1
|
Rodrigues A, Vieira F, Sklar MC, Damiani LF, Piraino T, Telias I, Goligher EC, Reid WD, Brochard L. Post-insufflation diaphragm contractions in patients receiving various modes of mechanical ventilation. Crit Care 2024; 28:310. [PMID: 39294653 PMCID: PMC11411742 DOI: 10.1186/s13054-024-05091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND During mechanical ventilation, post-insufflation diaphragm contractions (PIDCs) are non-physiologic and could be injurious. PIDCs could be frequent during reverse-triggering, where diaphragm contractions follow the ventilator rhythm. Whether PIDCs happens with different modes of assisted ventilation is unknown. In mechanically ventilated patients with hypoxemic respiratory failure, we aimed to examine whether PIDCs are associated with ventilator settings, patients' characteristics or both. METHODS One-hour recordings of diaphragm electromyography (EAdi), airway pressure and flow were collected once per day for up to five days from intubation until full recovery of diaphragm activity or death. Each breath was classified as mandatory (without-reverse-triggering), reverse-triggering, or patient triggered. Reverse triggering was further subclassified according to EAdi timing relative to ventilator cycle or reverse triggering leading to breath-stacking. EAdi timing (onset, offset), peak and neural inspiratory time (Tineuro) were measured breath-by-breath and compared to the ventilator expiratory time. A multivariable logistic regression model was used to investigate factors independently associated with PIDCs, including EAdi timing, amplitude, Tineuro, ventilator settings and APACHE II. RESULTS Forty-seven patients (median[25%-75%IQR] age: 63[52-77] years, BMI: 24.9[22.9-33.7] kg/m2, 49% male, APACHE II: 21[19-28]) contributed 2 ± 1 recordings each, totaling 183,962 breaths. PIDCs occurred in 74% of reverse-triggering, 27% of pressure support breaths, 21% of assist-control breaths, 5% of Neurally Adjusted Ventilatory Assist (NAVA) breaths. PIDCs were associated with higher EAdi peak (odds ratio [OR][95%CI] 1.01[1.01;1.01], longer Tineuro (OR 37.59[34.50;40.98]), shorter ventilator inspiratory time (OR 0.27[0.24;0.30]), high peak inspiratory flow (OR 0.22[0.20;0.26]), and small tidal volumes (OR 0.31[0.25;0.37]) (all P ≤ 0.008). NAVA was associated with absence of PIDCs (OR 0.03[0.02;0.03]; P < 0.001). Reverse triggering was characterized by lower EAdi peak than breaths triggered under pressure support and associated with small tidal volume and shorter set inspiratory time than breaths triggered under assist-control (all P < 0.05). Reverse triggering leading to breath stacking was characterized by higher peak EAdi and longer Tineuro and associated with small tidal volumes compared to all other reverse-triggering phenotypes (all P < 0.05). CONCLUSIONS In critically ill mechanically ventilated patients, PIDCs and reverse triggering phenotypes were associated with potentially modifiable factors, including ventilator settings. Proportional modes like NAVA represent a solution abolishing PIDCs.
Collapse
Affiliation(s)
- Antenor Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- St. Michael's Hospital, Room 4-709, 36 Queens St E, Toronto, M5B 1W8, Canada.
| | - Fernando Vieira
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael C Sklar
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - L Felipe Damiani
- Escuela de Ciencias de La Salud, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Thomas Piraino
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Irene Telias
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Division of Respirology, Department of Medicine, University Health Network and Mount Sinai Hospital, Toronto, ON, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - W Darlene Reid
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Canada
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Gordon AC, Alipanah-Lechner N, Bos LD, Dianti J, Diaz JV, Finfer S, Fujii T, Giamarellos-Bourboulis EJ, Goligher EC, Gong MN, Karakike E, Liu VX, Lumlertgul N, Marshall JC, Menon DK, Meyer NJ, Munroe ES, Myatra SN, Ostermann M, Prescott HC, Randolph AG, Schenck EJ, Seymour CW, Shankar-Hari M, Singer M, Smit MR, Tanaka A, Taccone FS, Thompson BT, Torres LK, van der Poll T, Vincent JL, Calfee CS. From ICU Syndromes to ICU Subphenotypes: Consensus Report and Recommendations for Developing Precision Medicine in the ICU. Am J Respir Crit Care Med 2024; 210:155-166. [PMID: 38687499 PMCID: PMC11273306 DOI: 10.1164/rccm.202311-2086so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.
Collapse
Affiliation(s)
| | - Narges Alipanah-Lechner
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Departamento de Cuidados Intensivos, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | | | - Simon Finfer
- School of Public Health, Imperial College London, London, United Kingdom
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Tomoko Fujii
- Jikei University School of Medicine, Jikei University Hospital, Tokyo, Japan
| | | | - Ewan C. Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Ng Gong
- Division of Critical Care Medicine and
- Division of Pulmonary Medicine, Department of Medicine and Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Eleni Karakike
- Second Department of Critical Care Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vincent X. Liu
- Division of Research, Kaiser Permanente, Oakland, California
| | - Nuttha Lumlertgul
- Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - John C. Marshall
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David K. Menon
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth S. Munroe
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sheila N. Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- King’s College London, Guy’s & St Thomas’ Hospital, London, United Kingdom
| | - Hallie C. Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Anaesthesia and
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Edward J. Schenck
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Christopher W. Seymour
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | | | - Aiko Tanaka
- Department of Intensive Care, University of Fukui Hospital, Yoshida, Fukui, Japan
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fabio S. Taccone
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lisa K. Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, and
- Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Louis Vincent
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
3
|
Rodrigues A, Telias I, Damiani LF, Brochard L. Reverse Triggering during Controlled Ventilation: From Physiology to Clinical Management. Am J Respir Crit Care Med 2023; 207:533-543. [PMID: 36470240 DOI: 10.1164/rccm.202208-1477ci] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reverse triggering dyssynchrony is a frequent phenomenon recently recognized in sedated critically ill patients under controlled ventilation. It occurs in at least 30-55% of these patients and often occurs in the transition from fully passive to assisted mechanical ventilation. During reverse triggering, patient inspiratory efforts start after the passive insufflation by mechanical breaths. The most often referred mechanism is the entrainment of the patient's intrinsic respiratory rhythm from the brainstem respiratory centers to periodic mechanical insufflations from the ventilator. However, reverse triggering might also occur because of local reflexes without involving the respiratory rhythm generator in the brainstem. Reverse triggering is observed during the acute phase of the disease, when patients may be susceptible to potential deleterious consequences of injurious or asynchronous efforts. Diagnosing reverse triggering might be challenging and can easily be missed. Inspection of ventilator waveforms or more sophisticated methods, such as the electrical activity of the diaphragm or esophageal pressure, can be used for diagnosis. The occurrence of reverse triggering might have clinical consequences. On the basis of physiological data, reverse triggering might be beneficial or injurious for the diaphragm and the lung, depending on the magnitude of the inspiratory effort. Reverse triggering can cause breath-stacking and loss of protective lung ventilation when triggering a second cycle. Little is known about how to manage patients with reverse triggering; however, available evidence can guide management on the basis of physiological principles.
Collapse
Affiliation(s)
- Antenor Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
| | - Irene Telias
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada; and
| | - L Felipe Damiani
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Itagaki T. Diaphragm-protective mechanical ventilation in acute respiratory failure. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:165-172. [DOI: 10.2152/jmi.69.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Khemani RG, Lee JT, Wu D, Schenck EJ, Hayes MM, Kritek PA, Mutlu GM, Gershengorn HB, Coudroy R. Update in Critical Care 2020. Am J Respir Crit Care Med 2021; 203:1088-1098. [PMID: 33734938 DOI: 10.1164/rccm.202102-0336up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Robinder G Khemani
- Pediatric ICU, Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jessica T Lee
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Wu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Edward J Schenck
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York.,NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Margaret M Hayes
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Patricia A Kritek
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Washington Seattle, Washington
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Hayley B Gershengorn
- Division of Pulmonary, Critical Care, and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, Florida.,Division of Critical Care Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rémi Coudroy
- Institut National de la Santé et de la Recherche Médicale, Poitiers, France; and.,Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| |
Collapse
|