1
|
Perez RL, Chase J, Tanner R. Shared challenges to the control of complex intracellular neglected pathogens. Front Public Health 2024; 12:1423420. [PMID: 39324165 PMCID: PMC11422159 DOI: 10.3389/fpubh.2024.1423420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
The complex intracellular pathogens Mycobacterium tuberculosis, Mycobacterium leprae, Leishmania spp., and Burkholderia pseudomallei, which cause tuberculosis, leprosy, leishmaniasis, and melioidosis respectively, represent major health threats with a significant global burden concentrated in low- and middle-income countries. While these diseases vary in their aetiology, pathology and epidemiology, they share key similarities in the biological and sociodemographic factors influencing their incidence and impact worldwide. In particular, their occurrence in resource-limited settings has important implications for research and development, disease prevalence and associated risk factors, as well as access to diagnostics and therapeutics. In accordance with the vision of the VALIDATE (VAccine deveLopment for complex Intracellular neglecteD pAThogeEns) Network, we consider shared challenges to the effective prevention, diagnosis and treatment of these diseases as shaped by both biological and social factors, illustrating the importance of taking an interdisciplinary approach. We further highlight how a cross-pathogen perspective may provide valuable insights for understanding and addressing challenges to the control of all four pathogens.
Collapse
Affiliation(s)
- Rebecca Lynn Perez
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Jemima Chase
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Wadham College, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Blazevic A, Edwards RL, Xia M, Eickhoff CS, Hamzabegovic F, Meza KA, Ning H, Tennant J, Mosby KJ, Ritchie JC, Girmay T, Lai L, McCullough M, Beck A, Kelley C, Edupuganti S, Kabbani S, Buchanan W, Makhene MK, Voronca D, Cherikh S, Goll JB, Rouphael NG, Mulligan MJ, Hoft DF. Phase 1 Open-Label Dose Escalation Trial for the Development of a Human Bacillus Calmette-Guérin Challenge Model for Assessment of Tuberculosis Immunity In Vivo. J Infect Dis 2024; 229:1498-1508. [PMID: 38019956 PMCID: PMC11095547 DOI: 10.1093/infdis/jiad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND A controlled human infection model for assessing tuberculosis (TB) immunity can accelerate new vaccine development. METHODS In this phase 1 dose escalation trial, 92 healthy adults received a single intradermal injection of 2 × 106 to 16 × 106 colony-forming units of Bacillus Calmette-Guérin (BCG). The primary endpoints were safety and BCG shedding as measured by quantitative polymerase chain reaction, colony-forming unit plating, and MGIT BACTEC culture. RESULTS Doses up to 8 × 106 were safe, and there was evidence for increased BCG shedding with dose escalation. The MGIT time-to-positivity assay was the most consistent and precise measure of shedding. Power analyses indicated that 10% differences in MGIT time to positivity (area under the curve) could be detected in small cohorts (n = 30). Potential biomarkers of mycobacterial immunity were identified that correlated with shedding. Transcriptomic analysis uncovered dose- and time-dependent effects of BCG challenge and identified a putative transcriptional TB protective signature. Furthermore, we identified immunologic and transcriptomal differences that could represent an immune component underlying the observed higher rate of TB disease incidence in males. CONCLUSIONS The safety, reactogenicity, and immunogenicity profiles indicate that this BCG human challenge model is feasible for assessing in vivo TB immunity and could facilitate the vaccine development process. CLINICAL TRIALS REGISTRATION NCT01868464 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Azra Blazevic
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Rachel L Edwards
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Mei Xia
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | | | - Fahreta Hamzabegovic
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Krystal A Meza
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Huan Ning
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Janice Tennant
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Karla J Mosby
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - James C Ritchie
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Tigisty Girmay
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Lilin Lai
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Michele McCullough
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Allison Beck
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Colleen Kelley
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Srilatha Edupuganti
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Sarah Kabbani
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Wendy Buchanan
- Division of Microbiology, Immunology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mamodikoe K Makhene
- Division of Microbiology, Immunology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Delia Voronca
- The Emmes Company, LLC, Global Head Biomedical Data Science and Bioinformatics, Rockville, Maryland
| | - Sami Cherikh
- The Emmes Company, LLC, Global Head Biomedical Data Science and Bioinformatics, Rockville, Maryland
| | - Johannes B Goll
- The Emmes Company, LLC, Global Head Biomedical Data Science and Bioinformatics, Rockville, Maryland
| | - Nadine G Rouphael
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | | | - Daniel F Hoft
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| |
Collapse
|
3
|
Rohrig A, Morrison J, Kleinwaks G, Pugh J, McShane H, Savulescu J. Exploring the ethics of tuberculosis human challenge models. JOURNAL OF MEDICAL ETHICS 2023:jme-2023-109234. [PMID: 38159935 DOI: 10.1136/jme-2023-109234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 01/03/2024]
Abstract
We extend recent conversation about the ethics of human challenge trials to tuberculosis (TB). TB challenge studies could accelerate vaccine development, but ethical concerns regarding risks to trial participants and third parties have been a limiting factor. We analyse the expected social value and risks of different challenge models, concluding that if a TB challenge trial has between a 10% and a 50% chance of leading to the authorisation and near-universal delivery of a more effective vaccine 3-5 years earlier, then the trial would save between 26 400 and 1 100 000 lives over the next 10 years. We also identify five important ethical considerations that differentiate TB from recent human challenge trials: an exceptionally high disease burden with no highly effective vaccine; heightened third party risk following the trial, and, partly for that reason, uniquely stringent biosafety requirements for the trial; risks associated with best available TB treatments; and difficulties with TB disease detection. We argue that there is good reason to consider conducting challenge trials with attenuated strains like Bacillus Calmette-Guérin or attenuated Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Abie Rohrig
- Columbia University, New York, New York, USA
- 1Day Sooner, Baltimore, Maryland, USA
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK
| | | | | | - Jonathan Pugh
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK
| | - Helen McShane
- Jenner Institute, University of Oxford Nuffield Department of Medicine, Oxford, Oxfordshire, UK
| | - Julian Savulescu
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Biomedical Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
5
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
6
|
Dockrell HM, McShane H. Tuberculosis vaccines in the era of Covid-19 - what is taking us so long? EBioMedicine 2022; 79:103993. [PMID: 35427852 PMCID: PMC9002045 DOI: 10.1016/j.ebiom.2022.103993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium bovis BCG vaccine was first used in 1921, but has not controlled the global spread of tuberculosis (TB). There are still no new licensed tuberculosis vaccines, although there much active research and a vaccine development pipeline, with vaccines designed to prevent infection, prevent disease, or accelerate TB treatment. These vaccines are of different types, and designed to replace BCG, or to boost immunity following BCG vaccination. This viewpoint discusses why, when it has been possible to develop new vaccines for SARS-CoV-2 so quickly, it is taking so long to develop new tuberculosis vaccines.
Collapse
Affiliation(s)
- Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WCE 7HT, UK.
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
7
|
Cobelens F, Suri RK, Helinski M, Makanga M, Weinberg AL, Schaffmeister B, Deege F, Hatherill M. Accelerating research and development of new vaccines against tuberculosis: a global roadmap. THE LANCET. INFECTIOUS DISEASES 2022; 22:e108-e120. [PMID: 35240041 PMCID: PMC8884775 DOI: 10.1016/s1473-3099(21)00810-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022]
Abstract
To eliminate tuberculosis globally, a new, effective, and affordable vaccine is urgently needed, particularly for use in adults and adolescents in low-income and middle-income countries. We have created a roadmap that lists the actions needed to accelerate tuberculosis vaccine research and development using a participatory process. The vaccine pipeline needs more diverse immunological approaches, antigens, and platforms. Clinical development can be accelerated by validated preclinical models, agreed laboratory correlates of protection, efficient trial designs, and validated endpoints. Determining the public health impact of new tuberculosis vaccines requires understanding of a country's demand for a new tuberculosis vaccine, how to integrate vaccine implementation with ongoing tuberculosis prevention efforts, cost, and national and global demand to stimulate vaccine production. Investments in tuberculosis vaccine research and development need to be increased, with more diversity of funding sources and coordination between these funders. Open science is important to enhance the efficiency of tuberculosis vaccine research and development including early and freely available publication of study findings and effective mechanisms for sharing datasets and specimens. There is a need for increased engagement of industry vaccine developers, for increased political commitment for new tuberculosis vaccines, and to address stigma and vaccine hesitancy. The unprecedented speed by which COVID-19 vaccines have been developed and introduced provides important insight for tuberculosis vaccine research and development.
Collapse
Affiliation(s)
- Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands.
| | - Rajinder Kumar Suri
- Department of Governance and Strategy, Developing Countries Vaccine Manufacturers' Network International, Nyon, Switzerland
| | - Michelle Helinski
- European & Developing Countries Clinical Trials Partnership, The Hague, Netherlands
| | - Michael Makanga
- European & Developing Countries Clinical Trials Partnership, The Hague, Netherlands
| | - Ana Lúcia Weinberg
- European & Developing Countries Clinical Trials Partnership, The Hague, Netherlands
| | | | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
9
|
Ahmed A, Rakshit S, Adiga V, Dias M, Dwarkanath P, D'Souza G, Vyakarnam A. A century of BCG: Impact on tuberculosis control and beyond. Immunol Rev 2021; 301:98-121. [PMID: 33955564 DOI: 10.1111/imr.12968] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.
Collapse
Affiliation(s)
- Asma Ahmed
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | | | - George D'Souza
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India.,Department of Pulmonary Medicine, St John's Medical College, Bangalore, India
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
10
|
García JI, Allué-Guardia A, Tampi RP, Restrepo BI, Torrelles JB. New Developments and Insights in the Improvement of Mycobacterium tuberculosis Vaccines and Diagnostics Within the End TB Strategy. CURR EPIDEMIOL REP 2021; 8:33-45. [PMID: 33842192 PMCID: PMC8024105 DOI: 10.1007/s40471-021-00269-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW The alignment of sustainable development goals (SDGs) with the End Tuberculosis (TB) strategy provides an integrated roadmap to implement key approaches towards TB elimination. This review summarizes current social challenges for TB control, and yet, recent developments in TB diagnosis and vaccines in the context of the End TB strategy and SDGs to transform global health. RECENT FINDINGS Advances in non-sputum based TB biomarkers and whole genome sequencing technologies could revolutionize TB diagnostics. Moreover, synergistic novel technologies such as mRNA vaccination, nanovaccines and promising TB vaccine models are key promising developments for TB prevention and control. SUMMARY The End TB strategy depends on novel developments in point-of-care TB diagnostics and effective vaccines. However, despite outstanding technological developments in these fields, TB elimination will be unlikely achieved if TB social determinants are not fully addressed. Indeed, the End TB strategy and SDGs emphasize the importance of implementing sustainable universal health coverage and social protection.
Collapse
Affiliation(s)
- Juan Ignacio García
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, 8715 W. Military Dr, San Antonio, TX 78227 USA
| | - Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, 8715 W. Military Dr, San Antonio, TX 78227 USA
| | - Radhika P. Tampi
- PhD Program in Health Policy, Harvard University, Cambridge, MA 02138 USA
| | - Blanca I. Restrepo
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville, TX 78520 USA
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX 78539 USA
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, 8715 W. Military Dr, San Antonio, TX 78227 USA
| |
Collapse
|
11
|
Morrison H, McShane H. Local Pulmonary Immunological Biomarkers in Tuberculosis. Front Immunol 2021; 12:640916. [PMID: 33746984 PMCID: PMC7973084 DOI: 10.3389/fimmu.2021.640916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Regardless of the eventual site of disease, the point of entry for Mycobacterium tuberculosis (M.tb) is via the respiratory tract and tuberculosis (TB) remains primarily a disease of the lungs. Immunological biomarkers detected from the respiratory compartment may be of particular interest in understanding the complex immune response to M.tb infection and may more accurately reflect disease activity than those seen in peripheral samples. Studies in humans and a variety of animal models have shown that biomarkers detected in response to mycobacterial challenge are highly localized, with signals seen in respiratory samples that are absent from the peripheral blood. Increased understanding of the role of pulmonary specific biomarkers may prove particularly valuable in the field of TB vaccines. Here, development of vaccine candidates is hampered by the lack of defined correlates of protection (COPs). Assessing vaccine immunogenicity in humans has primarily focussed on detecting these potential markers of protection in peripheral blood. However, further understanding of the importance of local pulmonary immune responses suggests alternative approaches may be necessary. For example, non-circulating tissue resident memory T cells (TRM) play a key role in host mycobacterial defenses and detecting their associated biomarkers can only be achieved by interrogating respiratory samples such as bronchoalveolar lavage fluid or tissue biopsies. Here, we review what is known about pulmonary specific immunological biomarkers and discuss potential applications and further research needs.
Collapse
Affiliation(s)
- Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Scriba TJ, Netea MG, Ginsberg AM. Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis. Semin Immunol 2020; 50:101431. [PMID: 33279383 PMCID: PMC7786643 DOI: 10.1016/j.smim.2020.101431] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis is the leading infectious disease killer globally due to a single pathogen. Despite wide deployment of standard drug regimens, modern diagnostics and a vaccine (bacille Calmette Guerin, BCG), the global tuberculosis epidemic is inadequately controlled. Novel, effective vaccine(s) are a crucial element of the World Health Organization End TB Strategy. TB vaccine research and development has recently been catalysed by several factors, including a revised strategy focused first on preventing pulmonary TB in adolescents and adults who are the main source of transmission, and encouraging evaluations of novel efficacy endpoints. Renewed enthusiasm for TB vaccine research has also been stimulated by recent preclinical and clinical advancements. These include new insights into underlying protective immune responses, including potential roles for 'trained' innate immunity and Th1/Th17 CD4+ (and CD8+) T cells. The field has been further reinvigorated by two positive proof of concept efficacy trials: one evaluating a potential new use of BCG in preventing high risk populations from sustained Mycobacterium tuberculosis infection and the second evaluating a novel, adjuvanted, recombinant protein vaccine candidate (M72/AS01E) for prevention of disease in adults already infected. Fourteen additional candidates are currently in various phases of clinical evaluation and multiple approaches to next generation vaccines are in discovery and preclinical development. The two positive efficacy trials and recent studies in nonhuman primates have enabled the first opportunities to discover candidate vaccine-induced correlates of protection, an effort being undertaken by a broad research consortium.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands; Department of Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany.
| | - Ann M Ginsberg
- Bill & Melinda Gates Foundation, Division of Global Health, Washington DC, United States.
| |
Collapse
|