1
|
Sonmez G, Ulum B, Tenekeci AK, Caka C, Şahin A, Kazancıoğlu A, Ozbek B, Yaz İ, Esenboğa S, Çağdaş D. Recurrent eosinophilia with a novel homozygous ARPC1B mutation. Front Med 2024:10.1007/s11684-024-1106-2. [PMID: 39609360 DOI: 10.1007/s11684-024-1106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 11/30/2024]
Abstract
Cytoskeletal network dysregulation is a pivotal determinant in various immunodeficiencies and autoinflammatory conditions. This report reviews the significance of actin remodeling in disease pathogenesis, focusing on the Arp2/3 complex and its regulatory subunit actin related protein 2/3 complex subunit 1B (ARPC1B). A spectrum of cellular dysfunctions associated with ARPC1B deficiency, impacting diverse immune cell types, is elucidated. The study presents a patient featuring recurrent and persistent eosinophilia attributed to homozygous ARPC1B mutation alongside concomitant compound heterozygous cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. We used ARPC1B antibody to stain the patient's peripheral blood lymphocytes and those of the control. The defect in the ARPC1B gene in the present patient caused absent/low expression by immunofluorescence microscopy. The intricate interplay between cytoskeletal defects and immunological manifestations underscores the complexity of disease phenotypes, warranting further exploration for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gamze Sonmez
- Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Baris Ulum
- Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, 06100, Turkey
| | | | - Canan Caka
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
| | - Ali Şahin
- School of Medicine, Selcuk University, Konya, 42250, Turkey
| | - Alp Kazancıoğlu
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
| | - Begum Ozbek
- Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, 06100, Turkey
| | - İsmail Yaz
- Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, 06100, Turkey
| | - Saliha Esenboğa
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
| | - Deniz Çağdaş
- Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, 06100, Turkey.
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey.
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey.
| |
Collapse
|
2
|
Scull CE, Hu Y, Jennings S, Wang G. Normalization of Cystic Fibrosis Immune System Reverses Intestinal Neutrophilic Inflammation and Significantly Improves the Survival of Cystic Fibrosis Mice. Cell Mol Gastroenterol Hepatol 2024:101424. [PMID: 39510500 DOI: 10.1016/j.jcmgh.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) is an autosomal recessive genetic disorder, affecting multiple organ systems. CF intestinal disease develops early, manifesting as intestinal bacterial overgrowth/dysbiosis, neutrophilic inflammation, and obstruction. As unresolvable infection and inflammation reflect host immune deficiency, we sought to determine if the CF-affected immune system plays any significant role in CF intestinal disease pathogenesis. METHODS CF and sibling wild-type (WT) mice underwent reciprocal bone marrow transplantation. After immune reconstitution, their mortality, intestinal transit, fecal inflammatory markers, and mucosal immune cell composition were assessed. Moreover, reciprocal neutrophil transfusion was conducted to determine if neutrophil function affects intestinal movement. Furthermore, expression of induced nitric oxide synthase (iNOS) and production of nitric oxide (NO) in CF and WT neutrophils were compared. Lastly, specific iNOS inhibitor 1400W was tested to prevent CF intestinal obstruction. RESULTS Immune restoration in CF mice reversed the intestinal neutrophilic inflammation, improved the intestinal dysmotility, and rescued the mice from mortality. Transfusion of WT neutrophils into CF mice ameliorated the retarded bowel movement. CF neutrophils expressed significantly more iNOS and produced significantly more NO. Pharmaceutical blocking of iNOS significantly improved intestinal transit and survival of CF mice. CONCLUSIONS CF immune defect plays a critical role in CF intestinal disease development. Activation of iNOS in inflammatory cells produces excessive NO, slows the bowel movement, and facilitates intestinal paralysis and obstruction in CF. Thus, normalization of the CF immune system may offer a novel therapy to treat CF intestinal disease.
Collapse
Affiliation(s)
- Callie E Scull
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yawen Hu
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Jennings
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Guoshun Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
3
|
Montresor A, D'Ulivo B, Preato S, Farinazzo A, Pintani E, Chiara ED, Torroni L, Verlato G, Boscia S, Pisano L, Mangone G, Ricci S, Azzari C, Taccetti G, Terlizzi V, Cipolli M, Melotti P, Sorio C, Laudanna C. Real-Life Experience with CFTR Modulators Shows Correction of LAD-IV Phenotype in Cystic Fibrosis. Am J Respir Cell Mol Biol 2024; 71:495-498. [PMID: 39352210 DOI: 10.1165/rcmb.2024-0136le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Affiliation(s)
| | | | | | | | - Emily Pintani
- Azienda Ospedaliera Universitaria Integrata Verona Verona, Italy
| | | | | | | | - Silvia Boscia
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | - Laura Pisano
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | - Giusi Mangone
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | - Silvia Ricci
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | - Chiara Azzari
- Meyer Children's Hospital IRCCS Florence, Italy
- University of Florence Florence, Italy
| | | | | | - Marco Cipolli
- Azienda Ospedaliera Universitaria Integrata Verona Verona, Italy
| | - Paola Melotti
- Azienda Ospedaliera Universitaria Integrata Verona Verona, Italy
| | | | | |
Collapse
|
4
|
Alasmari BG, Alomari M, Alotaibi WN, Hommadi A, Elmugadam AA, Abdalla K, Al-Tala SM. LAD-III, a Mild Phenotype Resulting From a Novel Variant of FERMT3 Gene: A Case Report. Cureus 2023; 15:e51062. [PMID: 38269242 PMCID: PMC10806943 DOI: 10.7759/cureus.51062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
Leukocyte adhesion deficiency-III (LAD-III) is a rare recessive autosomal disorder characterized by bleeding syndrome of Glanzmann-type and life-threatening infections. The main etiology of this condition is variations in the FERMT3 gene, which encodes kindlin-3, an integrin-binding protein. This protein is responsible for the activation of fibrinogen receptors and integrin-mediated hematopoietic cell adhesion. So far, only limited cases of LAD-III have been reported. This case report discusses a two-year-old male infant from the Asir region, Saudi Arabia, who was referred to the pediatric hematology service due to recurrent ecchymosis and epistaxis. He was born at full term with a history of transient tachypnea of the newborn and recurrent bronchiolitis. The patient exhibited normal platelet count and coagulation profiles alongside a familial history of bleeding disorders, including a cousin with a similar condition. The patient also presented with hypospadias and café-au-lait spots. Laboratory findings revealed anemia, microcytosis, and hypochromia indicative of iron deficiency anemia. Whole exome sequencing (WES) identified a homozygous variant of uncertain significance in the FERMT3 gene, associated with autosomal recessive LAD-III. The patient was subsequently referred to an immunology subspecialty for further investigation and bone marrow transplant preparation. This case underscores the importance of comprehensive clinical and genetic evaluations in pediatric patients with unexplained bleeding tendencies.
Collapse
Affiliation(s)
| | - Mohammed Alomari
- Pediatrics, Armed Forces Hospital Southern Region, Khamis Mushait, SAU
| | - Wejdan N Alotaibi
- Pediatrics, Armed Forces Hospital Southern Region, Khamis Mushait, SAU
| | - Ashwaq Hommadi
- Pediatrics, Armed Forces Hospital Southern Region, Khamis Mushait, SAU
| | | | - Khalid Abdalla
- Pediatric Hematology Oncology, King Abdulaziz Medical City, Jeddah, SAU
| | - Saeed M Al-Tala
- Pediatrics, Armed Forces Hospital Southern Region, Khamis Mushait, SAU
| |
Collapse
|
5
|
Roos D, van Leeuwen K, Madkaikar M, Kambli PM, Gupta M, Mathews V, Rawat A, Kuhns DB, Holland SM, de Boer M, Kanegane H, Parvaneh N, Lorenz M, Schwarz K, Klein C, Sherkat R, Jafari M, Wolach B, den Dunnen JT, Kuijpers TW, Köker MY. Hematologically important mutations: Leukocyte adhesion deficiency (second update). Blood Cells Mol Dis 2023; 99:102726. [PMID: 36696755 DOI: 10.1016/j.bcmd.2023.102726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, characterized directly after birth by delayed separation of the umbilical cord, mutations are found in ITGB2, the gene that encodes the β subunit (CD18) of the β2 integrins. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Lea and Leb blood group antigens. Finally, in LAD-III, the conformational activation of the hematopoietically expressed β integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells, involved in the regulation of β integrin conformation. This article contains an update of the mutations that we consider to be relevant for the various forms of LAD.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Karin van Leeuwen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Manisha Madkaikar
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Priyanka M Kambli
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Maya Gupta
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Vikram Mathews
- Dept of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Amit Rawat
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Chandigarh, India
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nima Parvaneh
- Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbube Jafari
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Baruch Wolach
- Pediatric Immunology Service, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Johan T den Dunnen
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | - M Yavuz Köker
- Department of Immunology, Erciyes Medical School, University of Erciyes, Kayseri, Türkiye
| |
Collapse
|
6
|
Wen L, Moser M, Ley K. Molecular mechanisms of leukocyte β2 integrin activation. Blood 2022; 139:3480-3492. [PMID: 35167661 PMCID: PMC10082358 DOI: 10.1182/blood.2021013500] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/06/2022] [Indexed: 11/20/2022] Open
Abstract
Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix adhesion. Although all integrins can undergo activation (affinity change for ligands), the degree of activation is most spectacular for integrins on blood cells. The β2 integrins are exclusively expressed on the surface of all leukocytes including neutrophils, lymphocytes, and monocytes. They are essential for many leukocyte functions and are strictly required for neutrophil arrest from rolling. The inside-out integrin activation process receives input from chemokine receptors and adhesion molecules. The integrin activation pathway involves many cytoplasmic signaling molecules such as spleen tyrosine kinase, other kinases like Bruton's tyrosine kinase, phosphoinositide 3-kinases, phospholipases, Rap1 GTPases, and the Rap1-GTP-interacting adapter molecule. These signaling events ultimately converge on talin-1 and kindlin-3, which bind to the integrin β cytoplasmic domain and induce integrin conformational changes: extension and high affinity for ligand. Here, we review recent structural and functional insights into how talin-1 and kindlin-3 enable integrin activation, with a focus on the distal signaling components that trigger β2 integrin conformational changes and leukocyte adhesion under flow.
Collapse
Affiliation(s)
- Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| |
Collapse
|
7
|
Understanding the Role of LFA-1 in Leukocyte Adhesion Deficiency Type I (LAD I): Moving towards Inflammation? Int J Mol Sci 2022; 23:ijms23073578. [PMID: 35408940 PMCID: PMC8998723 DOI: 10.3390/ijms23073578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
LFA-1 (Lymphocyte function-associated antigen-1) is a heterodimeric integrin (CD11a/CD18) present on the surface of all leukocytes; it is essential for leukocyte recruitment to the site of tissue inflammation, but also for other immunological processes such as T cell activation and formation of the immunological synapse. Absent or dysfunctional expression of LFA-1, caused by mutations in the ITGB2 (integrin subunit beta 2) gene, results in a rare immunodeficiency syndrome known as Leukocyte adhesion deficiency type I (LAD I). Patients suffering from severe LAD I present with recurrent infections of the skin and mucosa, as well as inflammatory symptoms complicating the clinical course of the disease before and after allogeneic hematopoietic stem cell transplantation (alloHSCT); alloHSCT is currently the only established curative treatment option. With this review, we aim to provide an overview of the intrinsic role of inflammation in LAD I.
Collapse
|
8
|
Fan Z, Pitmon E, Wen L, Miller J, Ehinger E, Herro R, Liu W, Chen J, Mikulski Z, Conrad DJ, Marki A, Orecchioni M, Kumari P, Zhu YP, Marcovecchio PM, Hedrick CC, Hodges CA, Rathinam VA, Wang K, Ley K. Bone Marrow Transplantation Rescues Monocyte Recruitment Defect and Improves Cystic Fibrosis in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:745-752. [PMID: 35031577 PMCID: PMC8855460 DOI: 10.4049/jimmunol.1901171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF) is an inherited life-threatening disease accompanied by repeated lung infections and multiorgan inflammation that affects tens of thousands of people worldwide. The causative gene, cystic fibrosis transmembrane conductance regulator (CFTR), is mutated in CF patients. CFTR functions in epithelial cells have traditionally been thought to cause the disease symptoms. Recent work has shown an additional defect: monocytes from CF patients show a deficiency in integrin activation and adhesion. Because monocytes play critical roles in controlling infections, defective monocyte function may contribute to CF progression. In this study, we demonstrate that monocytes from CFTRΔF508 mice (CF mice) show defective adhesion under flow. Transplanting CF mice with wild-type (WT) bone marrow after sublethal irradiation replaced most (60-80%) CF monocytes with WT monocytes, significantly improved survival, and reduced inflammation. WT/CF mixed bone marrow chimeras directly demonstrated defective CF monocyte recruitment to the bronchoalveolar lavage and the intestinal lamina propria in vivo. WT mice reconstituted with CF bone marrow also show lethality, suggesting that the CF defect in monocytes is not only necessary but also sufficient to cause disease. We also show that monocyte-specific knockout of CFTR retards weight gains and exacerbates dextran sulfate sodium-induced colitis. Our findings show that providing WT monocytes by bone marrow transfer rescues mortality in CF mice, suggesting that similar approaches may mitigate disease in CF patients.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Elise Pitmon
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Lai Wen
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Jacqueline Miller
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Erik Ehinger
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Ju Chen
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA
| | - Douglas J Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alex Marki
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Puja Kumari
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Paola M Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Cystic Fibrosis Mouse Models Core, School of Medicine, Case Western Reserve University, Cleveland, OH; and
| | - Vijay A Rathinam
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Kepeng Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA;
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
9
|
Allogeneic hematopoietic stem cell transplantation in leukocyte adhesion deficiency type I and III. Blood Adv 2021; 5:262-273. [PMID: 33570653 DOI: 10.1182/bloodadvances.2020002185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/31/2020] [Indexed: 12/29/2022] Open
Abstract
Type I and III leukocyte adhesion deficiencies (LADs) are primary immunodeficiency disorders resulting in early death due to infections and additional bleeding tendency in LAD-III. The curative treatment of LAD-I and LAD-III is allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this retrospective multicenter study, data were collected using the European Society for Blood and Marrow Transplantation registry; we analyzed data from 84 LAD patients from 33 centers, all receiving an allo-HSCT from 2007 to 2017. The 3-year overall survival estimate (95% confidence interval [CI]) was 83% (74-92) for the entire cohort: 84% (75-94) and 75% (50-100) for LAD-I and LAD-III, respectively. We observed cumulative incidences (95% CI) of graft failure (GF) at 3 years of 17% (9%-26%) and grade II to IV acute graft-versus-host disease (aGVHD) at 100 days of 24% (15%-34%). The estimate (95% CI) at 3 years for GF- and GVHD-II to IV-free survival as event-free survival (EFS) was 56% (46-69) for the entire cohort; 58% (46-72) and 56% (23-88) for LAD-I and LAD-III, respectively. Grade II to IV acute GVHD was a relevant risk factor for death (hazard ratio 3.6; 95% CI 1.4-9.1; P = .006). Patients' age at transplant ≥13 months, transplantation from a nonsibling donor, and any serological cytomegalovirus mismatch in donor-recipient pairs were significantly associated with severe acute GVHD and inferior EFS. The choice of busulfan- or treosulfan-based conditioning, type of GVHD prophylaxis, and serotherapy did not impact overall survival, EFS, or aGVHD. An intrinsic inflammatory component of LAD may contribute to inflammatory complications during allo-HSCT, thus providing the rationale for considering anti-inflammatory therapy pretreatment.
Collapse
|
10
|
Vrachnis N, Zygouris D, Vrachnis D, Roussos N, Loukas N, Antonakopoulos N, Paltoglou G, Barbounaki S, Valsamakis G, Iliodromiti Z. Perinatal Inflammation: Could Partial Blocking of Cell Adhesion Molecule Function Be a Solution? CHILDREN-BASEL 2021; 8:children8050380. [PMID: 34065912 PMCID: PMC8150343 DOI: 10.3390/children8050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022]
Abstract
In spite of the great advances made in recent years in prenatal and perinatal medicine, inflammation can still frequently result in injury to vital organs and often constitutes a major cause of morbidity. It is today well established that in neonates—though vulnerability to infection among neonates is triggered by functional impairments in leukocyte adhesion—the decreased expression of cell adhesion molecules also decreases the inflammatory response. It is also clear that the cell adhesion molecules, namely, the integrins, selectins, and the immunoglobulin (Ig) gene super family, all play a crucial role in the inflammatory cascade. Thus, by consolidating our knowledge concerning the actions of these vital cell adhesion molecules during the prenatal period as well as regarding the genetic deficiencies of these molecules, notably leukocyte adhesion deficiency (LAD) I, II, and III, which can provoke severe clinical symptoms throughout the first year of life, it is anticipated that intervention involving blocking the function of cell adhesion molecules in neonatal leukocytes has the potential to constitute an effective therapeutic approach for inflammation. A promising perspective is the potential use of antibody therapy in preterm and term infants with perinatal inflammation and infection focusing on cases in which LAD is involved, while a further important scientific advance related to this issue could be the combination of small peptides aimed at the inhibition of cellular adhesion.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 11526 Athens, Greece;
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
- Research Centre in Obstetrics and Gynecology, Hellenic Society of Obstetric and Gynecologic Emergency, 11526 Athens, Greece; (D.Z.); (N.R.)
- Correspondence: ; Tel.: +30-2107777442
| | - Dimitrios Zygouris
- Research Centre in Obstetrics and Gynecology, Hellenic Society of Obstetric and Gynecologic Emergency, 11526 Athens, Greece; (D.Z.); (N.R.)
| | - Dionysios Vrachnis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11526 Athens, Greece;
| | - Nikolaos Roussos
- Research Centre in Obstetrics and Gynecology, Hellenic Society of Obstetric and Gynecologic Emergency, 11526 Athens, Greece; (D.Z.); (N.R.)
| | - Nikolaos Loukas
- Department of Gynecology, General Hospital of Athens “G. Gennimatas”, 11527 Athens, Greece;
| | - Nikolaos Antonakopoulos
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 11526 Athens, Greece;
| | - Georgios Paltoglou
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, School of Medicine, National and Kapodistrian University of Athens, Aretaieion Hospital, 11526 Athens, Greece; (G.P.); (G.V.)
| | | | - Georgios Valsamakis
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, School of Medicine, National and Kapodistrian University of Athens, Aretaieion Hospital, 11526 Athens, Greece; (G.P.); (G.V.)
| | - Zoi Iliodromiti
- Department of Neonatology, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, 11526 Athens, Greece;
| |
Collapse
|
11
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021. [PMID: 33488606 DOI: 10.3389/fimmu.2020.604206)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
12
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021; 11:604206. [PMID: 33488606 PMCID: PMC7817698 DOI: 10.3389/fimmu.2020.604206] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
13
|
Gupta V, Pandita A, Panghal A, Pillai A. Leucocyte adhesion defect presenting as fulminant sepsis in a new born. BMJ Case Rep 2019; 12:12/8/e227065. [PMID: 31471353 DOI: 10.1136/bcr-2018-227065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We present a term neonate with severe sepsis, presenting on day 10 of life. The neonate presented with bilateral purulent eye discharge and hepatosplenomegaly. On investigation, persistent leucocytosis was observed and thus the possibility of leucocyte adhesion defect was considered. Flow cytometry confirmed the diagnosis.
Collapse
Affiliation(s)
| | - Aakash Pandita
- Neonatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Astha Panghal
- Neonatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anish Pillai
- Division of Neonatology, BC Women's and Children's Hospital, Vancouver, Canada
| |
Collapse
|
14
|
Leukocyte adhesion defect: Where do we stand circa 2019? Genes Dis 2019; 7:107-114. [PMID: 32181281 PMCID: PMC7063431 DOI: 10.1016/j.gendis.2019.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/21/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023] Open
Abstract
Migration of polymorphonuclear leukocytes from bloodstream to the site of inflammation is an important event required for surveillance of foreign antigens. This trafficking of leukocytes from bloodstream to the tissue occurs in several distinct steps and involves several adhesion molecules. Defect in adhesion of leukocytes to vascular endothelium affecting their subsequent migration to extravascular space gives rise to a group of rare primary immunodeficiency diseases (PIDs) known as Leukocyte Adhesion Defects (LAD). Till date, four classes of LAD are discovered with LAD I being the most common form. LAD I is caused by loss of function of common chain, cluster of differentiation (CD)18 of β2 integrin family. These patients suffer from life-threatening bacterial infections and in its severe form death usually occurs in childhood without bone marrow transplantation. LAD II results from a general defect in fucose metabolism. These patients suffer from less severe bacterial infections and have growth and mental retardation. Bombay blood group phenotype is also observed in these patients. LAD III is caused by abnormal integrin activation. LAD III patients suffer from severe bacterial and fungal infections. Patients frequently show delayed detachment of umbilical cord, impaired wound healing and increased tendency to bleed. LAD IV is the most recently described class. It is caused by defects in β2 and α4β1 integrins which impairs lymphocyte adhesion. LAD IV patients have monogenic defect in cystic-fibrosis-transmembrane-conductance-regulator (CFTR) gene, resulting in cystic fibrosis. Pathophysiology and genetic etiology of all LAD syndromes are discussed in detail in this paper.
Collapse
|
15
|
Bakhtiar S, Shadur B, Stepensky P. The Evidence for Allogeneic Hematopoietic Stem Cell Transplantation for Congenital Neutrophil Disorders: A Comprehensive Review by the Inborn Errors Working Party Group of the EBMT. Front Pediatr 2019; 7:436. [PMID: 31709206 PMCID: PMC6821686 DOI: 10.3389/fped.2019.00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
Congenital disorders of the immune system affecting maturation and/or function of phagocytic leucocytes can result in severe infectious and inflammatory complications with high mortality and morbidity. Further complications include progression to MDS/AML in some cases. Allogeneic stem cell transplantation is the only curative treatment for most patients with these diseases. In this review, we provide a detailed update on indications and outcomes of alloHSCT for congenital neutrophil disorders, based on data from the available literature.
Collapse
Affiliation(s)
- Shahrzad Bakhtiar
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Bella Shadur
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel.,Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Graduate Research School, University of New South Wales, Kensington, NSW, Australia
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|