1
|
Lisius G, Duttagupta R, Ahmed AA, Hensley M, Al-Yousif N, Lu M, Bain W, Shah F, Blauwkamp TA, Bercovici S, Schaefer C, Qin S, Wang X, Zhang Y, Mitchell KJ, Hughes EK, Jacobs JL, Naqvi A, Haidar G, Mellors JW, Methé B, McVerry BJ, Morris A, Kitsios GD. Noninvasive diagnosis of secondary infections in COVID-19 by sequencing of plasma microbial cell-free DNA. iScience 2023; 26:108093. [PMID: 37965142 PMCID: PMC10641743 DOI: 10.1016/j.isci.2023.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Secondary infection (SI) diagnosis in severe COVID-19 remains challenging. We correlated metagenomic sequencing of plasma microbial cell-free DNA (mcfDNA-Seq) with clinical SI assessment, immune response, and outcomes. We classified 42 COVID-19 inpatients as microbiologically confirmed-SI (Micro-SI, n = 8), clinically diagnosed-SI (Clinical-SI, n = 13, i.e., empiric antimicrobials), or no-clinical-suspicion-for-SI (No-Suspected-SI, n = 21). McfDNA-Seq was successful in 73% of samples. McfDNA detection was higher in Micro-SI (94%) compared to Clinical-SI (57%, p = 0.03), and unexpectedly high in No-Suspected-SI (83%), similar to Micro-SI. We detected culture-concordant mcfDNA species in 81% of Micro-SI samples. McfDNA correlated with LRT 16S rRNA bacterial burden (r = 0.74, p = 0.02), and biomarkers (white blood cell count, IL-6, IL-8, SPD, all p < 0.05). McfDNA levels were predictive of worse 90-day survival (hazard ratio 1.30 [1.02-1.64] for each log10 mcfDNA, p = 0.03). High mcfDNA levels in COVID-19 patients without clinical SI suspicion may suggest SI under-diagnosis. McfDNA-Seq offers a non-invasive diagnostic tool for pathogen identification, with prognostic value on clinical outcomes.
Collapse
Affiliation(s)
- Grace Lisius
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | - Matthew Hensley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nameer Al-Yousif
- Division of Pulmonary, Critical Care, and Sleep Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Michael Lu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | | | | | - Caitlin Schaefer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Ellen K. Hughes
- Computer Vision Group, VeyTel LLC, Pittsburgh, PA 15217, USA
| | - Jana L. Jacobs
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - Asma Naqvi
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - Ghady Haidar
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - John W. Mellors
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest 2023; 133:e170501. [PMID: 37781922 PMCID: PMC10541196 DOI: 10.1172/jci170501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alveolar macrophages (AMs) are the sentinel cells of the alveolar space, maintaining homeostasis, fending off pathogens, and controlling lung inflammation. During acute lung injury, AMs orchestrate the initiation and resolution of inflammation in order to ultimately restore homeostasis. This central role in acute lung inflammation makes AMs attractive targets for therapeutic interventions. Single-cell RNA-Seq and spatial omics approaches, together with methodological advances such as the generation of human macrophages from pluripotent stem cells, have increased understanding of the ontogeny, function, and plasticity of AMs during infectious and sterile lung inflammation, which could move the field closer to clinical application. However, proresolution phenotypes might conflict with proinflammatory and antibacterial responses. Therefore, therapeutic targeting of AMs at vulnerable time points over the course of infectious lung injury might harbor the risk of serious side effects, such as loss of antibacterial host defense capacity. Thus, the identification of key signaling hubs that determine functional fate decisions in AMs is of the utmost importance to harness their therapeutic potential.
Collapse
Affiliation(s)
- Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Shifaa M. Abdin
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- RESIST (Resolving Infection Susceptibility), Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Matt
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|