1
|
Podolanczuk AJ, Wong AW, Saito S, Lasky JA, Ryerson CJ, Eickelberg O. Update in Interstitial Lung Disease 2020. Am J Respir Crit Care Med 2021; 203:1343-1352. [PMID: 33835899 DOI: 10.1164/rccm.202103-0559up] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Shigeki Saito
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Joseph A Lasky
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Huang Z, Wang S, Liu Y, Fan L, Zeng Y, Han H, Zhang H, Yu X, Zhang Y, Huang D, Wu Y, Jiang W, Zhu P, Zhu X, Yi X. GPRC5A reduction contributes to pollutant benzo[a]pyrene injury via aggravating murine fibrosis, leading to poor prognosis of IIP patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139923. [PMID: 32758941 DOI: 10.1016/j.scitotenv.2020.139923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Air pollution exposure is recently reported to be one of the drivers of exacerbation in idiopathic pulmonary fibrosis (IPF). But there was a lack of direct evidence between pollution and lung fibrosis. Here, our data show effects of pollutant benzo[a]pyrene (BaP) and protein G-protein-coupled receptor family C group 5 type A (GPRC5A) on pulmonary fibrosis, which might help limit potential pollutant injury and disease progression. We cross-referenced epithelial differentially-expressed-genes (DEGs) from pollutant injury and published experimental fibrosis and IPF patients' data, top common-DEG (CO-DEG) GPRC5A was identified as a potential link between exposure-damage and fibrogenesis. The role of GPRC5A was evaluated under BaP exposure, in idiopathic interstitial pneumonia (IIP) tissue-array and via CRISPR/Cas9 knockout mice (Gprc5a-/-). BaP exposure enhanced bleomycin (BLM)-induced murine pulmonary fibrosis with increased Fibronectin and α-SMA expression in primary fibroblasts, thickened respiratory membrane and damaged alveolar type II cell, combined with Gprc5a decline in fibrotic mass. GPRC5A mRNA reduced after 10-14 days' BaP exposure in human epithelial cell A549. GPRC5A protein was further found to decrease in IIP epithelium, especially hyperplastic regions. A high epithelial GPRC5A expression score was positively associated with long survival time (R = 0.34) while negatively with high age (R = -0.4) and IIP type IPF (R = -0.5). Low GPRC5A expression predicts poor prognosis (HR = 4.5). Gprc5a depletion aggravated mortality rate (50%) with increased collagen deposition and myofibroblast activation under BLM treatment and exacerbated BaP injury in lung remodeling. Vitamin metabolic imbalance and Mitofusion2 (Mfn2) or Opa1-regulated mitochondrial dynamics were deduced to contribute to Gprc5a depletion and fibrogenesis. Pollutant BaP exposure worsens murine fibrosis and myofibroblast activation via GPRC5A reduction in the damaged epithelium. GPRC5A deficiency was first confirmed to contribute to both poor prognosis of IIP patients and fibrogenesis in murine model; thus, GPRC5A could serve as a novel therapeutic target in pollutant injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Ziling Huang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Tongji University School of Medicine, Tongji University, Shanghai 200092, China
| | - Siqi Wang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yuting Liu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Lichao Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yu Zeng
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Hongxiu Han
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Haoyang Zhang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaoting Yu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yudong Zhang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Dandan Huang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yunjin Wu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wenxia Jiang
- Department of Pathology, Tongji University School of Medicine, Tongji University, Shanghai 200092, China
| | - Peipei Zhu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
| | - Xuyou Zhu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
| | - Xianghua Yi
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Tongji University School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|