1
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
2
|
Gillies H, Chakinala MM, Dake BT, Feldman JP, Hoeper MM, Humbert M, Jing Z, Langley J, McLaughlin VV, Niven RW, Rosenkranz S, Zhang X, Hill NS. IMPAHCT: A randomized phase 2b/3 study of inhaled imatinib for pulmonary arterial hypertension. Pulm Circ 2024; 14:e12352. [PMID: 38532768 PMCID: PMC10963589 DOI: 10.1002/pul2.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
AV-101 (imatinib) powder for inhalation, an investigational dry powder inhaled formulation of imatinib designed to target the underlying pathobiology of pulmonary arterial hypertension, was generally well tolerated in healthy adults in a phase 1 single and multiple ascending dose study. Inhaled Imatinib Pulmonary Arterial Hypertension Clinical Trial (IMPAHCT; NCT05036135) is a phase 2b/3, randomized, double-blind, placebo-controlled, dose-ranging, and confirmatory study. IMPAHCT is designed to identify an optimal AV-101 dose (phase 2b primary endpoint: pulmonary vascular resistance) and assess the efficacy (phase 3 primary endpoint: 6-min walk distance), safety, and tolerability of AV-101 dose levels in subjects with pulmonary arterial hypertension using background therapies. The study has an operationally seamless, adaptive design allowing for continuous recruitment. It includes three parts; subjects enrolled in Part 1 (phase 2b dose-response portion) or Part 2 (phase 3 intermediate portion) will be randomized 1:1:1:1 to 10, 35, 70 mg AV-101, or placebo (twice daily), respectively. Subjects enrolled in Part 3 (phase 3 optimal dose portion) will be randomized 1:1 to the optimal dose of AV-101 and placebo (twice daily), respectively. All study parts include a screening period, a 24-week treatment period, and a 30-day safety follow-up period; the total duration is ∼32 weeks. Participation is possible in only one study part. IMPAHCT has the potential to advance therapies for patients with pulmonary arterial hypertension by assessing the efficacy and safety of a novel investigational drug-device combination (AV-101) using an improved study design that has the potential to save 6-12 months of development time. ClinicalTrials.gov Identifier: NCT05036135.
Collapse
Affiliation(s)
| | - Murali M. Chakinala
- Division of Pulmonary and Critical Care MedicineWashington University in St. LouisSt. LouisMissourIUSA
| | | | | | - Marius M. Hoeper
- Department of Respiratory Medicine and Infectious DiseasesHannover Medical SchoolHannoverGermany
- German Center for Lung Research (DZL)Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH)HannoverGermany
| | - Marc Humbert
- Service de Pneumologieet Soins Intensifs Respiratoires, Assistance Publique Hôpitaux de Paris, Hôpital BicêtreUniversité Paris–Saclay, INSERMUMR_S 999Le Kremlin‐BicêtreFrance
| | - Zhi‐Cheng Jing
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| | | | - Vallerie V. McLaughlin
- Cardiology Clinic, Frankel Cardiovascular CenterUniversity of MichiganAnn ArborMichiganUSA
| | | | - Stephan Rosenkranz
- Department of Internal Medicine III, Cologne Cardiovascular Research Center, Heart CenterUniversityof CologneCologneGermany
| | | | - Nicholas S. Hill
- Pulmonary Critical Care and Sleep DivisionTufts Medical CenterBostonMassachusettsUSA
| |
Collapse
|
3
|
Pullamsetti SS, Sitapara R, Osterhout R, Weiss A, Carter LL, Zisman LS, Schermuly RT. Pharmacology and Rationale for Seralutinib in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:12653. [PMID: 37628831 PMCID: PMC10454154 DOI: 10.3390/ijms241612653] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disorder characterized by vascular remodeling and a consequent increase in pulmonary vascular resistance. The histologic hallmarks of PAH include plexiform and neointimal lesions of the pulmonary arterioles, which are composed of dysregulated, apoptosis-resistant endothelial cells and myofibroblasts. Platelet-derived growth factor receptors (PDGFR) α and β, colony stimulating factor 1 receptor (CSF1R), and mast/stem cell growth factor receptor kit (c-KIT) are closely related kinases that have been implicated in PAH progression. In addition, emerging data indicate significant crosstalk between PDGF signaling and the bone morphogenetic protein receptor type 2 (BMPR2)/transforming growth factor β (TGFβ) receptor axis. This review will discuss the importance of the PDGFR-CSF1R-c-KIT signaling network in PAH pathogenesis, present evidence that the inhibition of all three nodes in this kinase network is a potential therapeutic approach for PAH, and highlight the therapeutic potential of seralutinib, currently in development for PAH, which targets these pathways.
Collapse
Affiliation(s)
- Soni Savai Pullamsetti
- Lung Vascular Epigenetics, Center for Infection and Genomics of the Lung (CIGL), Justus-Liebig-Universität Gießen, Aulweg 132, 35392 Giessen, Germany;
| | | | | | - Astrid Weiss
- UGMLC Pulmonale Pharmakotherapie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392 Giessen, Germany;
| | | | | | - Ralph Theo Schermuly
- Department of Internal Medicine, Justus-Liebig-University Giessen, Aulweg 130, 35392 Giessen, Germany
| |
Collapse
|
4
|
Jandl K, Radic N, Zeder K, Kovacs G, Kwapiszewska G. Pulmonary vascular fibrosis in pulmonary hypertension - The role of the extracellular matrix as a therapeutic target. Pharmacol Ther 2023; 247:108438. [PMID: 37210005 DOI: 10.1016/j.pharmthera.2023.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pulmonary hypertension (PH) is a condition characterized by changes in the extracellular matrix (ECM) deposition and vascular remodeling of distal pulmonary arteries. These changes result in increased vessel wall thickness and lumen occlusion, leading to a loss of elasticity and vessel stiffening. Clinically, the mechanobiology of the pulmonary vasculature is becoming increasingly recognized for its prognostic and diagnostic value in PH. Specifically, the increased vascular fibrosis and stiffening resulting from ECM accumulation and crosslinking may be a promising target for the development of anti- or reverse-remodeling therapies. Indeed, there is a huge potential in therapeutic interference with mechano-associated pathways in vascular fibrosis and stiffening. The most direct approach is aiming to restore extracellular matrix homeostasis, by interference with its production, deposition, modification and turnover. Besides structural cells, immune cells contribute to the level of ECM maturation and degradation by direct cell-cell contact or the release of mediators and proteases, thereby opening a huge avenue to target vascular fibrosis via immunomodulation approaches. Indirectly, intracellular pathways associated with altered mechanobiology, ECM production, and fibrosis, offer a third option for therapeutic intervention. In PH, a vicious cycle of persistent activation of mechanosensing pathways such as YAP/TAZ initiates and perpetuates vascular stiffening, and is linked to key pathways disturbed in PH, such as TGF-beta/BMPR2/STAT. Together, this complexity of the regulation of vascular fibrosis and stiffening in PH allows the exploration of numerous potential therapeutic interventions. This review discusses connections and turning points of several of these interventions in detail.
Collapse
Affiliation(s)
- Katharina Jandl
- Division of Pharmacology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria.
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Katarina Zeder
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
5
|
Gillies H, Niven R, Dake BT, Chakinala MM, Feldman JP, Hill NS, Hoeper MM, Humbert M, McLaughlin VV, Kankam M. AV-101, a novel inhaled dry-powder formulation of imatinib, in healthy adult participants: a phase 1 single and multiple ascending dose study. ERJ Open Res 2023; 9:00433-2022. [PMID: 36923571 PMCID: PMC10009698 DOI: 10.1183/23120541.00433-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 11/12/2022] Open
Abstract
Background Oral imatinib has been shown to be effective, but poorly tolerated, in patients with advanced pulmonary arterial hypertension (PAH). To maintain efficacy while improving tolerability, AV-101, a dry powder inhaled formulation of imatinib, was developed to deliver imatinib directly to the lungs. Methods This phase 1, placebo-controlled, randomised single ascending dose (SAD) and multiple ascending dose (MAD) study evaluated the safety/tolerability and pharmacokinetics of AV-101 in healthy adults. The SAD study included five AV-101 cohorts (1 mg, 3 mg, 10 mg, 30 mg, 90 mg) and placebo, and a single-dose oral imatinib 400-mg cohort. The MAD study included three AV-101 cohorts (10 mg, 30 mg, 90 mg) and placebo; dosing occurred twice daily for 7 days. Results 82 participants (SAD n=48, MAD n=34) were enrolled. For the SAD study, peak plasma concentrations of imatinib occurred within 3 h of dosing with lower systemic exposure compared to oral imatinib (p<0.001). For the MAD study, systemic exposure of imatinib was higher after multiple doses of AV-101 compared to a single dose, but steady-state plasma concentrations were lower for the highest AV-101 cohort (90 mg) compared to simulated steady-state oral imatinib at day 7 (p=0.0002). Across AV-101 MAD dose cohorts, the most common treatment-emergent adverse events were cough (n=7, 27%) and headache (n=4, 15%). Conclusions AV-101 was well tolerated in healthy adults, and targeted doses of AV-101 significantly reduced the systemic exposure of imatinib compared with oral imatinib. An ongoing phase 2b/phase 3 study (IMPAHCT; clinicaltrials.gov identifier NCT05036135) will evaluate the safety/tolerability and clinical benefit of AV-101 for PAH.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas S Hill
- Pulmonary Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Marius M Hoeper
- Respiratory Medicine, Hannover Medical School and German Centre of Lung Research, Hannover, Germany
| | - Marc Humbert
- Université Paris-Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | | | - Martin Kankam
- Altasciences Clinical Kansas, Inc., Overland Park, KS, USA
| |
Collapse
|
6
|
Efentakis P, Andreadou I, Iliodromitis KE, Triposkiadis F, Ferdinandy P, Schulz R, Iliodromitis EK. Myocardial Protection and Current Cancer Therapy: Two Opposite Targets with Inevitable Cost. Int J Mol Sci 2022; 23:14121. [PMID: 36430599 PMCID: PMC9696420 DOI: 10.3390/ijms232214121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial protection against ischemia/reperfusion injury (IRI) is mediated by various ligands, activating different cellular signaling cascades. These include classical cytosolic mediators such as cyclic-GMP (c-GMP), various kinases such as Phosphatydilinositol-3- (PI3K), Protein Kinase B (Akt), Mitogen-Activated-Protein- (MAPK) and AMP-activated (AMPK) kinases, transcription factors such as signal transducer and activator of transcription 3 (STAT3) and bioactive molecules such as vascular endothelial growth factor (VEGF). Most of the aforementioned signaling molecules constitute targets of anticancer therapy; as they are also involved in carcinogenesis, most of the current anti-neoplastic drugs lead to concomitant weakening or even complete abrogation of myocardial cell tolerance to ischemic or oxidative stress. Furthermore, many anti-neoplastic drugs may directly induce cardiotoxicity via their pharmacological effects, or indirectly via their cardiovascular side effects. The combination of direct drug cardiotoxicity, indirect cardiovascular side effects and neutralization of the cardioprotective defense mechanisms of the heart by prolonged cancer treatment may induce long-term ventricular dysfunction, or even clinically manifested heart failure. We present a narrative review of three therapeutic interventions, namely VEGF, proteasome and Immune Checkpoint inhibitors, having opposing effects on the same intracellular signal cascades thereby affecting the heart. Moreover, we herein comment on the current guidelines for managing cardiotoxicity in the clinical setting and on the role of cardiovascular confounders in cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | | |
Collapse
|
7
|
Solinc J, Ribot J, Soubrier F, Pavoine C, Dierick F, Nadaud S. The Platelet-Derived Growth Factor Pathway in Pulmonary Arterial Hypertension: Still an Interesting Target? Life (Basel) 2022; 12:life12050658. [PMID: 35629326 PMCID: PMC9143262 DOI: 10.3390/life12050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
The lack of curative options for pulmonary arterial hypertension drives important research to understand the mechanisms underlying this devastating disease. Among the main identified pathways, the platelet-derived growth factor (PDGF) pathway was established to control vascular remodeling and anti-PDGF receptor (PDGFR) drugs were shown to reverse the disease in experimental models. Four different isoforms of PDGF are produced by various cell types in the lung. PDGFs control vascular cells migration, proliferation and survival through binding to their receptors PDGFRα and β. They elicit multiple intracellular signaling pathways which have been particularly studied in pulmonary smooth muscle cells. Activation of the PDGF pathway has been demonstrated both in patients and in pulmonary hypertension (PH) experimental models. Tyrosine kinase inhibitors (TKI) are numerous but without real specificity and Imatinib, one of the most specific, resulted in beneficial effects. However, adverse events and treatment discontinuation discouraged to pursue this therapy. Novel therapeutic strategies are currently under experimental evaluation. For TKI, they include intratracheal drug administration, low dosage or nanoparticles delivery. Specific anti-PDGF and anti-PDGFR molecules can also be designed such as new TKI, soluble receptors, aptamers or oligonucleotides.
Collapse
Affiliation(s)
- Julien Solinc
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - Jonathan Ribot
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - Florent Soubrier
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - Catherine Pavoine
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - France Dierick
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Sophie Nadaud
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
- Correspondence: ; Tel.: +33-14077-9681
| |
Collapse
|
8
|
Deterding R, Griese M, Deutsch G, Warburton D, DeBoer EM, Cunningham S, Clement A, Schwerk N, Flaherty KR, Brown KK, Voss F, Schmid U, Schlenker-Herceg R, Verri D, Dumistracel M, Schiwek M, Stowasser S, Tetzlaff K, Clerisme-Beaty E, Young LR. Study design of a randomised, placebo-controlled trial of nintedanib in children and adolescents with fibrosing interstitial lung disease. ERJ Open Res 2021; 7:00805-2020. [PMID: 34164554 PMCID: PMC8215331 DOI: 10.1183/23120541.00805-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Childhood interstitial lung disease (chILD) comprises >200 rare respiratory disorders, with no currently approved therapies and variable prognosis. Nintedanib reduces the rate of forced vital capacity (FVC) decline in adults with progressive fibrosing interstitial lung diseases (ILDs). We present the design of a multicentre, prospective, double-blind, randomised, placebo-controlled clinical trial of nintedanib in patients with fibrosing chILD (1199-0337 or InPedILD; ClinicalTrials.gov: NCT04093024). Male or female children and adolescents aged 6–17 years (≥30; including ≥20 adolescents aged 12–17 years) with clinically significant fibrosing ILD will be randomised 2:1 to receive oral nintedanib or placebo on top of standard of care for 24 weeks (double-blind), followed by variable-duration nintedanib (open-label). Nintedanib dosing will be based on body weight-dependent allometric scaling, with single-step dose reductions permitted to manage adverse events. Eligible patients will have evidence of fibrosis on high-resolution computed tomography (within 12 months of their first screening visit), FVC ≥25% predicted, and clinically significant disease (Fan score of ≥3 or evidence of clinical progression over time). Patients with underlying chronic liver disease, significant pulmonary arterial hypertension, cardiovascular disease, or increased bleeding risk are ineligible. The primary endpoints are pharmacokinetics and the proportion of patients with treatment-emergent adverse events at week 24. Secondary endpoints include change in FVC% predicted from baseline, Pediatric Quality of Life Questionnaire, oxygen saturation, and 6-min walk distance at weeks 24 and 52. Additional efficacy and safety endpoints will be collected to explore long-term effects. We describe the design of #InPedILD, a study of 24 weeks’ nintedanib or placebo on top of standard of care, followed by variable-duration open-label nintedanib in children with interstitial lung disease (ClinicalTrials.gov NCT04093024) #PedILDhttps://bit.ly/3tC1a7P
Collapse
Affiliation(s)
- Robin Deterding
- Section of Pediatric Pulmonary and Sleep Medicine, Dept of Pediatrics, University of Colorado Denver, Denver, CO, USA.,The Children's Hospital Colorado, Aurora, CO, USA.,These authors contributed equally
| | - Matthias Griese
- Hauner Children's Hospital, Ludwig Maximilians University, German Center for Lung Research (DZL), Munich, Germany.,These authors contributed equally
| | - Gail Deutsch
- Dept of Pathology, University of Washington School of Medicine, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA
| | - David Warburton
- Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily M DeBoer
- Section of Pediatric Pulmonary and Sleep Medicine, Dept of Pediatrics, University of Colorado Denver, Denver, CO, USA.,The Children's Hospital Colorado, Aurora, CO, USA
| | - Steven Cunningham
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Annick Clement
- Pediatric Pulmonary Dept, Trousseau Hospital, AP-HP Sorbonne University, Paris, France
| | - Nicolaus Schwerk
- Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kevin K Brown
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Florian Voss
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | - Ulrike Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | | | | | | | - Marilisa Schiwek
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | - Susanne Stowasser
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Kay Tetzlaff
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany.,Sports Medicine Dept, University Hospital of Tuebingen, Tuebingen, Germany
| | | | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,These authors contributed equally
| |
Collapse
|
9
|
Rajagopal K, Bryant AJ, Sahay S, Wareing N, Zhou Y, Pandit LM, Karmouty-Quintana H. Idiopathic pulmonary fibrosis and pulmonary hypertension: Heracles meets the Hydra. Br J Pharmacol 2021; 178:172-186. [PMID: 32128790 PMCID: PMC7910027 DOI: 10.1111/bph.15036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease where the additional presence of pulmonary hypertension (PH) reduces survival. In particular, the presence of coexistent pulmonary vascular disease in patients with advanced lung parenchymal disease results in worse outcomes than either diagnosis alone. This is true with respect to the natural histories of these diseases, outcomes with medical therapies, and even outcomes following lung transplantation. Consequently, there is a striking need for improved treatments for PH in the setting of IPF. In this review, we summarize existing therapies from the perspective of molecular mechanisms underlying lung fibrosis and vasoconstriction/vascular remodelling and discuss potential future targets for pharmacotherapy. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Keshava Rajagopal
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Andrew J. Bryant
- Division of Pulmonology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sandeep Sahay
- Houston Methodist Lung Center, Division of Pulmonary Medicine, Department of Internal Medicine, Houston Methodist Hospital, Houston, Texas
| | - Nancy Wareing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yang Zhou
- Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - Lavannya M. Pandit
- Department of Medicine, Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine–Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
10
|
Sommer N, Ghofrani HA, Pak O, Bonnet S, Provencher S, Sitbon O, Rosenkranz S, Hoeper MM, Kiely DG. Current and future treatments of pulmonary arterial hypertension. Br J Pharmacol 2020; 178:6-30. [PMID: 32034759 DOI: 10.1111/bph.15016] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic options for pulmonary arterial hypertension (PAH) have increased over the last decades. The advent of pharmacological therapies targeting the prostacyclin, endothelin, and NO pathways has significantly improved outcomes. However, for the vast majority of patients, PAH remains a life-limiting illness with no prospect of cure. PAH is characterised by pulmonary vascular remodelling. Current research focusses on targeting the underlying pathways of aberrant proliferation, migration, and apoptosis. Despite success in preclinical models, using a plethora of novel approaches targeting cellular GPCRs, ion channels, metabolism, epigenetics, growth factor receptors, transcription factors, and inflammation, successful transfer to human disease with positive outcomes in clinical trials is limited. This review provides an overview of novel targets addressed by clinical trials and gives an outlook on novel preclinical perspectives in PAH. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Natascha Sommer
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Hossein A Ghofrani
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Department of Medicine, Imperial College London, London, UK
| | - Oleg Pak
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Sebastien Bonnet
- Groupe de recherche en hypertension pulmonaire Centre de recherche de IUCPQ, Universite Laval Quebec, Quebec City, Quebec, Canada
| | - Steve Provencher
- Groupe de recherche en hypertension pulmonaire Centre de recherche de IUCPQ, Universite Laval Quebec, Quebec City, Quebec, Canada
| | - Olivier Sitbon
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France. AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France. Inserm UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Stephan Rosenkranz
- Klinik III für Innere Medizin, Cologne Cardiovascular Research Center (CCRC), Heart Center at the University of Cologne, Cologne, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Weiss A, Boehm M, Egemnazarov B, Grimminger F, Savai Pullamsetti S, Kwapiszewska G, Schermuly RT. Kinases as potential targets for treatment of pulmonary hypertension and right ventricular dysfunction. Br J Pharmacol 2020; 178:31-53. [PMID: 31709514 DOI: 10.1111/bph.14919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive pulmonary vasculopathy that causes chronic right ventricular pressure overload and often leads to right ventricular failure. Various kinase inhibitors have been studied in the setting of PH and either improved or worsened the disease, highlighting the importance of understanding the specific role of the respective kinases in a spatiotemporal cellular context. In this review, we will summarize the knowledge on the role of kinases in PH and focus on druggable targets for which certain criteria are met: (a) deregulation of the kinase in PH; (b) small-molecule inhibitors are available (e.g. from the oncology field); (c) preclinical studies have shown their efficacy in PH models; and (d) when available, therapeutic exploitation in human PH has been initiated. Along this line, clinical considerations such as personalized medicine approaches to predict therapy response and adverse side events such as cardiotoxicity together with their clinical management are discussed. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Astrid Weiss
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Mario Boehm
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | | | - Friedrich Grimminger
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Otto Loewi Center, Physiology, Medical University of Graz, Graz, Austria
| | - Ralph T Schermuly
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
12
|
Tello K, Seeger W, Naeije R, Vanderpool R, Ghofrani HA, Richter M, Tedford RJ, Bogaard HJ. Right heart failure in pulmonary hypertension: Diagnosis and new perspectives on vascular and direct right ventricular treatment. Br J Pharmacol 2019; 178:90-107. [PMID: 31517994 DOI: 10.1111/bph.14866] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Adaptation of right ventricular (RV) function to increased afterload-known as RV-arterial coupling-is a key determinant of prognosis in pulmonary hypertension. However, measurement of RV-arterial coupling is a complex, invasive process involving analysis of the RV pressure-volume relationship during preload reduction over multiple cardiac cycles. Simplified methods have therefore been proposed, including echocardiographic and cardiac MRI approaches. This review describes the available methods for assessment of RV function and RV-arterial coupling and the effects of pharmacotherapy on these variables. Overall, pharmacotherapies for pulmonary hypertension have shown beneficial effects on various measures of RV function, but it is often unclear if these are direct RV effects or indirect results of afterload reduction. Studies of the effects of pharmacotherapies on RV-arterial coupling are limited and mostly restricted to experimental models. Simplified methods to assess RV-arterial coupling should be validated and incorporated into routine clinical follow-up and future clinical trials. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Robert Naeije
- Physiology, Erasme University Hospital, Brussels, Belgium
| | | | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Manuel Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Harm J Bogaard
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Wongkarnjana A, Yanagihara T, Kolb MR. Treatment of idiopathic pulmonary fibrosis with Nintedanib: an update. Expert Rev Respir Med 2019; 13:1139-1146. [PMID: 31564185 DOI: 10.1080/17476348.2019.1673733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Idiopathic pulmonary fibrosis (IPF) is an incurable, progressive and debilitating disease. Nintedanib is one of two anti-fibrotic therapies available for the treatment of IPF and has been approved since 2014. Together with pirfenidone and antacid medications it has received a conditional recommendation for the treatment for IPF by international clinical practice guidelines.Areas covered: The authors review the mechanisms of action, pharmacological profile and update scientific data and our opinions on efficacy, safety profile and tolerability of nintedanib.Expert opinion: Nintedanib significantly slows disease progression in IPF patients with tolerable and manageable side effects. Its potential future role in the treatment of progressive fibrosing interstitial lung diseases other than IPF is challenging.
Collapse
Affiliation(s)
- Amornpun Wongkarnjana
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Rj Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Tsutsumi T, Nagaoka T, Yoshida T, Wang L, Kuriyama S, Suzuki Y, Nagata Y, Harada N, Kodama Y, Takahashi F, Morio Y, Takahashi K. Nintedanib ameliorates experimental pulmonary arterial hypertension via inhibition of endothelial mesenchymal transition and smooth muscle cell proliferation. PLoS One 2019; 14:e0214697. [PMID: 31339889 PMCID: PMC6656344 DOI: 10.1371/journal.pone.0214697] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Neointimal lesion and medial wall thickness of pulmonary arteries (PAs) are common pathological findings in pulmonary arterial hypertension (PAH). Platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) signaling contribute to intimal and medial vascular remodeling in PAH. Nintedanib is a tyrosine kinase inhibitor whose targets include PDGF and FGF receptors. Although the beneficial effects of nintedanib were demonstrated for human idiopathic pulmonary fibrosis, its efficacy for PAH is still unclear. Thus, we hypothesized that nintedanib is a novel treatment for PAH to inhibit the progression of vascular remodeling in PAs. We evaluated the inhibitory effects of nintedanib both in endothelial mesenchymal transition (EndMT)-induced human pulmonary microvascular endothelial cells (HPMVECs) and human pulmonary arterial smooth muscle cells (HPASMCs) stimulated by growth factors. We also tested the effect of chronic nintedanib administration on a PAH rat model induced by Sugen5416 (a VEGF receptor inhibitor) combined with chronic hypoxia. Nintedanib was administered from weeks 3 to 5 after Sugen5416 injection, and we evaluated pulmonary hemodynamics and PAs pathology. Nintedanib attenuated the expression of mesenchymal markers in EndMT-induced HPMVECs and HPASMCs proliferation. Phosphorylation of PDGF and FGF receptors was augmented in both intimal and medial lesions of PAs. Nintedanib blocked these phosphorylation, improved hemodynamics and reduced vascular remodeling involving neointimal lesions and medial wall thickening in PAs. Additionally, expressions Twist1, transcription factors associated with EndMT, in lung tissue was significantly reduced by nintedanib. These results suggest that nintedanib may be a novel treatment for PAH with anti-vascular remodeling effects.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- HEK293 Cells
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Indoles/pharmacology
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Takeo Tsutsumi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Takashi Yoshida
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Lei Wang
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Sachiko Kuriyama
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Suzuki
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Nagata
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yuzo Kodama
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yoshiteru Morio
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Ambade AS, Jung B, Lee D, Doods H, Wu D. Triple-tyrosine kinase inhibition attenuates pulmonary arterial hypertension and neointimal formation. Transl Res 2019; 203:15-30. [PMID: 30142307 DOI: 10.1016/j.trsl.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022]
Abstract
The present study examined the effects of simultaneous inhibition of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) receptor signaling with BIBF1000, a novel triple tyrosine kinase inhibitor on preventing and reversing the progression of severe pulmonary arterial hypertension (PAH) in an experimental model in rats. Left pneumonectomized male Wistar rats were injected with monocrotaline to induce PAH. Treatment with BIBF1000 from day 1 to day 21 after monocrotaline injection attenuated PAH development, as evidenced by lower values for pulmonary artery pressure (mPAP), right ventricular pressure (RVSP), pulmonary arterial neointimal formation, and the ratio of right ventricular weight to left ventricular and septum weight [RV/(LV+S)] on day 21 compared to control rats. Treatment with BIBF1000 from day 21 to day 42 after monocrotaline injection reversed established PAH as shown by normalized values for mPAP and RVSP, RV/(LV+S) ratio, pulmonary arterial occlusion scores, levels of heart and lung fibrosis, as well as improved survival. Treatment with BIBF1000 reduced inflammatory cell recruitment in bronchoalveolar lavage and lung tissues, reduced CD-68 positive macrophages and expression of proliferating cell nuclear antigen in the perivascular areas, and reduced TNF-α and growth factor productions, and inhibited the phosphorylation of AKT and GSK3β in lungs. In addition, BIBF1000 inhibited pulmonary artery smooth muscle cells migration and proliferation from rat pulmonary artery explant cultures. Simultaneous inhibition of VEGF, PDGF, and FGF receptor signaling by BIBF1000 prevents and reverses the progression of severe pulmonary arterial hypertension and vascular remodeling in this experimental model.
Collapse
Affiliation(s)
- Anjira S Ambade
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, South Korea
| | - Birgit Jung
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongwon Lee
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, South Korea
| | - Henri Doods
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongmei Wu
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, South Korea; Department of Research, Mount Sinai Medical Center, Miami Beach, Florida.
| |
Collapse
|
16
|
Poble PB, Phan C, Quatremare T, Bordenave J, Thuillet R, Cumont A, Huertas A, Tu L, Dorfmüller P, Humbert M, Ghigna MR, Savale L, Guignabert C. Therapeutic effect of pirfenidone in the sugen/hypoxia rat model of severe pulmonary hypertension. FASEB J 2018; 33:3670-3679. [DOI: 10.1096/fj.201801659r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul-Benoit Poble
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Carole Phan
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Timothée Quatremare
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Jennifer Bordenave
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Raphaël Thuillet
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Amélie Cumont
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Alice Huertas
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Assistance Publique-Hôpitaux de ParisService de PneumologieCentre de Référence de l'Hypertension Pulmonaire SévèreDHU Thorax InnovationHôpital Bicêtre Le Kremlin-Bicêtre France
| | - Ly Tu
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| | - Peter Dorfmüller
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Pathology DepartmentHôpital Marie Lannelongue Le Plessis-Robinson France
| | - Marc Humbert
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Assistance Publique-Hôpitaux de ParisService de PneumologieCentre de Référence de l'Hypertension Pulmonaire SévèreDHU Thorax InnovationHôpital Bicêtre Le Kremlin-Bicêtre France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Pathology DepartmentHôpital Marie Lannelongue Le Plessis-Robinson France
| | - Laurent Savale
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
- Assistance Publique-Hôpitaux de ParisService de PneumologieCentre de Référence de l'Hypertension Pulmonaire SévèreDHU Thorax InnovationHôpital Bicêtre Le Kremlin-Bicêtre France
| | - Christophe Guignabert
- INSERM UMR_S 999 Le Plessis-Robinson France
- Université, Paris-SudUniversité, Paris-Saclay Le Kremlin-Bicêtre France
| |
Collapse
|