1
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Wu Y, Huang L, Li M, Cui X, Zhan Q, Wang C. The role of lung microbiota in primary graft dysfunction in lung transplant recipients. Clin Transplant 2023; 37:e15152. [PMID: 37788167 DOI: 10.1111/ctr.15152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Recent studies have shown that the lung microbiota is altered in critically ill patients and predicts clinical outcomes. Primary graft dysfunction (PGD) is a common complication and a leading cause of death within 1 month of lung transplantation, but the clinical significance of changes in the lung bacterial community during PGD is unclear. The aim of this study was to determine the contribution of the lung microbiota to the development and course of severe PGD. METHODS We conducted a retrospective study to characterize the lung microbiota of 32 lung transplant patients with combined PGD using next-generation sequencing of bronchoalveolar lavage samples. The relationship between lung flora dysbiosis and lung immunity in PGD was assessed by quantification of alveolar cytokines. The contribution of microbiota characteristics to patient outcomes was assessed by estimating overall survival. RESULTS Patients diagnosed with PGD grade 3 showed a reduction in alpha diversity, driven by a significant increase in the abundance of the genera Modestobacter, Scardovia and Selenomonas, and a reduction in the proportion of the genera Klebsiella and Oribacterium. Alpha diversity of the lung microbiota in PGD3 patients was negatively correlated with BALF interleukin (IL)-2 (r = -.752, p < .05). In addition, bacterial diversity in the lung microbiota of non-survivors was lower than that of survivors (p = .041). CONCLUSIONS There is variation in the lung microbiota of PGD grade 3 patients and dysbiosis of the lung microbiota is associated with lung immunity. The lung microbiota has potential in the diagnosis and treatment of PGD grade 3.
Collapse
Affiliation(s)
- Yuhan Wu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Linna Huang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Min Li
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyang Cui
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qingyuan Zhan
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Shi CY, Yu CH, Yu WY, Ying HZ. Gut-Lung Microbiota in Chronic Pulmonary Diseases: Evolution, Pathogenesis, and Therapeutics. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:9278441. [PMID: 34900069 PMCID: PMC8664551 DOI: 10.1155/2021/9278441] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiota colonized in the human body has a symbiotic relationship with human body and forms a different microecosystem, which affects human immunity, metabolism, endocrine, and other physiological processes. The imbalance of microbiota is usually linked to the aberrant immune responses and inflammation, which eventually promotes the occurrence and development of respiratory diseases. Patients with chronic respiratory diseases, including asthma, COPD, bronchiectasis, and idiopathic pulmonary fibrosis, often have alteration of the composition and function of intestinal and lung microbiota. Gut microbiota affects respiratory immunity and barrier function through the lung-gut microbiota, resulting in altered prognosis of chronic respiratory diseases. In turn, lung dysbiosis promotes aggravation of lung diseases and causes intestinal dysfunction through persistent activation of lymphoid cells in the body. Recent advances in next-generation sequencing technology have disclosed the pivotal roles of lung-gut microbiota in the pathogenesis of chronic respiratory diseases. This review focuses on the association between the gut-lung dysbiosis and respiratory diseases pathogenesis. In addition, potential therapeutic modalities, such as probiotics and fecal microbiota transplantation, are also evaluated for the prevention of chronic respiratory diseases.
Collapse
Affiliation(s)
- Chang Yi Shi
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Chen Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Wen Ying Yu
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Hua Zhong Ying
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
O’Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C, Falkowski NR, Norman KC, Arnold KB, Huffnagle GB, Salisbury ML, Han MK, Flaherty KR, White ES, Martinez FJ, Erb-Downward JR, Murray S, Moore BB, Dickson RP. Lung Microbiota Contribute to Pulmonary Inflammation and Disease Progression in Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 199:1127-1138. [PMID: 30789747 PMCID: PMC6515865 DOI: 10.1164/rccm.201809-1650oc] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) causes considerable global morbidity and mortality, and its mechanisms of disease progression are poorly understood. Recent observational studies have reported associations between lung dysbiosis, mortality, and altered host defense gene expression, supporting a role for lung microbiota in IPF. However, the causal significance of altered lung microbiota in disease progression is undetermined. Objectives: To examine the effect of microbiota on local alveolar inflammation and disease progression using both animal models and human subjects with IPF. Methods: For human studies, we characterized lung microbiota in BAL fluid from 68 patients with IPF. For animal modeling, we used a murine model of pulmonary fibrosis in conventional and germ-free mice. Lung bacteria were characterized using 16S rRNA gene sequencing with novel techniques optimized for low-biomass sample load. Microbiota were correlated with alveolar inflammation, measures of pulmonary fibrosis, and disease progression. Measurements and Main Results: Disruption of the lung microbiome predicts disease progression, correlates with local host inflammation, and participates in disease progression. In patients with IPF, lung bacterial burden predicts fibrosis progression, and microbiota diversity and composition correlate with increased alveolar profibrotic cytokines. In murine models of fibrosis, lung dysbiosis precedes peak lung injury and is persistent. In germ-free animals, the absence of a microbiome protects against mortality. Conclusions: Our results demonstrate that lung microbiota contribute to the progression of IPF. We provide biological plausibility for the hypothesis that lung dysbiosis promotes alveolar inflammation and aberrant repair. Manipulation of lung microbiota may represent a novel target for the treatment of IPF.
Collapse
Affiliation(s)
- David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Shanna L. Ashley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Stephen J. Gurczynski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Meng Xia
- Department of Biostatistics, School of Public Health, and
| | - Carol Wilke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Nicole R. Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Katy C. Norman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Gary B. Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Margaret L. Salisbury
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Kevin R. Flaherty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Eric S. White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Fernando J. Martinez
- Department of Internal Medicine, Weill Cornell School of Medicine, New York, New York; and
| | - John R. Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Susan Murray
- Department of Biostatistics, School of Public Health, and
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, Michigan
| |
Collapse
|