1
|
Meng X, Wang H, Hao J. Recent progress in drug development for fibrodysplasia ossificans progressiva. Mol Cell Biochem 2022; 477:2327-2334. [PMID: 35536530 PMCID: PMC9499916 DOI: 10.1007/s11010-022-04446-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease caused by heterozygous missense mutations in Activin A receptor type I which is also known as Activin-like kinase 2 (ALK2), a type I receptor of Bone Morphogenetic Proteins(BMP). Patients with FOP usually undergo episodic flare-ups and the heterotopic ossification in soft and connective tissues. Molecular mechanism study indicates that Activin A, the ligand which normally transduces Transforming Growth Factor Beta signaling, abnormally activates BMP signaling through ALK2 mutants in FOP, leading to heterotopic bone formation. To date, effective therapies to FOP are unavailable. However, significant advances have recently been made in the development of FOP drugs. In this article, we review the recent advances in understanding the FOP mechanism and drug development, with a focus on the small-molecular and antibody drugs currently in the clinical trials for FOP treatment.
Collapse
Affiliation(s)
- Xinmiao Meng
- College of Arts and Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Haotian Wang
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 191041, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
2
|
Li M, Tang X, You W, Wang Y, Chen Y, Liu Y, Yuan H, Gao C, Chen X, Xiao Z, Ouyang H, Pang D. HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:49-62. [PMID: 34513293 PMCID: PMC8411015 DOI: 10.1016/j.omtn.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/09/2021] [Indexed: 01/27/2023]
Abstract
As a robust antagonist of myostatin (MSTN), follistatin (FST) is an important regulator of skeletal muscle development, and the delivery of FST to muscle tissue represents a potential therapeutic strategy for muscular dystrophies. The N terminus and FSI domain of FST are the functional domains for MSTN binding. Here, we aimed to achieve site-specific integration of FSI-I-I, including the signal peptide, N terminus, and three FSI domains, into the last codon of the porcine MSTN gene using a homology-mediated end joining (HMEJ)-based strategy mediated by CRISPR-Cas9. Based on somatic cell nuclear transfer (SCNT) technology, we successfully obtained FSI-I-I knockin pigs. H&E staining of longissimus dorsi and gastrocnemius cross-sections showed larger myofiber sizes in FSI-I-I knockin pigs than in controls. Moreover, the Smad and Erk pathways were inhibited, whereas the PI3k/Akt pathway was activated in FSI-I-I knockin pigs. In addition, the levels of MyoD, Myf5, and MyoG transcription were upregulated while that of MRF4 was downregulated in FSI-I-I knockin pigs. These results indicate that the FSI-I-I gene mediates skeletal muscle hypertrophy through an MSTN-related signaling pathway and the expression of myogenic regulatory factors. Overall, FSI-I-I knockin pigs with hypertrophic muscle tissue hold great promise as a therapeutic model for human muscular dystrophies.
Collapse
Affiliation(s)
- Mengjing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Wenni You
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Yanbing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Ying Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Chuang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Xue Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Zhiwei Xiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China,Corresponding author: Hongsheng Ouyang, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China,Corresponding author: Daxin Pang, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China.
| |
Collapse
|
3
|
Guignabert C, Humbert M. Targeting transforming growth factor-β receptors in pulmonary hypertension. Eur Respir J 2021; 57:2002341. [PMID: 32817256 DOI: 10.1183/13993003.02341-2020] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) superfamily includes several groups of multifunctional proteins that form two major branches, namely the TGF-β-activin-nodal branch and the bone morphogenetic protein (BMP)-growth differentiation factor (GDF) branch. The response to the activation of these two branches, acting through canonical (small mothers against decapentaplegic (Smad) 2/3 and Smad 1/5/8, respectively) and noncanonical signalling pathways, are diverse and vary for different environmental conditions and cell types. An extensive body of data gathered in recent years has demonstrated a central role for the cross-talk between these two branches in a number of cellular processes, which include the regulation of cell proliferation and differentiation, as well as the transduction of signalling cascades for the development and maintenance of different tissues and organs. Importantly, alterations in these pathways, which include heterozygous germline mutations and/or alterations in the expression of several constitutive members, have been identified in patients with familial/heritable pulmonary arterial hypertension (PAH) or idiopathic PAH (IPAH). Consequently, loss or dysfunction in the delicate, finely-tuned balance between the TGF-β-activin-nodal branch and the BMP-GDF branch are currently viewed as the major molecular defect playing a critical role in PAH predisposition and disease progression. Here we review the role of the TGF-β-activin-nodal branch in PAH and illustrate how this knowledge has not only provided insight into understanding its pathogenesis, but has also paved the way for possible novel therapeutic approaches.
Collapse
Affiliation(s)
- Christophe Guignabert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Dept of Respiratory and Intensive Care Medicine, French Pulmonary Hypertension Reference Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| |
Collapse
|
4
|
Shinohara M, Choi H, Ibuki M, Yabe SG, Okochi H, Miyajima A, Sakai Y. Endodermal differentiation of human induced pluripotent stem cells using simple dialysis culture system in suspension culture. Regen Ther 2019; 12:14-19. [PMID: 31890762 PMCID: PMC6933453 DOI: 10.1016/j.reth.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 01/07/2023] Open
Abstract
A differentiation of human induced pluripotent stem cells (hiPSCs) into definitive endoderm linage is required for a preparation of metabolic organ derived cells. The differentiation consumed high-priced cytokines and small molecules, which have hampered the manufacturability of differentiated cells. Although the cytokines and small molecules are remained or cells produce the autocrine factors, daily culture medium change should be proceeded to remove toxic metabolites generated from cells. In this study, we developed a simple dialysis culture system to refine the medium during definitive endodermal differentiation. We demonstrated that dialysis culture prevented cell damage to remove lactate. The hiPSCs cultured with dialysis also differentiated similarly as usual differentiation without dialysis even if they were not supplied Activin A for latter culture days in the differentiation. With this dialysis culture system, hiPSCs were differentiated into endodermal lineage with medium refinement and recycling and autocrine factors as well as cytokines, which may lead to reduce differentiation cost.
Collapse
Affiliation(s)
- Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hyunjin Choi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Masato Ibuki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe MI R&D Center 3F, 6-7-3, Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shigeharu G. Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Atsushi Miyajima
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yasuyuki Sakai
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Chemical System Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Wentworth KL, Masharani U, Hsiao EC. Therapeutic advances for blocking heterotopic ossification in fibrodysplasia ossificans progressiva. Br J Clin Pharmacol 2019; 85:1180-1187. [PMID: 30501012 DOI: 10.1111/bcp.13823] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease in which heterotopic bone forms in muscle and soft tissue, leading to joint dysfunction and significant disability. FOP is progressive and many patients are wheelchair-bound by the 3rd decade of life. FOP is caused by an activating mutation in the ACVR1 gene, which encodes the activin A Type 1 receptor. Aberrant signalling through this receptor leads to abnormal activation of the pSMAD 1/5/8 pathway and triggers the formation of bone outside of the skeleton. There is no curative therapy for FOP; however, exciting advances in novel therapies have developed recently. Here, we review the clinical and translational pharmacology of three drugs that are currently in clinical trials (palovarotene, REGN 2477 and rapamycin) as well as other emerging treatment strategies for FOP.
Collapse
Affiliation(s)
- Kelly L Wentworth
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.,Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Umesh Masharani
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Edward C Hsiao
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.,Institute for Human Genetics, University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
7
|
Omar NN, Rashed RR, El-Hazek RM, El-Sabbagh WA, Rashed ER, El-Ghazaly MA. Platelet-rich plasma-induced feedback inhibition of activin A/follistatin signaling: A mechanism for tumor-low risk skin rejuvenation in irradiated rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:17-24. [PMID: 29413698 DOI: 10.1016/j.jphotobiol.2018.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) is a source of natural growth factors and is emerging as a treatment modality to mitigate radiotherapy- induced adverse effects. Activin A (ACTA) is a member of the transforming growth factor-β (TGF-β) superfamily, which has been shown to modulate the inflammatory response and macrophages polarization between different phenotypes. The aim of this study is to determine the value of PRP in preventing radiation-induced malignancies in light of the cross-talk between PRP and activin A type II receptors (ActR-IIA)/follistatin (FST) signaling pathways where the inflammatory responses at 2 different time points were evaluated. MATERIAL AND METHODS Male albino rats were exposed to radiation and given PRP over the course of 6 days. Rats were sacrificed on day 7 or day 28 post radiation. RESULTS Quantitative real-time reverse transcriptase polymerase chain reaction (QRT-PCR) and western-blot showed that after 7 days of administrating of PRP, ActR-IIA/FST signaling was markedly induced and was associated with the expressions of inflammatory, natural killer and M1 macrophages markers, TNF-α, IL-1β, IFN-γ and IL-12. By contrast, on day 28 of PRP administration, ActR-IIA/FST signaling and the expressions of proinflammatory cytokines were downregulated in parallel with inducing M2 macrophages phenotype as indicated by arginase-1, IL-10 and dectin-1. CONCLUSION The suppression of inflammation and induction of M2 macrophages phenotype in response to PRP administration were found significantly linked to ActR-IIA/FST signaling downregulation. Furthermore, the specific M2 macrophage subtype was found to express dectin-1 receptors which have high affinity for tumor cells thereby is expected to reduce the potential for developing tumors after radiotherapy.
Collapse
Affiliation(s)
- Nesreen Nabil Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Rasha R Rashed
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Walaa A El-Sabbagh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Engy R Rashed
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
8
|
Follistatin N terminus differentially regulates muscle size and fat in vivo. Exp Mol Med 2017; 49:e377. [PMID: 28912572 PMCID: PMC5628274 DOI: 10.1038/emm.2017.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Delivery of follistatin (FST) represents a promising strategy for both muscular dystrophies and diabetes, as FST is a robust antagonist of myostatin and activin, which are critical regulators of skeletal muscle and adipose tissues. FST is a multi-domain protein, and deciphering the function of different domains will facilitate novel designs for FST-based therapy. Our study aims to investigate the role of the N-terminal domain (ND) of FST in regulating muscle and fat mass in vivo. Different FST constructs were created and packaged into the adeno-associated viral vector (AAV). Overexpression of wild-type FST in normal mice greatly increased muscle mass while decreasing fat accumulation, whereas overexpression of an N terminus mutant or N terminus-deleted FST had no effect on muscle mass but moderately decreased fat mass. In contrast, FST-I-I containing the complete N terminus and double domain I without domain II and III had no effect on fat but increased skeletal muscle mass. The effects of different constructs on differentiated C2C12 myotubes were consistent with the in vivo finding. We hypothesized that ND was critical for myostatin blockade, mediating the increase in muscle mass, and was less pivotal for activin binding, which accounts for the decrease in the fat tissue. An in vitro TGF-beta1-responsive reporter assay revealed that FST-I-I and N terminus-mutated or -deleted FST showed differential responses to blockade of activin and myostatin. Our study provided direct in vivo evidence for a role of the ND of FST, shedding light on future potential molecular designs for FST-based gene therapy.
Collapse
|
9
|
Chaly Y, Hostager B, Smith S, Hirsch R. Follistatin-like protein 1 and its role in inflammation and inflammatory diseases. Immunol Res 2015; 59:266-72. [PMID: 24838142 DOI: 10.1007/s12026-014-8526-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Follistatin-like protein 1 (FSTL1) is a secreted glycoprotein produced mainly by cells of mesenchymal origin. FSTL1 has been shown to play an important role during embryogenesis; FSTL1-deficient mice die at birth from multiple developmental abnormalities. In the last decade, FSTL1 has been identified as a novel inflammatory protein, enhancing synthesis of proinflammatory cytokines and chemokines by immune cells in vitro and in vivo. FSTL1 mediates proinflammatory events in animal models of inflammatory diseases, particularly in collagen-induced arthritis in mice. FSTL1 is elevated in various inflammatory conditions and decreased during the course of treatment. FSTL1 may therefore be a valuable biomarker for such diseases. Moreover, a variety of experiments suggest that targeting of FSTL1 may be useful in the treatment of diseases in which inflammation plays a central role.
Collapse
Affiliation(s)
- Yury Chaly
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, 2191 ML, 500 Newton Road, Iowa City, IA, 52242, USA,
| | | | | | | |
Collapse
|
10
|
Lilja-Maula L, Syrjä P, Laurila H, Sutinen E, Palviainen M, Ritvos O, Koli K, Rajamäki M, Myllärniemi M. Upregulation of Alveolar Levels of Activin B, but not Activin A, in Lungs of West Highland White Terriers with Idiopathic Pulmonary Fibrosis and Diffuse Alveolar Damage. J Comp Pathol 2015; 152:192-200. [DOI: 10.1016/j.jcpa.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 09/10/2014] [Accepted: 11/05/2014] [Indexed: 11/30/2022]
|
11
|
Li P, Zheng SJ, Jiang CH, Zhou SM, Tian HJ, Zhang G, Gao YQ. Th2 lymphocytes migrating to the bone marrow under high-altitude hypoxia promote erythropoiesis via activin A and interleukin-9. Exp Hematol 2014; 42:804-15. [PMID: 24769210 DOI: 10.1016/j.exphem.2014.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 12/01/2022]
Abstract
The mechanism of accelerated erythropoiesis under the hypoxic conditions of high altitude (HA) remains largely obscure. Here, we investigated the potential role of bone marrow (BM) T cells in the increased production of erythrocytes at HA. We found that mice exposed to a simulated altitude of 6,000 m for 1-3 weeks exhibited a significant expansion of BM CD4+ cells, mainly caused by increasing T helper 2 (Th2) cells. Using a coculture model of BM T cells and hematopoietic stem/progenitor cells, we observed that BM CD4+ cells from hypoxic mice induced erythroid output more easily, in agreement with the erythroid-enhancing effect observed for Th2-condition-cultured BM CD4+ cells. It was further demonstrated that elevated secretion of activin A and interleukin-9 by BM Th2 cells of hypoxic mice promoted erythroid differentiation of hematopoietic stem/progenitor cells and the growth of erythroblasts, respectively. Our study also provided evidence that the CXCL12-CXCR4 interaction played an important role in Th2 cell trafficking to the BM under HA conditions. These results collectively suggest that Th2 cells migrating to the BM during HA exposure have a regulatory role in erythropoiesis, which provides new insight into the mechanism of high altitude polycythemia.
Collapse
Affiliation(s)
- Peng Li
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Shan-jun Zheng
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Chun-hua Jiang
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Si-min Zhou
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Huai-jun Tian
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Zhang
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yu-qi Gao
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| |
Collapse
|
12
|
Hess DR, Thompson BT, Slutsky AS. Update in acute respiratory distress syndrome and mechanical ventilation 2012. Am J Respir Crit Care Med 2013; 188:285-92. [PMID: 23905523 DOI: 10.1164/rccm.201304-0786up] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dean R Hess
- Respiratory Care, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|
13
|
Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int J Biochem Cell Biol 2013; 45:2333-47. [DOI: 10.1016/j.biocel.2013.05.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 11/21/2022]
|
14
|
Torricelli M, Voltolini C, Novembri R, Bocchi C, Di Tommaso M, Severi FM, Petraglia F. Activin A and its Regulatory Molecules in Placenta and Fetal Membranes of Women with Preterm Premature Rupture of the Membranes Associated with Acute Chorioamnionitis. Am J Reprod Immunol 2012; 68:392-9. [DOI: 10.1111/j.1600-0897.2012.01180.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/28/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Michela Torricelli
- Obstetrics and Gynecology; Department of Pediatrics, Obstetrics and Reproductive Medicine; University of Siena; Siena; Italy
| | - Chiara Voltolini
- Obstetrics and Gynecology; Department of Pediatrics, Obstetrics and Reproductive Medicine; University of Siena; Siena; Italy
| | - Romina Novembri
- Obstetrics and Gynecology; Department of Pediatrics, Obstetrics and Reproductive Medicine; University of Siena; Siena; Italy
| | - Caterina Bocchi
- Obstetrics and Gynecology; Department of Pediatrics, Obstetrics and Reproductive Medicine; University of Siena; Siena; Italy
| | - Mariarosaria Di Tommaso
- Department of Gynecology, Perinatology and Human Reproduction; University of Florence; Florence; Italy
| | - Filiberto M. Severi
- Obstetrics and Gynecology; Department of Pediatrics, Obstetrics and Reproductive Medicine; University of Siena; Siena; Italy
| | - Felice Petraglia
- Obstetrics and Gynecology; Department of Pediatrics, Obstetrics and Reproductive Medicine; University of Siena; Siena; Italy
| |
Collapse
|