmunity is detected in some IPF patients and is associated with an accelerated decline of lung function. Anti-parietal cell autoimmunity may promote lung fibrosis progression.
Collapse
Affiliation(s)
- Guillaume Beltramo
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France
| | - Gabriel Thabut
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Nicolas Peron
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France
| | - Pascale Nicaise
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Département d'Hématologie et Immunologie UF Autoimmunité et Hypersensibilités, 75018 Paris, France
| | - Aurélie Cazes
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomie Pathologique, 75018 Paris, France
| | - Marie-Pierre Debray
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Radiologie, Paris, France
| | - Audrey Joannes
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Yves Castier
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Vasculaire et Thoracique 75018 Paris, France
| | - Arnaud A Mailleux
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Justine Frija
- Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service d'Explorations Fonctionnelles Multidisciplinaires, 75018 Paris, France
| | - Pauline Pradère
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France
| | - Aurélien Justet
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Raphaël Borie
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Marie-Christine Dombret
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Camille Taille
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Michel Aubier
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France.
| |
Collapse
|
39
|
Mukherjee M, Nair P. Autoimmune Responses in Severe Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:428-447. [PMID: 30088364 PMCID: PMC6082822 DOI: 10.4168/aair.2018.10.5.428] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Asthma and autoimmune diseases both result from a dysregulated immune system, and have been conventionally considered to have mutually exclusive pathogenesis. Autoimmunity is believed to be an exaggerated Th1 response, while asthma with a Th2 underpinning is congruent with the well-accepted Th1/Th2 paradigm. The hypothesis of autoimmune involvement in asthma has received much recent interest, particularly in the adult late-onset non-atopic patients (the “intrinsic asthma”). Over the past decades, circulating autoantibodies against diverse self-targets (beta-2-adrenergic receptors, epithelial antigens, nuclear antigens, etc.) have been reported and subsequently dismissed to be epiphenomena resulting from a chronic inflammatory condition, primarily due to lack of evidence of causality/pathomechanism. Recent evidence of ‘granulomas’ in the lung biopsies of severe asthmatics, detection of pathogenic sputum autoantibodies against autologous eosinophil proteins (e.g., eosinophil peroxidase) and inadequate response to monoclonal antibody therapies (e.g., subcutaneous mepolizumab) in patients with evidence of airway autoantibodies suggest that the role of autoimmune mechanisms be revisited. In this review, we have gathered available reports of autoimmune responses in the lungs, reviewed the evidence in the context of immunogenic tissue-response and danger-associated molecular patterns, and constructed the possibility of an autoimmune-associated pathomechanism that may contribute to the severity of asthma.
Collapse
Affiliation(s)
- Manali Mukherjee
- Division of Respirology, Department of Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Canada
| | - Parameswaran Nair
- Division of Respirology, Department of Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Canada.
| |
Collapse
|
40
|
Li FJ, Surolia R, Li H, Wang Z, Kulkarni T, Liu G, de Andrade JA, Kass DJ, Thannickal VJ, Duncan SR, Antony VB. Autoimmunity to Vimentin Is Associated with Outcomes of Patients with Idiopathic Pulmonary Fibrosis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1596-1605. [PMID: 28754682 DOI: 10.4049/jimmunol.1700473] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023]
Abstract
Autoimmunity has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF); however, the repertoire of autoantigens involved in this disease and the clinical relevance of these autoimmune responses are still being explored. Our initial discovery assays demonstrated that circulating and intrapulmonary vimentin levels are increased in IPF patients. Subsequent studies showed native vimentin induced HLA-DR-dependent in vitro proliferation of CD4 T cells from IPF patients and enhanced the production of IL-4, IL-17, and TGF-β1 by these lymphocytes in contrast to normal control specimens. Vimentin supplementation of IPF PBMC cultures also resulted in HLA-DR-dependent production of IgG with anti-vimentin specificities. Circulating anti-vimentin IgG autoantibody levels were much greater in IPF subjects from the University of Alabama at Birmingham (n = 102) and the University of Pittsburgh (U. Pitt., n = 70) than in normal controls. Anti-vimentin autoantibody levels in IPF patients were HLA biased and inversely correlated with physiological measurements of lung function (i.e., forced expiratory volumes and diffusing capacities). Despite considerable intergroup differences in transplant-free survival between these two independent IPF cohorts, serious adverse outcomes were most frequent among the patients within each population that had the highest anti-vimentin autoantibody levels (University of Alabama at Birmingham: hazard ratio 2.5, 95% confidence interval 1.2-5.3, p = 0.012; University of Pittsburgh: hazard ratio 2.7, 95% confidence interval 1.3-5.5, p = 0.006). These data show that anti-vimentin autoreactivity is prevalent in IPF patients and is strongly associated with disease manifestations. These findings have implications with regard to the pathogenesis of this enigmatic disease and raise the possibility that therapies specifically directed at these autoimmune processes could have therapeutic efficacy.
Collapse
Affiliation(s)
- Fu Jun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ranu Surolia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Huashi Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Zheng Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Joao A de Andrade
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294.,Birmingham VA Medical Center, Birmingham, AL 35233; and
| | - Daniel J Kass
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294.,Birmingham VA Medical Center, Birmingham, AL 35233; and
| | - Steven R Duncan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Veena B Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
41
|
Magnini D, Montemurro G, Iovene B, Tagliaboschi L, Gerardi RE, Lo Greco E, Bruni T, Fabbrizzi A, Lombardi F, Richeldi L. Idiopathic Pulmonary Fibrosis: Molecular Endotypes of Fibrosis Stratifying Existing and Emerging Therapies. Respiration 2017; 93:379-395. [DOI: 10.1159/000475780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
42
|
Hoyne GF, Elliott H, Mutsaers SE, Prêle CM. Idiopathic pulmonary fibrosis and a role for autoimmunity. Immunol Cell Biol 2017; 95:577-583. [DOI: 10.1038/icb.2017.22] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Gerard F Hoyne
- School of Health Sciences, University of Notre Dame Australia Fremantle Western Australia Australia
- Institute of Health Research, University of Notre Dame Fremantle Western Australia Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, University of Western Australia Nedlands Western Australia Australia
| | - Hannah Elliott
- School of Health Sciences, University of Notre Dame Australia Fremantle Western Australia Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, University of Western Australia Nedlands Western Australia Australia
| | - Steven E Mutsaers
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, University of Western Australia Nedlands Western Australia Australia
- Institute for Respiratory Health, Centre for Respiratory Health, School of Medicine and Pharmacology, University of Western Australia Nedlands Western Australia Australia
| | - Cecilia M Prêle
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, University of Western Australia Nedlands Western Australia Australia
- Institute for Respiratory Health, Centre for Respiratory Health, School of Medicine and Pharmacology, University of Western Australia Nedlands Western Australia Australia
| |
Collapse
|
43
|
Clarke DL, Murray LA, Crestani B, Sleeman MA. Is personalised medicine the key to heterogeneity in idiopathic pulmonary fibrosis? Pharmacol Ther 2017; 169:35-46. [DOI: 10.1016/j.pharmthera.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Taillé C, Grootenboer-Mignot S, Estellat C, Roy C, Ly Ka So S, Pretolani M, Aubier M, Crestani B, Chollet-Martin S. Perip7lakin is a target for autoimmunity in asthma. Respir Res 2016; 17:126. [PMID: 27717390 PMCID: PMC5054582 DOI: 10.1186/s12931-016-0441-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/22/2016] [Indexed: 12/02/2022] Open
Abstract
The role of autoimmunity targeting epithelial antigens in asthma has been suggested, in particular in non-atopic and severe asthma. Periplakin, a desmosomal component, is involved in epithelial cohesion and intracellular signaling. We detected anti-periplakin IgG antibodies in 47/260 (18 %) patients with asthma, with no association with severity or atopy. In addition, anti-periplakin IgE antibodies were detected in 12 of 138 tested patients (8.7 %) and were more frequently observed in patients with than without nasal polyposis. This study identifies a new autoimmune epithelial target in asthma. Whether periplakin autoimmunity (both IgG and IgE auto-antibodies) is involved in asthma pathogenesis remains to be studied during the disease course of these patients.
Collapse
Affiliation(s)
- Camille Taillé
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Centre de Compétence des Maladies Pulmonaires Rares, Paris, France. .,Département Hospitalo-Universitaire FIRE, Université Paris Diderot, Inserm UMR 1152, LabEx Inflamex, Paris, France.
| | - Sabine Grootenboer-Mignot
- Assistance publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire d'immunologie « Autoimmunité et Hypersensibilités », Paris, France
| | - Candice Estellat
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Unité de recherche clinique, département de biostatistiques, Paris, France
| | - Carine Roy
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Unité de recherche clinique, département de biostatistiques, Paris, France
| | - Sophie Ly Ka So
- Assistance publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire d'immunologie « Autoimmunité et Hypersensibilités », Paris, France
| | | | - Michel Aubier
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Centre de Compétence des Maladies Pulmonaires Rares, Paris, France.,Département Hospitalo-Universitaire FIRE, Université Paris Diderot, Inserm UMR 1152, LabEx Inflamex, Paris, France
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Centre de Compétence des Maladies Pulmonaires Rares, Paris, France.,Département Hospitalo-Universitaire FIRE, Université Paris Diderot, Inserm UMR 1152, LabEx Inflamex, Paris, France
| | - Sylvie Chollet-Martin
- Assistance publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire d'immunologie « Autoimmunité et Hypersensibilités », Paris, France.,INSERM UMR996, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
45
|
Margaritopoulos GA, Lasithiotaki I, Antoniou KM. Toll-like receptors and autophagy in interstitial lung diseases. Eur J Pharmacol 2016; 808:28-34. [PMID: 27687957 DOI: 10.1016/j.ejphar.2016.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/28/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
Abstract
Interstitial lung diseases (ILDs) include a number of diseases whose pathogenesis still is not fully understood. Idiopathic pulmonary fibrosis (IPF), the most frequent and severe form of ILDs is an epithelial-driven disease and the treatment consists of the use of antifibrotic agents. In the rest of ILDs an inflammation-driven pathway is believed to be the main pathogenetic mechanism and treatment consists of the use of immunomodulatory agents. In both groups it is believed that infection can play an important role in the development and progression of the diseases. The immune system can recognize exogenous threats or endogenous stress through specialized receptors namely pattern recognition receptors (PRRs) which in turn, initiate downstream signaling pathways to control immune responses. Recently, a link between PRRs and autophagy, a specialized biological process involved in maintaining cellular homeostasis but also involved in various immunologic processes, has been described. In this review, we focus on the reciprocal influences of PRRs with particular emphasis on Toll-like receptors and autophagy in modulating innate immune responses.
Collapse
Affiliation(s)
| | - Ismini Lasithiotaki
- Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion 71110, Greece
| | - Katerina M Antoniou
- Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion 71110, Greece
| |
Collapse
|
46
|
Bardou O, Menou A, François C, Duitman JW, von der Thüsen JH, Borie R, Sales KU, Mutze K, Castier Y, Sage E, Liu L, Bugge TH, Fairlie DP, Königshoff M, Crestani B, Borensztajn KS. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis. Am J Respir Crit Care Med 2016; 193:847-60. [PMID: 26599507 DOI: 10.1164/rccm.201502-0299oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. OBJECTIVES To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis. METHODS Matriptase expression was assessed in tissue specimens from patients with IPF versus control subjects using quantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blotting, while matriptase activity was monitored by fluorogenic substrate cleavage. Matriptase-induced fibroproliferative responses and the receptor involved were characterized in human primary pulmonary fibroblasts by Western blot, viability, and migration assays. In the murine model of bleomycin-induced pulmonary fibrosis, the consequences of matriptase depletion, either by using the pharmacological inhibitor camostat mesilate (CM), or by genetic down-regulation using matriptase hypomorphic mice, were characterized by quantification of secreted collagen and immunostainings. MEASUREMENTS AND MAIN RESULTS Matriptase expression and activity were up-regulated in IPF and bleomycin-induced pulmonary fibrosis. In cultured human pulmonary fibroblasts, matriptase expression was significantly induced by transforming growth factor-β. Furthermore, matriptase elicited signaling via protease-activated receptor-2 (PAR-2), and promoted fibroblast activation, proliferation, and migration. In the experimental bleomycin model, matriptase depletion, by the pharmacological inhibitor CM or by genetic down-regulation, diminished lung injury, collagen production, and transforming growth factor-β expression and signaling. CONCLUSIONS These results implicate increased matriptase expression and activity in the pathogenesis of pulmonary fibrosis in human IPF and in an experimental mouse model. Overall, targeting matriptase, or treatment by CM, which is already in clinical use for other diseases, may represent potential therapies for IPF.
Collapse
Affiliation(s)
- Olivier Bardou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Awen Menou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Charlène François
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Jan Willem Duitman
- 3 Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Raphaël Borie
- 2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Katiuchia Uzzun Sales
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,7 Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Kathrin Mutze
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Yves Castier
- 9 Assistance Publique-Hôpitaux de Paris, Department of Vascular and Thoracic Surgery, Bichat-Claude Bernard University Hospital, Denis Diderot University and Medical School Paris VII, France
| | - Edouard Sage
- 10 Department of Thoracic Surgery and Lung Transplantation, Hôpital Foch, Suresnes, France; and
| | - Ligong Liu
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Thomas H Bugge
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David P Fairlie
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mélanie Königshoff
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Bruno Crestani
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Keren S Borensztajn
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| |
Collapse
|
47
|
Hirano T, Higuchi Y, Yuki H, Hirata S, Nosaka K, Ishii N, Hashimoto T, Mitsuya H, Okuno Y. Rituximab Monotherapy and Rituximab-Containing Chemotherapy Were Effective for Paraneoplastic Pemphigus Accompanying Follicular Lymphoma, but not for Subsequent Bronchiolitis Obliterans. J Clin Exp Hematop 2016; 55:83-8. [PMID: 26490520 DOI: 10.3960/jslrt.55.83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A 60-year-old male patient suffered from mild exertional dyspnea, wheezing, and systemic blisters. He was diagnosed with paraneoplastic pemphigus (PNP) with follicular lymphoma in the pancreas head and pelvic cavity. He was first treated with eight cycles of rituximab; his blisters and erosions gradually improved and highly elevated levels of auto-antibodies related to PNP gradually decreased to normal levels. However, obstructive and restrictive respiratory failure still progressed. Computed tomography of the inspiratory and expiratory phases revealed obstructive pulmonary disorder, leading to a diagnosis of bronchiolitis obliterans (BO). The patient underwent plasma exchange and was repeatedly treated with rituximab monotherapy and rituximab-containing chemotherapies, but died 7 months after the diagnosis of BO. Early introduction of rituximab-containing regimens may be necessary to prevent the development of BO accompanying PNP. However, when a diagnosis of PNP-related BO is made, lung transplantation may also be considered for patients in whom rituximab-containing regimens are effective for PNP.
Collapse
Affiliation(s)
- Taichi Hirano
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
49
|
Balestro E, Calabrese F, Turato G, Lunardi F, Bazzan E, Marulli G, Biondini D, Rossi E, Sanduzzi A, Rea F, Rigobello C, Gregori D, Baraldo S, Spagnolo P, Cosio MG, Saetta M. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis. PLoS One 2016; 11:e0154516. [PMID: 27159038 PMCID: PMC4861274 DOI: 10.1371/journal.pone.0154516] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 11/18/2022] Open
Abstract
The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define "slow" or "rapid" disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression.
Collapse
Affiliation(s)
- Elisabetta Balestro
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Francesca Lunardi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Giuseppe Marulli
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Davide Biondini
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Emanuela Rossi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Alessandro Sanduzzi
- Department of Clinical Medicine and Surgery, Federico II University, Napoli, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Chiara Rigobello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Paolo Spagnolo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
- Respiratory Division Meakins-Christie Laboratories, McGill University, Montreal, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
50
|
Epiplakin Is a Paraneoplastic Pemphigus Autoantigen and Related to Bronchiolitis Obliterans in Japanese Patients. J Invest Dermatol 2016; 136:399-408. [DOI: 10.1038/jid.2015.408] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 11/09/2022]
|