1
|
Lyukmanova EN, Kirichenko AV, Medyanik IA, Yashin KS, Kirpichnikov MP, Bychkov ML. Extracellular Vesicles from Plasma of Patients with Glioblastoma Promote Invasion of Glioblastoma Cells Even After Tumor Resection. Biomedicines 2024; 12:2834. [PMID: 39767739 PMCID: PMC11673896 DOI: 10.3390/biomedicines12122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Glioblastoma (GB) is a highly aggressive tumor, whose progression is mediated by secretion of extracellular vesicles (EVs), which can pass the brain-blood barrier and be found in the plasma. Here, we performed a comparative analysis of the effects of EVs from the plasma of healthy donors (hEVs) and GB patients before (bEVs) and after (aEVs) tumor surgical resection on invasion of normal astrocytes and GB cells. Methods: We performed the transwell invasion assay, analyzed MAP kinases activation by Western blotting, studied SNAI1/SNAI2 cellular localization by confocal microscopy, measured cadherins expression by flow cytometry, and analyzed secretion of cytokines, which regulate migration and inflammation, by immunoassay. Results: hEVs did not affect invasion of astrocytes and GB cells, there was down-regulated cadherins expression in astrocytes, while there was increased E- and N-cadherin expression in GB cells. hEVs increased the secretion of inflammation and adhesion regulators both in astrocytes and GB cells. bEVs enhanced the invasion of GB cells but not of astrocytes via MAP AKT, JNK1/2/3, and p38 kinases activation, stimulated the clasterization of SNAI1 in the GB cell nucleus, promoted an E/N cadherin switch, and caused the secretion of inflammation and adhesion regulators in astrocytes and GB cells. aEVs exhibited the most of pro-oncogenic effects of bEVs (stimulation of GB cell invasion, SNAI1 nuclear localization, JNK1/2/3 activation, E/N cadherin switch, and secretion of inflammation and adhesion regulators in astrocytes and GB cells). However, aEVs effects were less pronounced than those of bEVs. Conclusions: In our study, we revealed common and different effects of plasma-derived hEVs, aEVs, and bEVs. hEVs can stimulate some pro-oncogenic effects in GB cells. Being less tumorigenic then bEVs, aEVs are still able to promote invasion of GB cells, probably remaining after tumor resection.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem V. Kirichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Igor A. Medyanik
- Department of Neurosurgery, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.A.M.); (K.S.Y.)
| | - Konstantin S. Yashin
- Department of Neurosurgery, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.A.M.); (K.S.Y.)
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
| |
Collapse
|
2
|
Khadela A, Megha K, Shah VB, Soni S, Shah AC, Mistry H, Bhatt S, Merja M. Exploring the Potential of Antibody-Drug Conjugates in Targeting Non-small Cell Lung Cancer Biomarkers. Clin Med Insights Oncol 2024; 18:11795549241260534. [PMID: 38911453 PMCID: PMC11193349 DOI: 10.1177/11795549241260534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Antibody-drug conjugates (ADCs), combining the cytotoxicity of the drug payload with the specificity of monoclonal antibodies, are one of the rapidly evolving classes of anti-cancer agents. These agents have been successfully incorporated into the treatment paradigm of many malignancies, including non-small cell lung cancer (NSCLC). The NSCLC is the most prevalent subtype of lung cancer, having a considerable burden on the cancer-related mortality and morbidity rates globally. Several ADC molecules are currently approved by the Food and Drug Administration (FDA) to be used in patients with NSCLC. However, the successful management of NSCLC patients using these agents was met with several challenges, including the development of resistance and toxicities. These shortcomings resulted in the exploration of novel therapeutic targets that can be targeted by the ADCs. This review aims to explore the recently identified ADC targets along with their oncologic mechanisms. The ADC molecules targeting these biomarkers are further discussed along with the evidence from clinical trials.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kaivalya Megha
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Vraj B Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shruti Soni
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Aayushi C Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Hetvi Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Manthan Merja
- Department of Clinical Oncology, Starlit Cancer Centre, Kothiya Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Baek SM, Kim MN, Kim EG, Lee YJ, Park CH, Kim MJ, Kim KW, Sohn MH. Activated Leukocyte Cell Adhesion Molecule Regulates the Expression of Interleukin-33 in RSV Induced Airway Inflammation by Regulating MAPK Signaling Pathways. Lung 2024; 202:127-137. [PMID: 38502305 DOI: 10.1007/s00408-024-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE The respiratory syncytial virus (RSV) is a common respiratory virus that causes acute lower respiratory tract infectious diseases, particularly in young children and older individuals. Activated leukocyte cell adhesion molecule (ALCAM) is a membrane glycoprotein expressed in various cell types, including epithelial cells, and is associated with inflammatory responses and various cancers. However, the precise role of ALCAM in RSV-induced airway inflammation remains unclear, and our study aimed to explore this gap in the literature. METHODS C57BL/6 wild-type, ALCAM knockout mice and airway epithelial cells were infected with RSV and the expression of ALCAM and inflammatory cytokines were measured. We also conducted further experiments using Anti-ALCAM antibody and recombinant ALCAM in airway epithelial cells. RESULTS The expression levels of ALCAM and inflammatory cytokines increased in both RSV-infected mice and airway epithelial cells. Interestingly, IL-33 expression was significantly reduced in ALCAM-knockdown cells compared to control cells following RSV infection. Anti-ALCAM antibody treatment also reduced IL-33 expression following RSV infection. Furthermore, the phosphorylation of ERK1/2, p38, and JNK was diminished in ALCAM-knockdown cells compared to control cells following RSV infection. Notably, in the control cells, inhibition of these pathways significantly decreased the expression of IL-33. In vivo study also confirmed a reduction in inflammation induced by RSV infection in ALCAM deficient mice compared to wild-type mice. CONCLUSION These findings demonstrate that ALCAM contributes to RSV-induced airway inflammation at least partly by influencing IL-33 expression through mitogen-activated protein kinase signaling pathways. These results suggest that targeting ALCAM could be a potential therapeutic strategy for alleviating IL-33-associated lung diseases.
Collapse
Affiliation(s)
- Seung Min Baek
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Yu Jin Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Chang Hyun Park
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Min Jung Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin, South Korea.
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
4
|
Bauer A, Klassa S, Herbst A, Maccioni C, Abhamon W, Segueni N, Kaluzhny Y, Hunter MC, Halin C. Optimization and Characterization of Novel ALCAM-Targeting Antibody Fragments for Transepithelial Delivery. Pharmaceutics 2023; 15:1841. [PMID: 37514028 PMCID: PMC10385607 DOI: 10.3390/pharmaceutics15071841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is a cell adhesion molecule that supports T cell activation, leukocyte migration, and (lymph)angiogenesis and has been shown to contribute to the pathology of various immune-mediated disorders, including asthma and corneal graft rejection. In contrast to monoclonal antibodies (mAbs) targeting ALCAM's T cell expressed binding partner CD6, no ALCAM-targeting mAbs have thus far entered clinical development. This is likely linked with the broad expression of ALCAM on many different cell types, which increases the risk of eliciting unwanted treatment-induced side effects upon systemic mAb application. Targeting ALCAM in surface-exposed tissues, such as the lungs or the cornea, by a topical application could circumvent this issue. Here, we report the development of various stability- and affinity-improved anti-ALCAM mAb fragments with cross-species reactivity towards mouse, rat, monkey, and human ALCAM. Fragments generated in either mono- or bivalent formats potently blocked ALCAM-CD6 interactions in a competition ELISA, but only bivalent fragments efficiently inhibited ALCAM-ALCAM interactions in a leukocyte transmigration assay. The different fragments displayed a clear size-dependence in their ability to penetrate the human corneal epithelium. Furthermore, intranasal delivery of anti-ALCAM fragments reduced leukocyte infiltration in a mouse model of asthma, confirming ALCAM as a target for topical application in the lungs.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Sven Klassa
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Anja Herbst
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Cristina Maccioni
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - William Abhamon
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Noria Segueni
- Artimmune SAS, 13 Avenue Buffon, 45100 Orleans, France
| | - Yulia Kaluzhny
- MatTek Corporation, 200 Homer Avenue, Ashland, MA 01721, USA
| | - Morgan Campbell Hunter
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Li R, Ren T, Zeng J, Xu H. ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response. Inflammation 2023; 46:688-699. [PMID: 36418761 DOI: 10.1007/s10753-022-01765-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
We investigated the effects and underlying mechanisms of activated leukocyte adhesion molecule (ALCAM) on acute lung injury (ALI) by using lipopolysaccharide (LPS)-induced ALI animal model and LPS-induced inflammation in vitro. In LPS-stimulated mice, ALCAM deficiency relieved lung injury, which manifested as reduced pathological changes in the lung tissue, reduced pulmonary edema, and reduced vascular permeability. Furthermore, we demonstrated that ALCAM deficiency reduced the infiltration of inflammatory cells, including neutrophil, eosinophil, and macrophages; the release of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and COX2; and reduced the protein level of TLR4/NF-κB pathway (TLR4, MyD88, p-IkBɑ, and p-NF-κB p65). We also demonstrated that ALCAM deficiency reduced the expression of oxidative stress-related proteins (Nrf-2, HO-1, and NQO-1) and endoplasmic reticulum stress-related proteins (CHOP, GRP78, ATF-6, and p-eIF2ɑ). In addition, in LPS-induced inflammation in vitro, ALCAM overexpression promoted inflammatory response, oxidative stress, and ER stress. We established that ALCAM deficiency can suppress the ALI process by reducing inflammatory response, oxidative stress, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Tao Ren
- Three Departments of Cardiology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jianqiong Zeng
- Cardiovascular Surgery CCU, Foshan First People's Hospital, Foshan, 528000, Guangdong, People's Republic of China
| | - Hang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
6
|
Huang YJ, Chu YC, Chen CW, Yang HC, Huang HL, Hwang JS, Chen CH, Chan TC. Relationship among genetic variants, obesity traits and asthma in the Taiwan Biobank. BMJ Open Respir Res 2022; 9:9/1/e001355. [PMID: 36600406 PMCID: PMC9730389 DOI: 10.1136/bmjresp-2022-001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Obesity and asthma impose a heavy health and economic burden on millions of people around the world. The complex interaction between genetic traits and phenotypes caused the mechanism between obesity and asthma is still vague. This study investigates the relationship among obesity-related polygenic risk score (PRS), obesity phenotypes and the risk of having asthma. METHODS This is a matched case-control study, with 4 controls (8288 non-asthmatic) for each case (2072 asthmatic). Data were obtained from the 2008-2015 Taiwan Biobank Database and linked to the 2000-2016 National Health Insurance Research Database. All participants were ≥30 years old with no history of cancer and had a complete questionnaire, as well as physical examination, genome-wide single nucleotide polymorphisms and clinical diagnosis data. Environmental exposure, PM2.5, was also considered. Multivariate adjusted ORs and 95% CIs were calculated using conditional logistic regression stratified by age and sex. Mediation analysis was also assessed, using a generalised linear model. RESULTS We found that the obese phenotype was associated with significantly increased odds of asthma by approximately 26%. Four obesity-related PRS, including body mass index (OR=1.07 (1.01-1.13)), waist circumference (OR=1.10 (1.04-1.17)), central obesity as defined by waist-to-height ratio (OR=1.09 (1.03-1.15)) and general-central obesity (OR=1.06 (1.00-1.12)), were associated with increased odds of asthma. Additional independent risk factors for asthma included lower educational level, family history of asthma, certain chronic diseases and increased PM2.5 exposure. Obesity-related PRS is an indirect risk factor for asthma, the link being fully mediated by the trait of obesity. CONCLUSIONS Obese phenotypes and obesity-related PRS are independent risk factors for having asthma in adults in the Taiwan Biobank. Overall, genetic risk for obesity increases the risk of asthma by affecting the obese phenotype.
Collapse
Affiliation(s)
- Ying-Jhen Huang
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei City, Taiwan
| | - Yi-Chi Chu
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei City, Taiwan
| | - Chia-Wei Chen
- Institute of Statistical Science, Academia Sinica, Taipei City, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei City, Taiwan
| | - Hung-Ling Huang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City, Taiwan,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Jing-Shiang Hwang
- Institute of Statistical Science, Academia Sinica, Taipei City, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei City, Taiwan
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei City, Taiwan,Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| |
Collapse
|
7
|
Qian Q, Cui N, Huang B, Zhao Y, Liu Q, Hu M, Li B, Wang Q, Miao Q, You Z, Ma X, Tang R. Intrahepatic activated leukocyte cell adhesion molecule induces CD6highCD4+ T cell infiltration in autoimmune hepatitis. Front Immunol 2022; 13:967944. [PMID: 36159854 PMCID: PMC9500242 DOI: 10.3389/fimmu.2022.967944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background and objectives Autoimmune hepatitis (AIH) is characterized by the expansion and accumulation of pathogenic T cells in liver. Although CD6 and its ligand activated leukocyte cell adhesion molecule (ALCAM) are involved in the evolution of multiple inflammatory diseases, their roles in the pathogenesis of AIH remain unknown. Herein, we aimed to investigate ALCAM-CD6 axis in AIH development. Methods Immunohistochemistry was performed to examine hepatic expression of CD6 and ALCAM. The concentration of serum ALCAM was evaluated by ELISA. The phenotypes of liver infiltrating T cells were determined by flow cytometry. Primary human CD4+ T cells were used for functional studies. Results Our data showed that patients with AIH exhibited significantly higher expression of CD6 in the liver as compared to primary biliary cholangitis (PBC), chronic hepatitis B (CHB), non-alcoholic liver disease (NAFLD), and healthy controls (HC). In addition, hepatic CD6 expression was strongly correlated with disease severity of AIH. CD6 was mainly expressed on CD4+ T cells in the liver and intrahepatic CD6highCD4+ T cells demonstrated stronger proinflammatory response and proliferation features than CD6low counterparts in both AIH and HC. ALCAM, the ligand of CD6, was highly expressed in the hepatocytes of AIH and serum ALCAM was strongly associated with clinical indices of AIH. Interestingly, close spatial location between CD6+CD4+ T cells and ALCAM+ hepatocytes was observed. Finally, we found that CD6highCD4+ T cells showed enhanced capacity of trans-endothelial migration in vitro, which could be promoted by recombinant ALCAM. Conclusions Our study found that ALCAM-CD6 axis was upregulated in the AIH liver, suggesting a potential target for alleviating AIH.
Collapse
Affiliation(s)
- Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Mingli Hu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- *Correspondence: Ruqi Tang, ; Xiong Ma, ; Zhengrui You,
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- *Correspondence: Ruqi Tang, ; Xiong Ma, ; Zhengrui You,
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- *Correspondence: Ruqi Tang, ; Xiong Ma, ; Zhengrui You,
| |
Collapse
|
8
|
Byrnes JR, Weeks AM, Shifrut E, Carnevale J, Kirkemo L, Ashworth A, Marson A, Wells JA. Hypoxia Is a Dominant Remodeler of the Effector T Cell Surface Proteome Relative to Activation and Regulatory T Cell Suppression. Mol Cell Proteomics 2022; 21:100217. [PMID: 35217172 PMCID: PMC9006863 DOI: 10.1016/j.mcpro.2022.100217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 01/02/2023] Open
Abstract
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture-based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.
Collapse
Affiliation(s)
- James R Byrnes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Eric Shifrut
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA; Gladstone Institutes, San Francisco, California, USA
| | - Julia Carnevale
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Lisa Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Alan Ashworth
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA; Gladstone Institutes, San Francisco, California, USA; Department of Medicine, University of California, San Francisco, San Francisco, California, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA; Parker Institute for Cancer Immunotherapy, San Francisco, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
9
|
Zhang H, Xie S, Fan R, Wang F, Xie Z, Jiang W. Elevated ALCAM Expression Associated with Endotypes and Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res 2022; 15:1063-1077. [PMID: 35210812 PMCID: PMC8858028 DOI: 10.2147/jir.s350609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Background Chronic rhinosinusitis with polyps (CRSwNP) is characterized by high heterogeneity and postoperative recurrence rate. This study aimed to explore the clinical significance of activated leukocyte cell adhesion molecule (ALCAM) in endotyping CRSwNP and predicting its recurrence. Methods We recruited 120 CRSwNP patients including 70 non-eosinophilic CRSwNP (neCRSwNP) and 50 eosinophilic CRSwNP (eCRSwNP) patients, and 40 healthy controls (HCs). Serum and tissue samples were collected. Serum ALCAM levels were detected by enzyme-linked immunosorbent assay (ELISA), and tissue ALCAM expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blotting (WB) and immunohistochemistry (IHC). The predictive values of ALCAM expression for CRSwNP endotypes and postoperative recurrence were assessed. Results The serum levels of ALCAM were significantly increased in CRSwNP patients in comparison with HCs and were correlated with the peripheral eosinophil count, tissue eosinophil counts, and percentage. Multivariate analysis and receiver operating characteristic (ROC) curve highlighted that serum ALCAM levels were associated with CRSwNP endotypes. Tissue ALCAM expression was significantly enhanced in CRSwNP patients, especially in eCRSwNP patients. At the end of the study, 110 patients completed the follow-up schedule, 78 patients were categorized into the non-recurrent group, and the other 32 patients were included in the recurrent group. The serum ALCAM levels were elevated in the recurrent group compared with the non-recurrent group, and ALCAM expression in the tissue was significantly elevated. The ROC curve exhibited a high predictive ability of serum ALCAM in predicting postoperative recurrence. Logistic regression and Kaplan–Meier curves demonstrated that serum ALCAM was an independent risk factor for postoperative recurrence. Conclusion This is the first report suggesting that ALCAM expression was upregulated and associated with mucosal eosinophil infiltration and CRSwNP recurrence. Serum ALCAM could be a promising biomarker for distinguishing endotypes and predicting postoperative recurrence in CRwNP patients.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Shaobing Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Ruohao Fan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Fengjun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Zhihai Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Correspondence: Weihong Jiang, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China, Email
| |
Collapse
|
10
|
Kim MN, Hong JY, Kim EG, Lee JW, Lee SY, Kim KW, Shim HS, Lee CG, Elias JA, Lee YJ, Sohn MH. A Novel Regulatory Role of ALCAM in the Pathogenesis of Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 66:415-427. [DOI: 10.1165/rcmb.2020-0581oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mi Na Kim
- Yonsei University College of Medicine, 37991, Pediatrics, Seodaemun-gu, Korea (the Republic of)
| | - Jung Yeon Hong
- Yonsei University College of Medicine, 37991, Seodaemun-gu, Korea (the Republic of)
| | - Eun Gyul Kim
- Yonsei University College of Medicine, Pediatrics, Seoul, Korea (the Republic of)
| | - Jae Woo Lee
- Yonsei University College of Medicine, 37991, Seodaemun-gu, Korea (the Republic of)
| | - Soo Yeon Lee
- Yonsei University College of Medicine, 37991, Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Severance Hospital, Seoul, Korea (the Republic of)
| | - Kyung Won Kim
- Yonsei University College of Medicine, Pediatrics, Seoul, Korea (the Republic of)
| | - Hyo Sup Shim
- Yonsei University College of Medicine, 37991, Seoul, Korea (the Republic of)
| | - Chun Geun Lee
- Brown University, 6752, Molecular Microbiology and Immunology, Providence, Rhode Island, United States
| | - Jack A. Elias
- Brown University, Medicine and Biologic Science, Providence, Rhode Island, United States
| | - Yong Ju Lee
- Yonsei University College of Medicine, 37991, Pediatrics, Yongin-si, Gyeonggi-do , Korea (the Republic of)
| | - Myung Hyun Sohn
- Yonsei University College of Medicine, 37991, Pediatrics, Seoul, Korea (the Republic of)
| |
Collapse
|
11
|
Kim EG, Leem JS, Baek SM, Kim HR, Kim KW, Kim MN, Sohn MH. Interleukin-18 Receptor α Modulates the T Cell Response in Food Allergy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:424-438. [PMID: 35837825 PMCID: PMC9293601 DOI: 10.4168/aair.2022.14.4.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 11/20/2022]
Abstract
Purpose Methods Results Conclusions
Collapse
Affiliation(s)
- Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Su Leem
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Min Baek
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Rin Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Luo J, Liu H, Li DKJ, Song B, Zhang Y. Repression of the expression of proinflammatory genes by mitochondrial transcription factor A is linked to its alternative splicing regulation in human lung epithelial cells. BMC Immunol 2021; 22:74. [PMID: 34876009 PMCID: PMC8650232 DOI: 10.1186/s12865-021-00464-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial transcription factor A (TFAM) is associated with a number of neurodegenerative diseases and also with asthma. TFAM deficiency-induced mitochondrial DNA stress primes the antiviral innate immune response in mouse embryonic fibroblasts. However, the role of TFAM in asthma related inflammation remains obscure. The purpose of this study was to investigate the regulatory mechanism of TFAM in asthma. Results In this study, we overexpressed TFAM in human lung epithelial cells (A549), then obtained the TFAM-regulated transcriptome by Illumina sequencing technology. Transcriptome analysis revealed that TFAM overexpression down-regulated and up-regulated the expression of 642 and 169 differentially expressed genes (DEGs), respectively. The TFAM-repressed genes were strongly enriched in cytokine-mediated signaling pathway, type I interferon- and INF-γ-mediated signaling pathways, and viral response pathways. We also revealed that 2563 alternative splicing events in 1796 alternative splicing genes (ASGs) were de-regulated upon TFAM overexpression. These TFAM-responding ASGs were enriched in DNA repair, nerve growth factor receptor signaling pathway, and also transcription regulation. Further analysis revealed that the promoters of TFAM-repressed DEGs were enriched by DNA binding motifs of transcription factors whose alternative splicing was regulated by TFAM. Conclusions These findings suggest that TFAM regulates not only immune response gene expression in human lung epithelial cells, but also pre-mRNA alternative splicing which may mediate transcriptional regulation; this TFAM-centered gene regulation network could be targeted in developing therapies against various diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00464-2.
Collapse
Affiliation(s)
- Jinsong Luo
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Hong Liu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Daniel K Jun Li
- ABLife BioBigData Institute, Wuhan, Hubei, China.,Department of Biology and Biotechnology, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, China
| | - Bin Song
- ABLife BioBigData Institute, Wuhan, Hubei, China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, Hubei, China
| |
Collapse
|
13
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Karreman MA, Winkler F. Targeting an adhesion molecule to prevent brain colonization of lung cancer. Neuro Oncol 2020; 22:899-900. [PMID: 32296850 DOI: 10.1093/neuonc/noaa099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Matthia A Karreman
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
15
|
Corren J. New Targeted Therapies for Uncontrolled Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:1394-1403. [PMID: 31076057 DOI: 10.1016/j.jaip.2019.03.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Mechanistic studies have improved our understanding of molecular and cellular components involved in asthma and our ability to treat severe patients. An mAb directed against IgE (omalizumab) has become an established add-on therapy for patients with uncontrolled allergic asthma and mAbs specific for IL-5 (reslizumab, mepolizumab), IL-5R (benralizumab), and IL-4R (dupilumab) have been approved as add-on treatments for uncontrolled eosinophilic (type 2) asthma. While these medications have proven highly effective, some patients with severe allergic and/or eosinophilic asthma, as well as most patients with severe non-type-2 disease, have poorly controlled disease. Agents that have recently been evaluated in clinical trials include an antibody directed against thymic stromal lymphopoietin, small molecule antagonists to the chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) and the receptor for stem cell factor on mast cells (KIT), and a DNA enzyme directed at GATA3. Antibodies to IL-33 and its receptor, ST2, are being evaluated in ongoing clinical studies. In addition, a number of antagonists directed against other potential targets are under consideration for future trials, including IL-25, IL-6, TNF-like ligand 1A, CD6, and activated cell adhesion molecule (ALCAM). Clinical data from ongoing and future trials will be important in determining whether these new medications will offer benefits in place of or in addition to existing therapies for asthma.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule/immunology
- Anti-Asthmatic Agents/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Asthma/drug therapy
- Asthma/immunology
- Asthma/physiopathology
- Cytokines/antagonists & inhibitors
- Cytokines/immunology
- DNA, Catalytic/therapeutic use
- Eosinophils/immunology
- GATA3 Transcription Factor
- Humans
- Imatinib Mesylate/therapeutic use
- Indoleacetic Acids/therapeutic use
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Interleukin-6/immunology
- Lymphocytes/immunology
- Mast Cells/immunology
- Molecular Targeted Therapy
- Omalizumab/therapeutic use
- Proto-Oncogene Proteins c-kit/antagonists & inhibitors
- Proto-Oncogene Proteins c-kit/immunology
- Pyridines/therapeutic use
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Receptors, Interleukin-17/antagonists & inhibitors
- Receptors, Interleukin-17/immunology
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/immunology
- Ribonucleases/therapeutic use
- Th2 Cells/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 15/antagonists & inhibitors
- Tumor Necrosis Factor Ligand Superfamily Member 15/immunology
Collapse
Affiliation(s)
- Jonathan Corren
- Departments of Medicine and Pediatrics, Division of Allergy and Clinical Immunology, David Geffen School of Medicine at UCLA, Los Angeles, Calif.
| |
Collapse
|
16
|
Smith TJ, Antonarakis ES. Recovery From Bicalutamide-Associated Pneumonitis in a Patient With ATM-Deficient Prostate Cancer. JCO Oncol Pract 2020; 16:767-770. [PMID: 32716759 DOI: 10.1200/op.20.00219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Thomas J Smith
- Harry J. Duffey Family Palliative Care Program and Departments of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Program of Johns Hopkins Medical Institutions, Baltimore, MD
| | - Emmanuel S Antonarakis
- Departments of Urology and Oncology, Sidney Kimmel Comprehensive Cancer Program of Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
17
|
Schönberg A, Hamdorf M, Bock F. Immunomodulatory Strategies Targeting Dendritic Cells to Improve Corneal Graft Survival. J Clin Med 2020; 9:E1280. [PMID: 32354200 PMCID: PMC7287922 DOI: 10.3390/jcm9051280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Even though the cornea is regarded as an immune-privileged tissue, transplantation always comes with the risk of rejection due to mismatches between donor and recipient. It is common sense that an alternative to corticosteroids as the current gold standard for treatment of corneal transplantation is needed. Since blood and lymphatic vessels have been identified as a severe risk factor for corneal allograft survival, much research has focused on vessel regression or inhibition of hem- and lymphangiogenesis in general. However, lymphatic vessels have been identified as required for the inflammation's resolution. Therefore, targeting other players of corneal engraftment could reveal new therapeutic strategies. The establishment of a tolerogenic microenvironment at the graft site would leave the recipient with the ability to manage pathogenic conditions independent from transplantation. Dendritic cells (DCs) as the central player of the immune system represent a target that allows the induction of tolerogenic mechanisms by many different strategies. These strategies are reviewed in this article with regard to their success in corneal transplantation.
Collapse
Affiliation(s)
- Alfrun Schönberg
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (M.H.)
| | - Matthias Hamdorf
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (M.H.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (M.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
18
|
Mei L, Yan H, Wang S, Guo C, Zheng X, Yan B, Zhao J, Yang A. Upregulation of miR-630 Induced by Oxidative Damage Resists Cell Migration Through Targeting ALCAM in Human Lens Epithelium Cells. Curr Eye Res 2019; 45:153-161. [PMID: 31869263 DOI: 10.1080/02713683.2019.1656748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose: To investigate the role of miRNAs in regulating oxidative damage during cataract formation.Methods: Microarray analysis and gene expression profiling assay were used to separately evaluate the miRNAs and mRNAs profiles in normal human lens epithelium cell line HLE-B3 treated by H2O2. The expression level of miR-630 was detected by RT-qPCR and the gene expression profiles were performed with gene ontology analysis using Bio Informatical database. The targets of miR-630 were predicted using miRecords and the results were used for screening targets of miR-630 combined with the GO analysis above. The mRNA levels of ALCAM, PCDH7, COL12A2, and EDIL3 in HLE-B3 cells after oxidative stimulation or miR-630 mimics transfection were measured by RT-qPCR, and the expression of ALCAM regulated by miR-630 was confirmed by Western blot and dual-luciferase reporter gene assay. The level of cell migration was measured by transwell assay and scratching test after transfection of miR-630 mimics and ALCAM siRNAs.Results: The microarray analysis demonstrated that miR-630 was significantly increased in HLE-B3 cells after oxidative stimulation. ALCAM, PCDH7, COL12A2, and EDIL3 were screened to be the possible targets of miR-630 by miRecords combined with GO analysis, but the results of RT-qPCR, Western blot and dual-luciferase reporter gene assay showed that only the expression of ALCAM was repressed by miR-630 transfection. Cell migration was inhibited through transfection of miR-630 mimics or ALCAM siRNAs and the upregulation of miR-630 partly reduced the cell migration increased by oxidative stimulation.Conclusion: miR-630 is one of the miRNAs increased by oxidative stimulation in human lens epithelium cells. Its upregulation may inhibit cell migration by targeting on ALCAM, which is important for HLECs to resist behavioral changes induced by oxidative damage and may delay the progression of cataract.
Collapse
Affiliation(s)
- Lin Mei
- Department of Ophthalmology, Affiliated Guangren Hospital School of Medicine, Xi'an Jiaotong University, Xi'an No. 4 Hospital, Shaanxi Eye Hospital, Xi'an, Shaanxi Province, China.,Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hong Yan
- Department of Ophthalmology, Affiliated Guangren Hospital School of Medicine, Xi'an Jiaotong University, Xi'an No. 4 Hospital, Shaanxi Eye Hospital, Xi'an, Shaanxi Province, China.,Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Song Wang
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaoliang Zheng
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Bo Yan
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jing Zhao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Angang Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
19
|
Wang W, Cohen JA, Wallrapp A, Trieu KG, Barrios J, Shao F, Krishnamoorthy N, Kuchroo VK, Jones MR, Fine A, Bai Y, Ai X. Age-Related Dopaminergic Innervation Augments T Helper 2-Type Allergic Inflammation in the Postnatal Lung. Immunity 2019; 51:1102-1118.e7. [PMID: 31757673 DOI: 10.1016/j.immuni.2019.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/28/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023]
Abstract
Young children are more susceptible to developing allergic asthma than adults. As neural innervation of the peripheral tissue continues to develop after birth, neurons may modulate tissue inflammation in an age-related manner. Here we showed that sympathetic nerves underwent a dopaminergic-to-adrenergic transition during post-natal development of the lung in mice and humans. Dopamine signaled through a specific dopamine receptor (DRD4) to promote T helper 2 (Th2) cell differentiation. The dopamine-DRD4 pathway acted synergistically with the cytokine IL-4 by upregulating IL-2-STAT5 signaling and reducing inhibitory histone trimethylation at Th2 gene loci. In murine models of allergen exposure, the dopamine-DRD4 pathway augmented Th2 inflammation in the lungs of young mice. However, this pathway operated marginally after sympathetic nerves became adrenergic in the adult lung. Taken together, the communication between dopaminergic nerves and CD4+ T cells provides an age-related mechanism underlying the susceptibility to allergic inflammation in the early lung.
Collapse
Affiliation(s)
- Wei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan A Cohen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Kenneth G Trieu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Juliana Barrios
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Fengzhi Shao
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nandini Krishnamoorthy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew R Jones
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alan Fine
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; The West Roxbury Veteran's Hospital, West Roxbury, MA, USA
| | - Yan Bai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xingbin Ai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Semitekolou M, Xanthou G. Activated Leukocyte Cell Adhesion Molecule: A Novel Regulator of Allergic Inflammation in the Airways. Am J Respir Crit Care Med 2019. [PMID: 29522354 DOI: 10.1164/rccm.201801-0196ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Maria Semitekolou
- 1 Center for Basic Research Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Georgina Xanthou
- 1 Center for Basic Research Biomedical Research Foundation of the Academy of Athens Athens, Greece
| |
Collapse
|
21
|
Willrodt AH, Salabarria AC, Schineis P, Ignatova D, Hunter MC, Vranova M, Golding-Ochsenbein AM, Sigmund E, Romagna A, Strassberger V, Fabbi M, Ferrini S, Cursiefen C, Neri D, Guenova E, Bock F, Halin C. ALCAM Mediates DC Migration Through Afferent Lymphatics and Promotes Allospecific Immune Reactions. Front Immunol 2019; 10:759. [PMID: 31031759 PMCID: PMC6473055 DOI: 10.3389/fimmu.2019.00759] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM, CD166) is a cell adhesion molecule of the immunoglobulin superfamily and has been implicated in diverse pathophysiological processes including T cell activation, leukocyte trafficking, and (lymph)angiogenesis. However, exploring the therapeutic potential of ALCAM blockade in immune-mediated inflammatory disorders has been difficult due to the lack of antibodies with blocking activity toward murine ALCAM. In this study, we identified and characterized a monoclonal antibody with high affinity and specificity for murine ALCAM. This antibody reduced in vitro T cell activation induced by antigen-presenting dendritic cells (DCs) as well as (trans)migration of murine DCs across lymphatic endothelial monolayers. Moreover, it reduced emigration of DCs from in vitro-cultured human skin biopsies. Similarly, antibody-based blockade of ALCAM reduced (lymph)angiogenic processes in vitro and decreased developmental lymphangiogenesis in vivo to levels observed in ALCAM-deficient mice. Since corneal allograft rejection is an important medical condition that also involves (lymph)angiogenesis, DC migration and T cell activation, we investigated the therapeutic potential of ALCAM blockade in murine corneal disease. Blocking ALCAM lead to DC retention in corneas and effectively prevented corneal allograft rejection. Considering that we also detected ALCAM expression in human corneal DCs and lymphatics, our findings identify ALCAM as a potential novel therapeutic target in human corneal allograft rejection.
Collapse
Affiliation(s)
| | | | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Desislava Ignatova
- Department of Dermatology, University Hospital of Zürich, University of Zurich, Zurich, Switzerland
| | | | - Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | | | - Elena Sigmund
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Annatina Romagna
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | | | - Marina Fabbi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital of Zürich, University of Zurich, Zurich, Switzerland
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
22
|
Oh MS, Hong JY, Kim MN, Kwak EJ, Kim SY, Kim EG, Lee KE, Kim YS, Jee HM, Kim SH, Sol IS, Park CO, Kim KW, Sohn MH. Activated Leukocyte Cell Adhesion Molecule Modulates Th2 Immune Response in Atopic Dermatitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:677-690. [PMID: 31332979 PMCID: PMC6658408 DOI: 10.4168/aair.2019.11.5.677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/05/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Activated leukocyte cell adhesion molecule (ALCAM), a member of the immunoglobulin superfamily, is highly expressed on dendritic cells. ALCAM and its receptor CD6 are co-stimulatory molecules in the immunological synapse; their interaction is required for T cell activation. While atopic dermatitis (AD) is recognized as a T helper 2 (Th2)-mediated allergic disease, the role of ALCAM in its pathogenesis is unclear. METHODS ALCAM levels were measured in the serum of AD patients and AD-induced murine model by ovalbumin treatment. We next investigated transepidermal water loss, clinical score, Th2-immune responses, skin barrier gene expression and T-cell activation using wild-type (WT) and ALCAM deficiency mice. An oxazolone-induced AD-like model was also established and analyzed using WT- and ALCAM-deficient mice. RESULTS We found that serum ALCAM levels were elevated in pediatric AD patients as well as WT AD mice, whereas Th2-type cytokine production and AD symptoms were suppressed in ALCAM-deficient mice. In addition, CD4⁺ effector T-cell counts in murine skin and skin-draining lymph nodes were lower in ALCAM-deficient mice than in their WT counterparts. ALCAM deficiency was also linked to higher expression of skin barrier genes and number of lamellar bodies. CONCLUSIONS These findings indicate that ALCAM may contribute to AD pathogenesis by meditating a Th2-dominant immune response and disrupting the barrier function of the skin.
Collapse
Affiliation(s)
- Mi Seon Oh
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Yeon Hong
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Kwak
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Eun Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Seon Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Seo Hyeong Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - In Suk Sol
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Ook Park
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|