1
|
Yamanouchi K, Ishimaru T, Kakuno T, Takemoto Y, Kawatsu S, Kondo K, Maruyama M, Higaki K. Improvement and characterization of oral absorption behavior of clofazimine by SNEDDS: Quantitative evaluation of extensive lymphatic transport. Eur J Pharm Biopharm 2023; 187:141-155. [PMID: 37076052 DOI: 10.1016/j.ejpb.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Clofazimine, an anti-leprosy drug, has been anticipated for a candidate to treat tuberculosis, cryptosporidiosis, and coronavirus infection, but its low oral bioavailability is considered a reason for its limited activity. In the current study, we have tried to improve the oral bioavailability of clofazimine by several SNEDDS formulations and characterized the absorption behavior from various aspects. Among four SNEDDS formulations prepared, SNEDDS A, prepared with castor oil as an oil component, provided the highest bioavailability (around 61%) and SNEDDS D, prepared with Capryol 90, gave the second highest bioavailability. SNEDDS A formed the finest nanoparticles, which were maintained under gastric and intestinal luminal conditions. The comparison in oral bioavailability between the SNEDDS formulation and its corresponding preformed nanoemulsion suggested that SNEDDS A would efficiently form nanoemulsion in the gastrointestinal tract after oral administration. AUC of mesenteric lymph node concentration was the highest for SNEDDS A, which would be one of the reasons for SNEDDS A to reveal the highest oral bioavailability. A cycloheximide-treated oral absorption study and single-pass perfusion study by utilizing a vascular-luminal perfused small intestine-liver preparation clearly indicated that over 90% of clofazimine absorbed to systemic circulation should be derived from lymphatic transport for both SNEDDS A and D. Furthermore, the fraction of dose absorbed was around 65% for SNEDDS D, but SNEDDS A achieved around 94%, indicating the excellent performance of SNEDDS A.
Collapse
Affiliation(s)
- Keita Yamanouchi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd. 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tomoki Ishimaru
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takuya Kakuno
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Pharmaceutical Research Laboratories, Pharmaceutical Department, Nipro Co. 3023 Noji-cho, Kusatsu, Shiga 525-0055, Japan
| | - Yuki Takemoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sho Kawatsu
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Formulation Design, Pharmaceutical Research and Technology Laboratories, Pharmaceutical Technology, Astellas Pharma Inc. 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Keiji Kondo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Preformulation Research Laboratory, CMC Headquarters, Otsuka Pharmaceutical Co., Ltd. 224-18 Hiraishi Ebisuno, Kawauchi-cho, Tokushima 771-0182, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
van Staden D, Haynes RK, Viljoen JM. Adapting Clofazimine for Treatment of Cutaneous Tuberculosis by Using Self-Double-Emulsifying Drug Delivery Systems. Antibiotics (Basel) 2022; 11:antibiotics11060806. [PMID: 35740212 PMCID: PMC9219976 DOI: 10.3390/antibiotics11060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/10/2022] Open
Abstract
Although chemotherapeutic treatment regimens are currently available, and considerable effort has been lavished on the development of new drugs for the treatment of tuberculosis (TB), the disease remains deeply intractable and widespread. This is due not only to the nature of the life cycle and extraordinarily disseminated habitat of the causative pathogen, principally Mycobacterium tuberculosis (Mtb), in humans and the multi-drug resistance of Mtb to current drugs, but especially also to the difficulty of enabling universal treatment of individuals, immunocompromised or otherwise, in widely differing socio-economic environments. For the purpose of globally eliminating TB by 2035, the World Health Organization (WHO) introduced the "End-TB" initiative by employing interventions focusing on high impact, integrated and patient-centered approaches, such as individualized therapy. However, the extraordinary shortfall in stipulated aims, for example in actual treatment and in TB preventative treatments during the period 2018-2022, latterly and greatly exacerbated by the COVID-19 pandemic, means that even greater pressure is now placed on enhancing our scientific understanding of the disease, repurposing or repositioning old drugs and developing new drugs as well as evolving innovative treatment methods. In the specific context of multidrug resistant Mtb, it is furthermore noted that the incidence of extra-pulmonary TB (EPTB) has significantly increased. This review focusses on the potential of utilizing self-double-emulsifying drug delivery systems (SDEDDSs) as topical drug delivery systems for the dermal route of administration to aid in treatment of cutaneous TB (CTB) and other mycobacterial infections as a prelude to evaluating related systems for more effective treatment of CTB and other mycobacterial infections at large. As a starting point, we consider here the possibility of adapting the highly lipophilic riminophenazine clofazimine, with its potential for treatment of multi-drug resistant TB, for this purpose. Additionally, recently reported synergism achieved by adding clofazimine to first-line TB regimens signifies the need to consider clofazimine. Thus, the biological effects and pharmacology of clofazimine are reviewed. The potential of plant-based oils acting as emulsifiers, skin penetration enhancers as well as these materials behaving as anti-microbial components for transporting the incorporated drug are also discussed.
Collapse
|
3
|
Niederman MS, Nair GB, Matt U, Herold S, Pennington K, Crothers K, Cummings M, Schluger NW. Update in Lung Infections and Tuberculosis 2018. Am J Respir Crit Care Med 2020; 200:414-422. [PMID: 31042415 DOI: 10.1164/rccm.201903-0606up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael S Niederman
- 1Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Girish Balachandran Nair
- 2Division of Pulmonary and Critical Care Medicine, Beaumont Health, William Beaumont School of Medicine, Oakland University, Royal Oak, Michigan
| | - Ulrich Matt
- 3Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Susanne Herold
- 3Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Kelly Pennington
- 4Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kristina Crothers
- 5Pulmonary, Critical Care and Sleep Medicine, VA Puget Sound Health Care System, Seattle, Washington.,6University of Washington, Seattle, Washington; and
| | | | - Neil W Schluger
- 7Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
4
|
van Leth F, Brinkmann F, Cirillo DM, Dheda K, Duarte R, Guglielmetti L, Kuksa L, Lange C, Mitnick C, Skrahina A, Zaman K, Bothamley G. The Tuberculosis Network European Trials group (TBnet) ERS Clinical Research Collaboration: addressing drug-resistant tuberculosis through European cooperation. Eur Respir J 2019; 53:53/1/1802089. [PMID: 30606765 DOI: 10.1183/13993003.02089-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Frank van Leth
- Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands.,Amsterdam University Medical Centers, Location Meibergdreef, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Folke Brinkmann
- Universitaetskinderklinik fuer Kinder- und Jugendmedizin, Ruhr University, Bochum, Germany
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, UCT Lung Institute and Dept of Medicine, University of Cape Town, Cape Town, South Africa.,University College London, London, UK
| | - Raquel Duarte
- Pneumology Dept, Centro Hospitalar Vila Nova de Gaia, Vila Nova de Gaia, Portugal.,ISPUP-EP unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Lorenzo Guglielmetti
- APHP, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Bactériologie-Hygiène, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie 06, Unité 1135, Team E13 (Bactériologie), CR7 INSERM, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Liga Kuksa
- Riga East University Hospital, and WHO Collaborating Centre, Riga, Latvia
| | - Christoph Lange
- German Center for Infection Research Tuberculosis Unit, Research Center Borstel, Borstel, Germany.,Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Carole Mitnick
- Dept of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Alena Skrahina
- The Republican Research and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Khalequ Zaman
- ICDDRB Infectious Disease Division, Dhaka, Bangladesh
| | - Graham Bothamley
- Homerton University Hospital, London, UK.,Blizard Institute, Barts and The Royal London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|