1
|
Ringshausen FC, Baumann I, de Roux A, Dettmer S, Diel R, Eichinger M, Ewig S, Flick H, Hanitsch L, Hillmann T, Koczulla R, Köhler M, Koitschev A, Kugler C, Nüßlein T, Ott SR, Pink I, Pletz M, Rohde G, Sedlacek L, Slevogt H, Sommerwerck U, Sutharsan S, von Weihe S, Welte T, Wilken M, Rademacher J, Mertsch P. [Management of adult bronchiectasis - Consensus-based Guidelines for the German Respiratory Society (DGP) e. V. (AWMF registration number 020-030)]. Pneumologie 2024; 78:833-899. [PMID: 39515342 DOI: 10.1055/a-2311-9450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Bronchiectasis is an etiologically heterogeneous, chronic, and often progressive respiratory disease characterized by irreversible bronchial dilation. It is frequently associated with significant symptom burden, multiple complications, and reduced quality of life. For several years, there has been a marked global increase in the prevalence of bronchiectasis, which is linked to a substantial economic burden on healthcare systems. This consensus-based guideline is the first German-language guideline addressing the management of bronchiectasis in adults. The guideline emphasizes the importance of thoracic imaging using CT for diagnosis and differentiation of bronchiectasis and highlights the significance of etiology in determining treatment approaches. Both non-drug and drug treatments are comprehensively covered. Non-pharmacological measures include smoking cessation, physiotherapy, physical training, rehabilitation, non-invasive ventilation, thoracic surgery, and lung transplantation. Pharmacological treatments focus on the long-term use of mucolytics, bronchodilators, anti-inflammatory medications, and antibiotics. Additionally, the guideline covers the challenges and strategies for managing upper airway involvement, comorbidities, and exacerbations, as well as socio-medical aspects and disability rights. The importance of patient education and self-management is also emphasized. Finally, the guideline addresses special life stages such as transition, family planning, pregnancy and parenthood, and palliative care. The aim is to ensure comprehensive, consensus-based, and patient-centered care, taking into account individual risks and needs.
Collapse
Affiliation(s)
- Felix C Ringshausen
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Ingo Baumann
- Hals-, Nasen- und Ohrenklinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Andrés de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Deutschland
| | - Sabine Dettmer
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Roland Diel
- Institut für Epidemiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland; LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Grosshansdorf, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Deutschland; Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Deutschland
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Kliniken für Pneumologie und Infektiologie, EVK Herne und Augusta-Kranken-Anstalt Bochum, Bochum, Deutschland
| | - Holger Flick
- Klinische Abteilung für Pulmonologie, Universitätsklinik für Innere Medizin, LKH-Univ. Klinikum Graz, Medizinische Universität Graz, Graz, Österreich
| | - Leif Hanitsch
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Thomas Hillmann
- Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum Essen, Essen, Deutschland
| | - Rembert Koczulla
- Abteilung für Pneumologische Rehabilitation, Philipps Universität Marburg, Marburg, Deutschland
| | | | - Assen Koitschev
- Klinik für Hals-, Nasen-, Ohrenkrankheiten, Klinikum Stuttgart - Olgahospital, Stuttgart, Deutschland
| | - Christian Kugler
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Thomas Nüßlein
- Klinik für Kinder- und Jugendmedizin, Gemeinschaftsklinikum Mittelrhein gGmbH, Koblenz, Deutschland
| | - Sebastian R Ott
- Pneumologie/Thoraxchirurgie, St. Claraspital AG, Basel; Universitätsklinik für Pneumologie, Allergologie und klinische Immunologie, Inselspital, Universitätsspital und Universität Bern, Bern, Schweiz
| | - Isabell Pink
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Mathias Pletz
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Gernot Rohde
- Pneumologie/Allergologie, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Deutschland
| | - Ludwig Sedlacek
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Hortense Slevogt
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Center for Individualised Infection Medicine, Hannover, Deutschland
| | - Urte Sommerwerck
- Klinik für Pneumologie, Allergologie, Schlaf- und Beatmungsmedizin, Cellitinnen-Severinsklösterchen Krankenhaus der Augustinerinnen, Köln, Deutschland
| | | | - Sönke von Weihe
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Tobias Welte
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | | | - Jessica Rademacher
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Pontus Mertsch
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München (LMU), Comprehensive Pneumology Center (CPC), Deutsches Zentrum für Lungenforschung (DZL), München, Deutschland
| |
Collapse
|
2
|
Stahl M, Roehmel J, Eichinger M, Doellinger F, Naehrlich L, Kopp MV, Dittrich AM, Sommerburg O, Ray P, Maniktala A, Xu T, Conner S, Joshi A, Mascia M, Wielpütz MO, Mall MA. Long-Term Impact of Lumacaftor/Ivacaftor Treatment on Cystic Fibrosis Disease Progression in Children 2-5 Years of Age Homozygous for F508del-CFTR: A Phase 2, Open-Label Clinical Trial. Ann Am Thorac Soc 2024; 21:1550-1559. [PMID: 39173175 DOI: 10.1513/annalsats.202402-201oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024] Open
Abstract
Rationale: Clinical trials show that lumacaftor/ivacaftor (LUM/IVA) treatment has the potential to modify early cystic fibrosis (CF) disease progression in children as young as 2 years of age. Objectives: To assess the long-term impact of LUM/IVA treatment on CF disease progression in children aged 2-5 years. Methods: This phase 2 trial had two parts: part 1, a 48-week, randomized, double-blind, placebo-controlled study of LUM/IVA in children aged 2-5 years (previously reported) was followed by a 48-week open-label treatment period in which all children received LUM/IVA (part 2; reported here). Endpoints assessed in part 2 included absolute changes from baseline in chest magnetic resonance imaging (MRI) global score at Week 96; weight-for-age, stature-for-age, and body mass index (BMI)-for-age z-scores at Week 96; lung clearance index based on lung volume turnover required to reach 2.5% of starting N2 concentration (LCI2.5) through Week 96; chest MRI morphological score, chest MRI perfusion score, weight, stature, BMI, and microbiology cultures (oropharyngeal swabs) at Week 96; sweat chloride, amount of immunoreactive trypsinogen, fecal elastase-1 concentration, and fecal calprotectin through Week 96; and number of pulmonary exacerbations, time to first pulmonary exacerbation, and number of CF-related hospitalizations. Results: Forty-nine children received one or more doses of LUM/IVA in the open-label period (33 in the LUM/IVA to LUM/IVA group and 16 in the placebo to LUM/IVA group), with a mean exposure of 47.1 (standard deviation [SD], 5.2) weeks. The mean absolute change in MRI global score (negative value indicates improvement) from baseline at Week 96 was -2.7 (SD, 7.0; 95% confidence interval [CI], -5.2 to -0.1) in the LUM/IVA to LUM/IVA group and -5.6 (SD, 6.9; 95% CI, -9.2 to -1.9) in the placebo to LUM/IVA group. Improvements in LCI2.5, sweat chloride concentration, and markers of pancreatic function and intestinal inflammation were also observed in both groups. Growth parameters remained stable in both groups. The majority of children had adverse events considered mild (38.8%) or moderate (40.8%). Two (4.1%) children discontinued LUM/IVA treatment because of adverse events (distal intestinal obstruction syndrome [n = 1] and alanine aminotransferase increase [n = 1]). Conclusions: These findings confirm the potential for early LUM/IVA treatment to alter the trajectory of CF disease progression, including CF lung disease, in children as young as 2 years of age. Clinical trial registered with ClinicalTrials.gov (NCT03625466).
Collapse
Affiliation(s)
- Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
| | - Monika Eichinger
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology and
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Doellinger
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Matthias V Kopp
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Anna-Maria Dittrich
- Department for Pediatric Pulmonology, Allergology, and Neonatology, and
- BREATH, German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, Heidelberg University Hospital, Heidelberg, Germany
| | - Partha Ray
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts; and
| | - Anita Maniktala
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts; and
- ICON plc, Global Strategic Solutions, Raleigh, North Carolina
| | - Tu Xu
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts; and
| | - Sarah Conner
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts; and
| | - Aniket Joshi
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts; and
| | - Molly Mascia
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts; and
| | - Mark O Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology and
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
3
|
Lanfranchi C, Rizza C, Russo MC, Borzani I, Angileri SA, Nazzari E, Alicandro G, Blasi F, Daccò V. A case of severe pulmonary exacerbation in a young patient with cystic fibrosis in the era of CFTR modulators. Int J Infect Dis 2024; 147:107190. [PMID: 39053617 DOI: 10.1016/j.ijid.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The introduction of CFTR modulator drugs like elexacaftor-tezacaftor-ivacaftor (ETI) has transformed the management of cystic fibrosis (CF), significantly improving symptoms, lung function, and quality of life, while reducing reliance on intravenous antibiotics. However, respiratory exacerbations in the CFTR modulators era remain poorly understood from both pathophysiological and clinical perspectives. We present the case of a 20-year-old Caucasian woman with CF (F508del/L1077P) who, after three years of ETI treatment, experienced a severe episode of hemoptysis, despite being almost asymptomatic in the weeks leading up to admission, requiring bronchial artery embolization. Following ETI treatment, auscultatory findings and FEV1 changes may be less significant, making the detection of respiratory exacerbation more challenging. This highlights the need for heightened vigilance in managing such cases and underscores the challenge of diagnosing and managing exacerbations in the era of modulators. Long term real-world studies are essential to comprehend the evolving course of the disease during ETI treatment.
Collapse
Affiliation(s)
- Chiara Lanfranchi
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carmela Rizza
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Chiara Russo
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Borzani
- Pediatric Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salvatore Alessio Angileri
- Department of Diagnostic and Interventional Radiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Nazzari
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianfranco Alicandro
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Daccò
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
4
|
Marzook N, Dubrovsky AS, Muchantef K, Zielinski D, Lands LC, Shapiro AJ. Lung ultrasound in children with primary ciliary dyskinesia or cystic fibrosis. Pediatr Pulmonol 2024. [PMID: 39221856 DOI: 10.1002/ppul.27215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Primary ciliary dyskinesia (PCD) and cystic fibrosis (CF) are respiratory conditions requiring regular chest radiography (CXR) surveillance to monitor pulmonary disease. However, CXR is insensitive for lung disease in CF and PCD. Lung ultrasound (LU) is a radiation-free alternative showing good correlation with severity of lung disease in CF but has not been studied in PCD. METHOD Standardized, six-zone LU studies and CXR were performed on a convenience sample of children with PCD or CF during a single visit when well. LU studies were graded using the LU scoring system, while CXR studies received a modified Chrispin-Norman score. Scores were correlated with clinical outcomes. RESULT Data from 30 patients with PCD and 30 with CF (median age PCD 11.5 years, CF 9.1 years) with overall mild pulmonary disease (PCD median FEV1 90% predicted, CF FEV1 100%) were analyzed. LU abnormalities appear in 11/30 (36%) patients with PCD and 9/30 (30%) with CF. Sensitivity, specificity, positive predictive, and negative predictive values for abnormal LU compared to the gold standard of CXR are 42%, 61%, 42%, and 61% in PCD, and 44%, 81%, 50%, and 77% in CF, respectively. Correlation between LU and CXR scores are poor for both diseases (PCD r = -0.1288, p = 0.4977; CF r = 0.0343, p = 0.8571), and LU score does not correlate with clinical outcomes in PCD. CONCLUSION The correlation of LU findings with CXR surveillance studies is poor in patients with mild disease burdens from PCD or CF, and LU scores do not correlate with clinical outcomes in PCD.
Collapse
Affiliation(s)
- Noah Marzook
- Department of Pediatrics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Alexander S Dubrovsky
- Department of Pediatrics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Karl Muchantef
- Department of Radiology, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - David Zielinski
- Department of Pediatrics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Larry C Lands
- Department of Pediatrics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Adam J Shapiro
- Department of Pediatrics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Stahl M, Dohna M, Graeber SY, Sommerburg O, Renz DM, Pallenberg ST, Voskrebenzev A, Schütz K, Hansen G, Doellinger F, Steinke E, Thee S, Röhmel J, Barth S, Rückes-Nilges C, Berges J, Hämmerling S, Wielpütz MO, Naehrlich L, Vogel-Claussen J, Tümmler B, Mall MA, Dittrich AM. Impact of elexacaftor/tezacaftor/ivacaftor therapy on lung clearance index and magnetic resonance imaging in children with cystic fibrosis and one or two F508del alleles. Eur Respir J 2024; 64:2400004. [PMID: 38901883 PMCID: PMC11375515 DOI: 10.1183/13993003.00004-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND We recently demonstrated that elexacaftor/tezacaftor/ivacaftor (ETI) improves the lung clearance index (LCI) and abnormalities in lung morphology detected by magnetic resonance imaging (MRI) in adolescent and adult patients with cystic fibrosis (CF). However, real-world data on the effect of ETI on these sensitive outcomes of lung structure and function in school-age children with CF have not been reported. The aim of this study was therefore to examine the effect of ETI on the LCI and the lung MRI score in children aged 6-11 years with CF and one or two F508del alleles. METHODS This prospective, observational, multicentre, post-approval study assessed the longitudinal LCI up to 12 months and the lung MRI score before and 3 months after initiation of ETI. RESULTS A total of 107 children with CF including 40 heterozygous for F508del and a minimal function mutation (F/MF) and 67 homozygous for F508del (F/F) were enrolled in this study. Treatment with ETI improved the median (interquartile range (IQR)) LCI in F/MF (-1.0 (-2.0- -0.1); p<0.01) and F/F children (-0.8 (-1.9- -0.2); p<0.001) from 3 months onwards. Further, ETI improved the median (IQR) MRI global score in F/MF (-4.0 (-9.0-0.0); p<0.01) and F/F children (-3.5 (-7.3- -0.8); p<0.001). CONCLUSIONS ETI improves early abnormalities in lung ventilation and morphology in school-age children with CF and at least one F508del allele in a real-world setting. Our results support early initiation of ETI to reduce or even prevent lung disease progression in school-age children with CF.
Collapse
Affiliation(s)
- Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- M. Stahl, M. Dohna, S.Y. Graeber and O. Sommerburg contributed equally as first authors
| | - Martha Dohna
- Department for Radiology, Hannover Medical School, Hannover, Germany
- M. Stahl, M. Dohna, S.Y. Graeber and O. Sommerburg contributed equally as first authors
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- M. Stahl, M. Dohna, S.Y. Graeber and O. Sommerburg contributed equally as first authors
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergy, and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- M. Stahl, M. Dohna, S.Y. Graeber and O. Sommerburg contributed equally as first authors
| | - Diane M Renz
- Department for Radiology, Hannover Medical School, Hannover, Germany
| | - Sophia T Pallenberg
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | | | - Katharina Schütz
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), German Research Foundation (DFG), Hannover Medical School, Hannover, Germany
| | - Felix Doellinger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Sandra Barth
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Claudia Rückes-Nilges
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Julian Berges
- Division of Pediatric Pulmonology and Allergy, and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Susanne Hämmerling
- Division of Pediatric Pulmonology and Allergy, and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Mark O Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| | - Jens Vogel-Claussen
- Department for Radiology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| | - Burkhard Tümmler
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| | - Anna-Maria Dittrich
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| |
Collapse
|
6
|
Pioch CO, Ziegahn N, Allomba C, Busack LM, Schnorr AN, Tosolini A, Fuhlrott BR, Zagkla S, Othmer T, Syunyaeva Z, Graeber SY, Yoosefi M, Thee S, Steinke E, Röhmel J, Mall MA, Stahl M. Elexacaftor/tezacaftor/ivacaftor improves nasal nitric oxide in patients with cystic fibrosis. J Cyst Fibros 2024; 23:863-869. [PMID: 38508948 DOI: 10.1016/j.jcf.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND In health, nitric oxide (NO) shows high concentrations in the upper airways, while nasal NO (nNO) is significantly lower in patients with sinonasal inflammation, such as people with cystic fibrosis (PwCF). In PwCF treated with elexacaftor/tezacaftor/ivacaftor (ETI; PwCF-ETI), clinical improvement of sinonasal symptoms and inflammation was observed. We therefore hypothesised that ETI may increase nNO in PwCF. METHODS 25 PwCF-ETI underwent nNO measurement at baseline and after 3 to 24 months of ETI treatment. NNO was measured using velum closure (VC) techniques in cooperative patients and tidal breathing (TB) for all patients. As controls, 7 CF patients not eligible for ETI (PwCF-non ETI) and 32 healthy controls (HC) were also repeatedly investigated. RESULTS In PwCF-ETI, sinonasal symptoms, lung function parameters and sweat chloride levels improved from baseline to follow-up whereas there was no change in PwCF-non ETI and HC. NNO increased from a median (IQR) value at baseline to follow-up from 348.2 (274.4) ppb to 779.6 (364.7) ppb for VC (P < 0.001) and from 198.2 (107.0) ppb to 408.3 (236.1) ppb for TB (P < 0.001). At follow-up, PwCF-ETI reached nNO values in the normal range. In PwCF-non ETI as well as HC, nNO did not change between baseline and follow-up. CONCLUSIONS In PwCF-ETI, the nNO values significantly increased after several months of ETI treatment in comparison to baseline and reached values in the normal range. This suggests that nNO is a potential non-invasive biomarker to examine sinonasal inflammatory disease in PwCF and supports the observation of clinical improvement in these patients.
Collapse
Affiliation(s)
- Charlotte O Pioch
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niklas Ziegahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Allomba
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie M Busack
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandra N Schnorr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Apolline Tosolini
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bent R Fuhlrott
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Styliani Zagkla
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Othmer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zulfiya Syunyaeva
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehrak Yoosefi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Chassagnon G, Burgel PR. Reply: Reversal of structural abnormalities with elexacaftor/tezacaftor/ivacaftor in adults with cystic fibrosis: the earlier you start, the better the outcome will be! Eur Respir J 2024; 64:2401247. [PMID: 39326907 DOI: 10.1183/13993003.01247-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Guillaume Chassagnon
- Service de Radiologie A, Radiology Department, Cochin Hospital, Broca Hôtel-Dieu, Assistance Publique Hôpitaux de Paris, Paris, France
- Université Paris Cité, Paris, France
| | - Pierre-Régis Burgel
- Université Paris Cité, Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
8
|
Fainardi V, Cresta F, Sorio C, Melotti P, Pesce E, Deolmi M, Longo F, Karina K, Esposito S, Pisi G. Elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis and rare mutations. Pediatr Pulmonol 2024. [PMID: 39212240 DOI: 10.1002/ppul.27211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The triple combination of elexacaftor/tezacaftor/ivacaftor (ETI) has dramatically improved the outcome of people with Cystic Fibrosis (pwCF) with at least one F508del mutation. However, carriers of rare cystic fibrosis transmembrane conductance regulator (CFTR) variants are not candidates for this innovative treatment. METHODS In this observational study, we report the results of the compassionate use of ETI in 10 pwCF carriers of rare mutations after 2 months of treatment. Rectal organoids and short-term cultures of nasal epithelium obtained from rectal suction biopsies and nasal brushing were obtained from four subjects. RESULTS After 2 months of ETI, all patients (4 males, mean age 30.1 ± 13.3 years) showed a significant increase of FEV1% predicted values [+8.0 (3.5-12.7) %, p < 0.010], body mass index [+0.85 (0-1.22) kg/m2, p < 0.020] and cystic fibrosis questionnaire-revised [+19.5 (6.3-29.2) points, p < 0.009]. A significant decrease of sweat chloride concentration [-11.2 (-1.7 to -34.0) mmol/L, p < 0.020] and exacerbations [-1.5 (-2 to -1), p < 0.008] was also recorded. Overall, 7 out of 10 participants were considered full responders. All patients reported cough disappearance (n = 3) or reduction (n = 7). Long-term oxygen was discontinued in two out of three patients and one also stopped noninvasive ventilation and was removed from the lung transplantation waiting list. CONCLUSIONS Despite the limited number of cases, our results support the use of CFTR modulators in patients with rare CFTR variants that are not currently approved for ETI in Europe.
Collapse
Affiliation(s)
- Valentina Fainardi
- Department of Medicine and Surgery, Cystic Fibrosis Unit, Pediatric Clinic, Parma, Italy
| | - Federico Cresta
- UOSD Centro Fibrosi Cistica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Sorio
- Cystic Fibrosis Laboratory D. Lissandrini, Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Emanuela Pesce
- IRCCS Istituto Giannina Gaslini, UOC Genetica Medica, Genova, Italy
| | - Michela Deolmi
- Cystic Fibrosis Unit, Pediatric Clinics, University Hospital of Parma, Parma, Italy
| | - Francesco Longo
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, Parma, Italy
| | - Kleinfelder Karina
- Cystic Fibrosis Laboratory D. Lissandrini, Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Susanna Esposito
- Department of Medicine and Surgery, Cystic Fibrosis Unit, Pediatric Clinic, Parma, Italy
| | - Giovanna Pisi
- Cystic Fibrosis Unit, Pediatric Clinics, University Hospital of Parma, Parma, Italy
| |
Collapse
|
9
|
Hampton TH, Barnaby R, Roche C, Nymon A, Fukutani KF, MacKenzie TA, Stanton BA. Gene expression responses of CF airway epithelial cells exposed to elexacaftor/tezacaftor/ivacaftor (ETI) suggest benefits beyond improved CFTR channel function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610162. [PMID: 39257747 PMCID: PMC11383677 DOI: 10.1101/2024.08.28.610162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The combination of elexacaftor/tezacaftor/ivacaftor (ETI, Trikafta) reverses the primary defect in Cystic Fibrosis (CF) by improving CFTR mediated Cl - and HCO 3 - secretion by airway epithelial cells (AEC), leading to improved lung function and less frequent exacerbations and hospitalizations. However, studies have shown that CFTR modulators like ivacaftor, a component of ETI, has numerous effects on CF cells beyond improved CFTR channel function. Because little is known about the effect of ETI on CF AEC gene expression we exposed primary human AEC to ETI for 48 hours and interrogated the transcriptome by RNA-seq and qPCR. ETI increased defensin gene expression ( DEFB1 ) an observation consistent with reports of decreased bacterial burden in the lungs of people with CF (pwCF). ETI also decreased MMP10 and MMP12 gene expression, suggesting that ETI may reduce proteolytic induced lung destruction in CF. ETI also reduced the expression of the stress response gene heme oxygenase ( HMOX1 ). qPCR analysis confirmed DEFB1, HMOX1, MMP10 and MMP12 gene expression results observed by RNA-seq. Gene pathway analysis revealed that ETI decreased inflammatory signaling, cellular proliferation and MHC Class II antigen presentation. Collectively, these findings suggest that the clinical observation that ETI reduces lung infections in pwCF is related in part to drug induced increases in DEFB1 , and that ETI may reduce lung damage by reducing MMP10 and MMP12 gene expression, which is predicted to reduce matrix metalloprotease activity. Moreover, pathway analysis also identified several genes responsible for the ETI induced reduction in inflammation observed in people with CF. New and Noteworthy Gene expression responses by CF AEC exposed to ETI suggest that in addition to improving CFTR channel function, ETI is likely to increase resistance to bacterial infection by increasing levels of beta defensin 1 (hBD-1). ETI may also reduce lung damage by suppressing MMP10, and reduce airway inflammation by repressing proinflammatory cytokine secretion by AEC cells.
Collapse
|
10
|
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Cystic fibrosis. Nat Rev Dis Primers 2024; 10:53. [PMID: 39117676 DOI: 10.1038/s41572-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Cystic fibrosis is a rare genetic disease caused by mutations in CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). The discovery of CFTR in 1989 has enabled the unravelling of disease mechanisms and, more recently, the development of CFTR-directed therapeutics that target the underlying molecular defect. The CFTR protein functions as an ion channel that is crucial for correct ion and fluid transport across epithelial cells lining the airways and other organs. Consequently, CFTR dysfunction causes a complex multi-organ disease but, to date, most of the morbidity and mortality in people with cystic fibrosis is due to muco-obstructive lung disease. Cystic fibrosis care has long been limited to treating symptoms using nutritional support, airway clearance techniques and antibiotics to suppress airway infection. The widespread implementation of newborn screening for cystic fibrosis and the introduction of a highly effective triple combination CFTR modulator therapy that has unprecedented clinical benefits in up to 90% of genetically eligible people with cystic fibrosis has fundamentally changed the therapeutic landscape and improved prognosis. However, people with cystic fibrosis who are not eligible based on their CFTR genotype or who live in countries where they do not have access to this breakthrough therapy remain with a high unmet medical need.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
- German Centre for Lung Research (DZL), Associated Partner Site Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany.
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
- St Thomas' NHS Trust, London, UK
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Division of Paediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
11
|
Cocorullo M, Stelitano G, Chiarelli LR. Phage Therapy: An Alternative Approach to Combating Multidrug-Resistant Bacterial Infections in Cystic Fibrosis. Int J Mol Sci 2024; 25:8321. [PMID: 39125890 PMCID: PMC11313351 DOI: 10.3390/ijms25158321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Patients with cystic fibrosis (CF) are prone to developing life-threatening lung infections with a variety of pathogens that are difficult to eradicate, such as Burkholderia cepacia complex (Bcc), Hemophilus influenzae, Mycobacterium abscessus (Mab), Pseudomonas aeruginosa, and Staphylococcus aureus. These infections still remain an important issue, despite the therapy for CF having considerably improved in recent years. Moreover, prolonged exposure to antibiotics in combination favors the development and spread of multi-resistant bacteria; thus, the development of alternative strategies is crucial to counter antimicrobial resistance. In this context, phage therapy, i.e., the use of phages, viruses that specifically infect bacteria, has become a promising strategy. In this review, we aim to address the current status of phage therapy in the management of multidrug-resistant infections, from compassionate use cases to ongoing clinical trials, as well as the challenges this approach presents in the particular context of CF patients.
Collapse
Affiliation(s)
| | | | - Laurent Robert Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy; (M.C.); (G.S.)
| |
Collapse
|
12
|
David M, Benlala I, Bui S, Benkert T, Berger P, Laurent F, Macey J, Dournes G. Longitudinal Evaluation of Bronchial Changes in Cystic Fibrosis Patients Undergoing Elexacaftor/Tezacaftor/Ivacaftor Therapy Using Lung MRI With Ultrashort Echo-Times. J Magn Reson Imaging 2024; 60:116-124. [PMID: 37861357 DOI: 10.1002/jmri.29041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Lung magnetic resonance imaging (MRI) with ultrashort echo-times (UTE-MRI) allows high-resolution and radiation-free imaging of the lung structure in cystic fibrosis (CF). In addition, the combination of elexacaftor/tezacaftor/ivacaftor (ETI) has improved CF clinical outcomes such as need for hospitalization. However, the effect on structural disease still needs longitudinal evaluation at high resolution. PURPOSE To analyze the effects of ETI on lung structural alterations using UTE-MRI, with a focus on bronchiectasis reversibility. STUDY TYPE Retrospective. POPULATION Fifty CF patients (mean age 24.3 ± 9.2; 23 males). FIELD STRENGTH/SEQUENCE 1.5 T, UTE-MRI. ASSESSMENT All subjects completed both UTE-MRI and pulmonary function tests (PFTs) during two annual visits (M0 and M12), and 30 of them completed a CT scan. They initiated ETI treatment after M0 within a maximum of 3 months from the annual examinations. Three observers scored a clinical MRI Bhalla score on UTE-MRI. Bronchiectasis reversibility was defined as a reduction in both outer and inner bronchial dimensions. Correlations were searched between the Bhalla score and PFT such as the forced expiratory volume in 1 second percentage predicted (FEV1%p). STATISTICAL TESTS Comparison was assessed using the paired t-test, correlation using the Spearman correlation test with a significance level of 0.05. Concordance and reproducibility were assessed using intraclass correlation coefficient (ICC). RESULTS There was a significant improvement in MRI Bhalla score after ETI treatment. UTE-MRI demonstrated bronchiectasis reversibility in a subgroup of 18 out of 50 CF patients (36%). These patients with bronchiectasis reversibility were significantly younger, with lower severity of wall thickening but no difference in mucus plugging extent (P = 0.39) was found. The reproducibility of UTE-MRI evaluations was excellent (ICC ≥ 0.95), was concordant with CT scan (N = 30; ICC ≥ 0.90) and significantly correlated to FEV1% at PFT at M0 (N = 50; r = 0.71) and M12 (N = 50; r = 0.72). DATA CONCLUSION UTE-MRI is a reproducible tool for the longitudinal follow-up of CF patients, allowing to quantify the response to ETI and demonstrating the reversibility of some structural alterations such as bronchiectasis in a substantial fraction of this study population. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Mathieu David
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
| | - Ilyes Benlala
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Stephanie Bui
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Patrick Berger
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - François Laurent
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Julie Macey
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Gael Dournes
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| |
Collapse
|
13
|
Doellinger F, Bauman G, Roehmel J, Stahl M, Posch H, Steffen IG, Pusterla O, Bieri O, Wielpütz MO, Mall MA. Contrast agent-free functional magnetic resonance imaging with matrix pencil decomposition to quantify abnormalities in lung perfusion and ventilation in patients with cystic fibrosis. Front Med (Lausanne) 2024; 11:1349466. [PMID: 38903825 PMCID: PMC11188455 DOI: 10.3389/fmed.2024.1349466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background Previous studies showed that contrast-enhanced (CE) morpho-functional magnetic resonance imaging (MRI) detects abnormalities in lung morphology and perfusion in patients with cystic fibrosis (CF). Novel matrix pencil decomposition MRI (MP-MRI) enables quantification of lung perfusion and ventilation without intravenous contrast agent administration. Objectives To compare MP-MRI with established morpho-functional MRI and spirometry in patients with CF. Methods Thirty-nine clinically stable patients with CF (mean age 21.6 ± 10.7 years, range 8-45 years) prospectively underwent morpho-functional MRI including CE perfusion MRI, MP-MRI and spirometry. Two blinded chest radiologists assessed morpho-functional MRI and MP-MRI employing the validated chest MRI score. In addition, MP-MRI data were processed by automated software calculating perfusion defect percentage (QDP) and ventilation defect percentage (VDP). Results MP perfusion score and QDP correlated strongly with the CE perfusion score (both r = 0.81; p < 0.01). MP ventilation score and VDP showed strong inverse correlations with percent predicted FEV1 (r = -0.75 and r = -0.83; p < 0.01). The comparison of visual and automated parameters showed that both MP perfusion score and QDP, and MP ventilation score and VDP were strongly correlated (r = 0.74 and r = 0.78; both p < 0.01). Further, the MP perfusion score and MP ventilation score, as well as QDP and VDP were strongly correlated (r = 0.88 and r = 0.86; both p < 0.01). Conclusion MP-MRI detects abnormalities in lung perfusion and ventilation in patients with CF without intravenous or inhaled contrast agent application, and correlates strongly with the well-established CE perfusion MRI score and spirometry. Automated analysis of MP-MRI may serve as quantitative noninvasive outcome measure for diagnostic monitoring and clinical trials.
Collapse
Affiliation(s)
- Felix Doellinger
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Helena Posch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingo G. Steffen
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Orso Pusterla
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital of Heidelberg, Heidelberg, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| |
Collapse
|
14
|
Syunyaeva Z, Mall MA, Stahl M. [Cystic fibrosis in childhood and adulthood]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:538-544. [PMID: 38714556 DOI: 10.1007/s00108-024-01717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/10/2024]
Abstract
BACKGROUND Cystic fibrosis (CF, or mucoviscidosis) is one of the rare diseases with a fatal course and with the highest prevalence. Formerly known as a purely childhood disease, this multisystemic disease follows an autosomal recessive inheritance pattern and results in a malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, leading to the production of viscous secretions. The prognosis and outcome of CF are determined by the severity of the involvement of the lungs. Other typically affected organs include the pancreas, liver and intestines. OBJECTIVE This article reviews the clinical presentation and evolution of CF with a focus on the new era of the highly effective CFTR modulator treatment. MATERIAL AND METHODS An overview of the current state of knowledge on the care for CF patients is presented. RESULTS AND DISCUSSION The introduction of the CF newborn screening, the increased understanding of the disease and the development of novel treatment options have substantially increased the quality of life and life expectancy of people with CF. As a result, more than half of CF patients in Germany are now older than 18 years of age and the complications of a chronic disease as well as organ damage due to the intensive treatment are gaining in importance. The highly effective CFTR modulator treatment results in a significant improvement in CFTR function, lung function, body mass index and quality of life and is available to approximately 90% of patients in Germany, based on the genotype. Nevertheless, further research including the development of causal treatment, e.g., gene therapy, targeting the underlying defect in the remaining 10% of CF patients, is urgently needed. Even in adult patients, CF with a mild course or a CFTR-related disease should be considered, e.g., in cases of bronchiectasis and/or recurrent abdominal complaints.
Collapse
Affiliation(s)
- Zulfiya Syunyaeva
- Klinik für Pädiatrie m. S. Pneumologie, Immunologie und Intensivmedizin, Sektion Mukoviszidose, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland.
| | - Marcus A Mall
- Klinik für Pädiatrie m. S. Pneumologie, Immunologie und Intensivmedizin, Sektion Mukoviszidose, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland
- Deutsches Zentrum für Lungenforschung (DZL), assoziierter Partnerstandort, Berlin, Deutschland
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Mirjam Stahl
- Klinik für Pädiatrie m. S. Pneumologie, Immunologie und Intensivmedizin, Sektion Mukoviszidose, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland
- Deutsches Zentrum für Lungenforschung (DZL), assoziierter Partnerstandort, Berlin, Deutschland
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
15
|
Loske J, Völler M, Lukassen S, Stahl M, Thürmann L, Seegebarth A, Röhmel J, Wisniewski S, Messingschlager M, Lorenz S, Klages S, Eils R, Lehmann I, Mall MA, Graeber SY, Trump S. Pharmacological Improvement of Cystic Fibrosis Transmembrane Conductance Regulator Function Rescues Airway Epithelial Homeostasis and Host Defense in Children with Cystic Fibrosis. Am J Respir Crit Care Med 2024; 209:1338-1350. [PMID: 38259174 PMCID: PMC11146576 DOI: 10.1164/rccm.202310-1836oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Rationale: Pharmacological improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function with elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes in patients with cystic fibrosis (CF). However, ETI effects on impaired mucosal homeostasis and host defense at the molecular and cellular levels in the airways of patients with CF remain unknown. Objectives: To investigate effects of ETI on the transcriptome of nasal epithelial and immune cells from children with CF at the single-cell level. Methods: Nasal swabs from 13 children with CF and at least one F508del allele aged 6 to 11 years were collected at baseline and 3 months after initiation of ETI, subjected to single-cell RNA sequencing, and compared with swabs from 12 age-matched healthy children. Measurements and Main Results: Proportions of CFTR-positive cells were decreased in epithelial basal, club, and goblet cells, but not in ionocytes, from children with CF at baseline and were restored by ETI therapy to nearly healthy levels. Single-cell transcriptomics revealed an impaired IFN signaling and reduced expression of major histocompatibility complex classes I and II encoding genes in epithelial cells of children with CF at baseline, which was partially restored by ETI. In addition, ETI therapy markedly reduced the inflammatory phenotype of immune cells, particularly of neutrophils and macrophages. Conclusions: Pharmacological improvement of CFTR function improves innate mucosal immunity and reduces immune cell inflammatory responses in the upper airways of children with CF at the single-cell level, highlighting the potential to restore epithelial homeostasis and host defense in CF airways by early initiation of ETI therapy.
Collapse
Affiliation(s)
- Jennifer Loske
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology and
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sören Lukassen
- Center of Digital Health, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Loreen Thürmann
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anke Seegebarth
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Sebastian Wisniewski
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marey Messingschlager
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology and
| | - Stephan Lorenz
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sven Klages
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Roland Eils
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- Center of Digital Health, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
- Health Data Science Unit, BioQuant, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Irina Lehmann
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Saskia Trump
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Terlizzi V, Farrell PM. Update on advances in cystic fibrosis towards a cure and implications for primary care clinicians. Curr Probl Pediatr Adolesc Health Care 2024; 54:101637. [PMID: 38811287 DOI: 10.1016/j.cppeds.2024.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
During the past quarter century, the diagnosis and treatment of cystic fibrosis (CF) have been transformed by molecular sciences that initiated a new era with discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The knowledge gained from that breakthrough has had dramatic clinical impact. Although once a diagnostic dilemma with long delays, preventable deaths, and irreversible pathology, CF can now be routinely diagnosed shortly after birth through newborn screening programs. This strategy of pre-symptomatic identification has eliminated the common diagnostic "odyssey" that was a failure of the healthcare delivery system causing psychologically traumatic experiences for parents. Therapeutic advances of many kinds have culminated in CFTR modulator treatment that can reduce the effects of or even correct the molecular defect in the chloride channel -the basic cause of CF. This astonishing advance has transformed CF care as described fully herein. Despite this impressive progress, there are challenges and controversies in the delivery of care. Issues include how best to achieve high sensitivity newborn screening with acceptable specificity; what course of action is appropriate for children who are identified through the unavoidable incidental findings of screening tests (CFSPID/CRMS cases and heterozygote carriers); how best to ensure genetic counseling; when to initiate the very expensive but life-saving CFTR modulator drugs; how to identify new CFTR modulator drugs for patients with non-responsive CFTR variants; how to adjust other therapeutic modalities; and how to best partner with primary care clinicians. Progress always brings new challenges, and this has been evident worldwide for CF. Consequently, this article summarizes the major advances of recent years along with controversies and describes their implications with an international perspective.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Pediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Viale Gaetano Pieraccini 24, Florence, Italy
| | - Philip M Farrell
- Departments of Pediatrics and Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Clinical Sciences Center (K4/948), 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
17
|
Gambazza S, Mariani A, Guarise R, Ferrari B, Carta F, Brivio A, Bizzarri S, Castellani C, Colombo C, Laquintana D. Short-term effects of positive expiratory pressure mask on ventilation inhomogeneity in children with cystic fibrosis: A randomized, sham-controlled crossover study. Pediatr Pulmonol 2024; 59:1354-1363. [PMID: 38362833 DOI: 10.1002/ppul.26915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Can physiotherapy with a positive expiratory pressure (PEP) mask improve peripheral ventilation inhomogeneity, a typical feature of children with cystic fibrosis (cwCF)? To answer this question, we used the nitrogen multiple-breath washout (N2MBW) test to measure diffusion-convection-dependent inhomogeneity arising within the intracinar compartment (Sacin*VT). METHODS For this randomized, sham-controlled crossover trial, two N2MBW tests were performed near the hospital discharge date: one before and the other after PEP mask therapy (1 min of breathing through a flow-dependent PEP device attached to a face mask, followed by three huffs and one cough repeated 10 times) by either a standard (10-15 cmH20) or a sham (<5 cmH20) procedure on two consecutive mornings. Deception entailed misinforming the subjects about the nature of the study; also the N2MBW operators were blinded to treatment allocation. Study outcomes were assessed with mixed-effect models. RESULTS The study sample was 19 cwCF (ten girls), aged 11.4 (2.7) years. The adjusted Sacin*VT mean difference between the standard and the sham procedure was -0.015 (90% confidence interval [CI]: -∞ to 0.025) L-1. There was no statistically significant difference in Scond*VT and lung clearance index between the two procedures: -0.005 (95% CI: -0.019 to 0.01) L-1 and 0.49 (95% CI: -0.05 to 1.03) turnovers, respectively. CONCLUSION Our findings do not support evidence for an immediate effect of PEP mask physiotherapy on Sacin*VT with pressure range 10-15 cmH20. Measurement with the N2MBW and the crossover design were found to be time-consuming and unsuitable for a short-term study of airway clearance techniques.
Collapse
Affiliation(s)
- Simone Gambazza
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Mariani
- Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Guarise
- Cystic Fibrosis Centre, University Hospital of Verona, Verona, Italy
| | - Beatrice Ferrari
- Rehabilitation Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Federica Carta
- Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Brivio
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sofia Bizzarri
- Rehabilitation Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Chiara Castellani
- Rehabilitation Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Dario Laquintana
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
18
|
Vijaykumar K, Leung HM, Barrios A, Wade J, Hathorne HY, Nichols DP, Tearney GJ, Rowe SM, Solomon GM. Longitudinal improvements in clinical and functional outcomes following initiation of elexacaftor/tezacaftor/ivacaftor in patients with cystic fibrosis. Heliyon 2024; 10:e29188. [PMID: 38681615 PMCID: PMC11052906 DOI: 10.1016/j.heliyon.2024.e29188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Background Use of elexacaftor/tezacaftor/ivacaftor (ETI) for treatment of cystic fibrosis (CF) has resulted in unprecedented clinical improvements necessitating development of outcome measures for monitoring disease course. Intranasal micro-optical coherence tomography (μOCT) has previously helped detect and characterize mucociliary abnormalities in patients with CF. This study was done to determine if μOCT can define the effects of ETI on nasal mucociliary clearance and monitor changes conferred to understand mechanistic effects of CFTR modulators beyond CFTR activation. Methods 26 subjects, with at least 1 F508del mutation were recruited and followed at baseline (visit 1), +1 month (visit 2) and +6 months (visit 4) following initiation of ETI therapy. Clinical outcomes were computed at visits 1, 2 and 4. Intranasal μOCT imaging and functional metrics analysis including mucociliary transport rate (MCT) estimation were done at visits 1 and 2. Results Percent predicted forced expiratory volume in 1 s (ppFEV1) showed a significant increase of +10.9 % at visit 2, which sustained at visit 4 (+10.6 %). Sweat chloride levels significantly decreased by -36.6 mmol/L and -41.3 mmol/L at visits 2 and 4, respectively. μOCT analysis revealed significant improvement in MCT rate (2.8 ± 1.5, visit 1 vs 4.0 ± 1.5 mm/min, visit 2; P = 0.048). Conclusions Treatment with ETI resulted in significant and sustained clinical improvements over 6 months. Functional improvements in MCT rate were evident within a month after initiation of ETI therapy indicating that μOCT imaging is sensitive to the treatment effect of HEMT and suggests improved mucociliary transport as a probable mechanism of action underlying the clinical benefits.
Collapse
Affiliation(s)
- Kadambari Vijaykumar
- Department of Medicine, University of Alabama at Birmingham, AL, United States
- Gregory Fleming James CF Research Center, Birmingham, AL, United States
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Amilcar Barrios
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Justin Wade
- Gregory Fleming James CF Research Center, Birmingham, AL, United States
| | | | | | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, AL, United States
- Gregory Fleming James CF Research Center, Birmingham, AL, United States
| | - George M. Solomon
- Department of Medicine, University of Alabama at Birmingham, AL, United States
- Gregory Fleming James CF Research Center, Birmingham, AL, United States
| |
Collapse
|
19
|
Dohna M, Voskrebenzev A, Klimeš F, Kaireit TF, Glandorf J, Pallenberg ST, Ringshausen FC, Hansen G, Renz DM, Wacker F, Dittrich AM, Vogel-Claussen J. PREFUL MRI for Monitoring Perfusion and Ventilation Changes after Elexacaftor-Tezacaftor-Ivacaftor Therapy for Cystic Fibrosis: A Feasibility Study. Radiol Cardiothorac Imaging 2024; 6:e230104. [PMID: 38573129 PMCID: PMC11056757 DOI: 10.1148/ryct.230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024]
Abstract
Purpose To assess the feasibility of monitoring the effects of elexacaftor-tezacaftor-ivacaftor (ETI) therapy on lung ventilation and perfusion in people with cystic fibrosis (CF), using phase-resolved functional lung (PREFUL) MRI. Materials and Methods This secondary analysis of a multicenter prospective study was carried out between August 2020 and March 2021 and included participants 12 years or older with CF who underwent PREFUL MRI, spirometry, sweat chloride test, and lung clearance index assessment before and 8-16 weeks after ETI therapy. For PREFUL-derived ventilation and perfusion parameter extraction, two-dimensional coronal dynamic gradient-echo MR images were evaluated with an automated quantitative pipeline. T1- and T2-weighted MR images and PREFUL perfusion maps were visually assessed for semiquantitative Eichinger scores. Wilcoxon signed rank test compared clinical parameters and PREFUL values before and after ETI therapy. Correlation of parameters was calculated as Spearman ρ correlation coefficient. Results Twenty-three participants (median age, 18 years [IQR: 14-24.5 years]; 13 female) were included. Quantitative PREFUL parameters, Eichinger score, and clinical parameters (lung clearance index = 21) showed significant improvement after ETI therapy. Ventilation defect percentage of regional ventilation decreased from 18% (IQR: 14%-25%) to 9% (IQR: 6%-17%) (P = .003) and perfusion defect percentage from 26% (IQR: 18%-36%) to 19% (IQR: 13%-24%) (P = .002). Areas of matching normal (healthy) ventilation and perfusion increased from 52% (IQR: 47%-68%) to 73% (IQR: 61%-83%). Visually assessed perfusion scores did not correlate with PREFUL perfusion (P = .11) nor with ventilation-perfusion match values (P = .38). Conclusion The study demonstrates the feasibility of PREFUL MRI for semiautomated quantitative assessment of perfusion and ventilation changes in response to ETI therapy in people with CF. Keywords: Pediatrics, MR-Functional Imaging, Pulmonary, Lung, Comparative Studies, Cystic Fibrosis, Elexacaftor-Tezacaftor-Ivacaftor Therapy, Fourier Decomposition, PREFUL, Free-Breathing Proton MRI, Pulmonary MRI, Perfusion, Functional MRI, CFTR, Modulator Therapy, Kaftrio Clinical trial registration no. NCT04732910 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Martha Dohna
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Andreas Voskrebenzev
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Filip Klimeš
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Till F. Kaireit
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Julian Glandorf
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Sophia T. Pallenberg
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Felix C. Ringshausen
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Gesine Hansen
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Diane Miriam Renz
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Frank Wacker
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | | | | |
Collapse
|
20
|
Marchesin V, Monnier L, Blattmann P, Chevillard F, Kuntz C, Forny C, Kamper J, Studer R, Bossu A, Ertel EA, Nayler O, Brotschi C, Williams JT, Gatfield J. A uniquely efficacious type of CFTR corrector with complementary mode of action. SCIENCE ADVANCES 2024; 10:eadk1814. [PMID: 38427726 DOI: 10.1126/sciadv.adk1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Three distinct pharmacological corrector types (I, II, III) with different binding sites and additive behavior only partially rescue the F508del-cystic fibrosis transmembrane conductance regulator (CFTR) folding and trafficking defect observed in cystic fibrosis. We describe uniquely effective, macrocyclic CFTR correctors that were additive to the known corrector types, exerting a complementary "type IV" corrector mechanism. Macrocycles achieved wild-type-like folding efficiency of F508del-CFTR at the endoplasmic reticulum and normalized CFTR currents in reconstituted patient-derived bronchial epithelium. Using photo-activatable macrocycles, docking studies and site-directed mutagenesis a highly probable binding site and pose for type IV correctors was identified in a cavity between lasso helix-1 (Lh1) and transmembrane helix-1 of membrane spanning domain (MSD)-1, distinct from the known corrector binding sites. Since only F508del-CFTR fragments spanning from Lh1 until MSD2 responded to type IV correctors, these likely promote cotranslational assembly of Lh1, MSD1, and MSD2. Previously corrector-resistant CFTR folding mutants were also robustly rescued, suggesting substantial therapeutic potential for type IV correctors.
Collapse
Affiliation(s)
| | - Lucile Monnier
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | | | | | | | - Camille Forny
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | - Judith Kamper
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | - Rolf Studer
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | | | - Eric A Ertel
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | - Oliver Nayler
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | | | | | - John Gatfield
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| |
Collapse
|
21
|
Wucherpfennig L, Wuennemann F, Eichinger M, Schmitt N, Seitz A, Baumann I, Roehmel JF, Stahl M, Hämmerling S, Chung J, Schenk JP, Alrajab A, Kauczor HU, Mall MA, Wielpütz MO, Sommerburg O. Magnetic Resonance Imaging of Pulmonary and Paranasal Sinus Abnormalities in Children with Primary Ciliary Dyskinesia Compared to Children with Cystic Fibrosis. Ann Am Thorac Soc 2024; 21:438-448. [PMID: 38206973 DOI: 10.1513/annalsats.202305-453oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024] Open
Abstract
Rationale: Primary ciliary dyskinesia (PCD) and cystic fibrosis (CF) are characterized by inherited impaired mucociliary clearance leading to chronic progressive lung disease as well as chronic rhinosinusitis (CRS). The diseases share morphological and functional commonalities on magnetic resonance imaging (MRI) of the lungs and paranasal sinuses, but comparative MRI studies are lacking. Objectives: To determine whether PCD shows different associations of pulmonary and paranasal sinus abnormalities on MRI and lung function test results in children (infants to adolescents) compared with children with CF. Methods: Eighteen children with PCD (median age, 9.5 [IQR, 3.4-12.7] yr; range, 0-18 yr) and 36 age-matched CF transmembrane conductance regulator modulator-naive children with CF (median age, 9.4 [3.4-13.2] yr; range, 0-18 yr) underwent same-session chest and paranasal sinus MRI as well as spirometry (to determine forced expiratory volume in 1 s percent predicted) and multiple-breath washout (to determine lung clearance index z-score). Pulmonary and paranasal sinus abnormalities were assessed using previously validated chest MRI and CRS-MRI scoring systems. Results: Mean chest MRI global score was similar in children with PCD and CF (15.0 [13.5-20.8] vs. 15.0 [9.0-15.0]; P = 0.601). Consolidations were more prevalent and severe in children with PCD (56% vs. 25% and 1.0 [0.0-2.8] vs. 0.0 [0.0-0.3], respectively; P < 0.05). The chest MRI global score correlated moderately with forced expiratory volume in 1 second percent predicted in children with PCD and children with CF (r = -0.523 and -0.687; P < 0.01) and with lung clearance index in children with CF (r = 0.650; P < 0.001) but not in PCD (r = 0.353; P = 0.196). CRS-MRI sum score and mucopyocele subscore were lower in children with PCD than in children with CF (27.5 [26.3-32.0] vs. 37.0 [37.8-40.0] and 2.0 [0.0-2.0] vs. 7.5 [4.8-9.0], respectively; P < 0.01). CRS-MRI sum score did not correlate with chest MRI score in PCD (r = 0.075-0.157; P = 0.557-0.788) but correlated moderately with MRI morphology score in CF (r = 0.437; P < 0.01). Conclusions: MRI detects differences in lung and paranasal sinus abnormalities between children with PCD and those with CF. Lung disease does not correlate with CRS in PCD but correlates in CF.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Helios Dr. Horst-Schmidt-Kliniken Wiesbaden, Wiesbaden, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | | | | | - Ingo Baumann
- Department of Otorhinolaryngology, Head and Neck Surgery, and
| | - Jobst F Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research associated partner site, Berlin, Germany; and
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research associated partner site, Berlin, Germany; and
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Hämmerling
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Jaehi Chung
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | | | | | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Marcus A Mall
- Department of Otorhinolaryngology, Head and Neck Surgery, and
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research associated partner site, Berlin, Germany; and
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
22
|
Wielpütz MO, Mall MA. Therapeutic improvement of CFTR function and reversibility of bronchiectasis in cystic fibrosis. Eur Respir J 2024; 63:2400234. [PMID: 38548272 DOI: 10.1183/13993003.00234-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
O’Regan PW, Stevens NE, Logan N, Ryan DJ, Maher MM. Paediatric Thoracic Imaging in Cystic Fibrosis in the Era of Cystic Fibrosis Transmembrane Conductance Regulator Modulation. CHILDREN (BASEL, SWITZERLAND) 2024; 11:256. [PMID: 38397368 PMCID: PMC10888261 DOI: 10.3390/children11020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Cystic fibrosis (CF) is one of the most common progressive life-shortening genetic conditions worldwide. Ground-breaking translational research has generated therapies that target the primary cystic fibrosis transmembrane conductance regulator (CFTR) defect, known as CFTR modulators. A crucial aspect of paediatric CF disease is the development and progression of irreversible respiratory disease in the absence of clinical symptoms. Accurate thoracic diagnostics have an important role to play in this regard. Chest radiographs are non-specific and insensitive in the context of subtle changes in early CF disease, with computed tomography (CT) providing increased sensitivity. Recent advancements in imaging hardware and software have allowed thoracic CTs to be acquired in paediatric patients at radiation doses approaching that of a chest radiograph. CFTR modulators slow the progression of CF, reduce the frequency of exacerbations and extend life expectancy. In conjunction with advances in CT imaging techniques, low-dose thorax CT will establish a central position in the routine care of children with CF. International guidelines regarding the choice of modality and timing of thoracic imaging in children with CF are lagging behind these rapid technological advances. The continued progress of personalised medicine in the form of CFTR modulators will promote the emergence of personalised radiological diagnostics.
Collapse
Affiliation(s)
- Patrick W. O’Regan
- Department of Radiology, Cork University Hospital, T12 DC4A Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, T12 AK54 Cork, Ireland
| | - Niamh E. Stevens
- Department of Surgery, Mercy University Hospital, T12 WE28 Cork, Ireland
| | - Niamh Logan
- Department of Medicine, Mercy University Hospital, T12 WE28 Cork, Ireland
| | - David J. Ryan
- Department of Radiology, Cork University Hospital, T12 DC4A Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, T12 AK54 Cork, Ireland
| | - Michael M. Maher
- Department of Radiology, Cork University Hospital, T12 DC4A Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, T12 AK54 Cork, Ireland
| |
Collapse
|
24
|
Cazier P, Chassagnon G, Dhote T, Da Silva J, Kanaan R, Honore I, Carlier N, Revel MP, Canniff E, Martin C, Burgel PR. Reversal of cylindrical bronchial dilatations in a subset of adults with cystic fibrosis treated with elexacaftor-tezacaftor-ivacaftor. Eur Respir J 2024; 63:2301794. [PMID: 38331460 DOI: 10.1183/13993003.01794-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND This study sought to evaluate the impact of elexacaftor-tezacaftor-ivacaftor (ETI) on lung structural abnormalities in adults with cystic fibrosis (awCF) with a specific focus on the reversal of bronchial dilatations. METHODS Chest computed tomography (CT) performed prior to, and ≥12 months after initiation of ETI were visually reviewed for possible reversal of bronchial dilatations. AwCF with and without reversal of bronchial dilatation (the latter served as controls with 3 controls per case) were selected. Visual Brody score, bronchial and arterial diameters, and lung volume were measured on CT. RESULTS Reversal of bronchial dilatation was found in 12/235 (5%) awCF treated with ETI. Twelve awCF with and 36 without reversal of bronchial dilatations were further analyzed (male=56%, mean age=31.6±8.5 years, F508del/F508del CFTR =54% and mean %predicted forced expiratory volume in 1 s=58.8%±22.3). The mean±sd Brody score improved overall from 79.4±29.8 to 54.8±32.3 (p<0.001). Reversal of bronchial dilatations was confirmed by a decrease in bronchial lumen diameter in cases from 3.9±0.9 mm to 3.2±1.1 mm (p<0.001), whereas it increased in awCF without reversal of bronchial dilatation (from 3.5±1.1 mm to 3.6±1.2 mm, p=0.002). Reversal of bronchial dilatations occurred in cylindrical (not varicose or saccular) bronchial dilatations. Lung volumes decreased by -6.6±10.7% in awCF with reversal of bronchial dilatation but increased by +2.3±9.6% in controls (p=0.007). CONCLUSION Although bronchial dilatations are generally considered irreversible, ETI was associated with reversal, which was limited to the cylindrical bronchial dilatations subtype, and occurred in a small subset of awCF. Initiating ETI earlier in life may reverse early bronchial dilatations.
Collapse
Affiliation(s)
- Paul Cazier
- Radiology department, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- These authors equally contributed to this work
| | - Guillaume Chassagnon
- Radiology department, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- Université Paris Cité and Institut Cochin, Inserm U1016 85 Boulevard Saint-Germain, Paris, France
- These authors equally contributed to this work
| | - Théo Dhote
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- ERN-Lung CF network, Frankfurt, Germany
| | - Jennifer Da Silva
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- ERN-Lung CF network, Frankfurt, Germany
| | - Reem Kanaan
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- ERN-Lung CF network, Frankfurt, Germany
| | - Isabelle Honore
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- ERN-Lung CF network, Frankfurt, Germany
| | - Nicolas Carlier
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- ERN-Lung CF network, Frankfurt, Germany
| | - Marie-Pierre Revel
- Radiology department, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- Université Paris Cité and Institut Cochin, Inserm U1016 85 Boulevard Saint-Germain, Paris, France
| | - Emma Canniff
- Radiology department, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- Université Paris Cité and Institut Cochin, Inserm U1016 85 Boulevard Saint-Germain, Paris, France
| | - Clémence Martin
- Université Paris Cité and Institut Cochin, Inserm U1016 85 Boulevard Saint-Germain, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- ERN-Lung CF network, Frankfurt, Germany
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016 85 Boulevard Saint-Germain, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP.Centre Université Paris Cité, Paris, France
- ERN-Lung CF network, Frankfurt, Germany
| |
Collapse
|
25
|
Klimeš F, Voskrebenzev A, Gutberlet M, Speth M, Grimm R, Dohna M, Hansen G, Wacker F, Renz DM, Dittrich AM, Vogel-Claussen J. Effect of CFTR modulator therapy with elexacaftor/tezacaftor/ivacaftor on pulmonary ventilation derived by 3D phase-resolved functional lung MRI in cystic fibrosis patients. Eur Radiol 2024; 34:80-89. [PMID: 37548691 PMCID: PMC10791851 DOI: 10.1007/s00330-023-09912-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVES To investigate whether 3D phase-resolved functional lung (PREFUL)-MRI parameters are suitable to measure response to elexacaftor/tezacaftor/ivacaftor (ETI) therapy and their association with clinical outcomes in cystic fibrosis (CF) patients. METHODS Twenty-three patients with CF (mean age: 21; age range: 14-46) underwent MRI examination at baseline and 8-16 weeks after initiation of ETI. Morphological and 3D PREFUL scans assessed pulmonary ventilation. Morphological images were evaluated using a semi-quantitative scoring system, and 3D PREFUL scans were evaluated by ventilation defect percentage (VDP) values derived from regional ventilation (RVent) and cross-correlation maps. Improved ventilation volume (IVV) normalized to body surface area (BSA) between baseline and post-treatment visit was computed. Forced expiratory volume in 1 second (FEV1) and mid-expiratory flow at 25% of forced vital capacity (MEF25), as well as lung clearance index (LCI), were assessed. Treatment effects were analyzed using paired Wilcoxon signed-rank tests. Treatment changes and post-treatment agreement between 3D PREFUL and clinical parameters were evaluated by Spearman's correlation. RESULTS After ETI therapy, all 3D PREFUL ventilation markers (all p < 0.0056) improved significantly, except for the mean RVent parameter. The BSA normalized IVVRVent was significantly correlated to relative treatment changes of MEF25 and mucus plugging score (all |r| > 0.48, all p < 0.0219). In post-treatment analyses, 3D PREFUL VDP values significantly correlated with spirometry, LCI, MRI global, morphology, and perfusion scores (all |r| > 0.44, all p < 0.0348). CONCLUSIONS 3D PREFUL MRI is a very promising tool to monitor CFTR modulator-induced regional dynamic ventilation changes in CF patients. CLINICAL RELEVANCE STATEMENT 3D PREFUL MRI is sensitive to monitor CFTR modulator-induced regional ventilation changes in CF patients. Improved ventilation volume correlates with the relative change of mucus plugging, suggesting that reduced endobronchial mucus is predominantly responsible for regional ventilation improvement. KEY POINTS • 3D PREFUL MRI-derived ventilation maps show significantly reduced ventilation defects in CF patients after ETI therapy. • Significant post-treatment correlations of 3D PREFUL ventilation measures especially with LCI, FEV1 %pred, and global MRI score suggest that 3D PREFUL MRI is sensitive to measure improved regional ventilation of the lung parenchyma due to reduced inflammation induced by ETI therapy in CF patients. • 3D PREFUL MRI-derived improved ventilation volume (IVV) correlated with MRI mucus plugging score changes suggesting that reduced endobronchial mucus is predominantly responsible for regional ventilation improvement 8-16 weeks after ETI therapy.
Collapse
Affiliation(s)
- Filip Klimeš
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Milan Speth
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Martha Dohna
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Diane Miriam Renz
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
26
|
Gramegna A, Aliberti S, Calderazzo MA, Casciaro R, Ceruti C, Cimino G, Fabrizzi B, Lucanto C, Messore B, Pisi G, Taccetti G, Tarsia P, Blasi F, Cipolli M. The impact of elexacaftor/tezacaftor/ivacaftor therapy on the pulmonary management of adults with cystic fibrosis: An expert-based Delphi consensus. Respir Med 2023; 220:107455. [PMID: 37926181 DOI: 10.1016/j.rmed.2023.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The advent of elexacaftor/tezacaftor/ivacaftor (ETI) resulted in unprecedented clinical benefits for eligible adults with CF. As a result, the question of whether chronic treatments can be safely stopped or adapted to this new situation has become a matter of great interest. Our objective was to derive a consensus among Italian experts on the impact of ETI on the current clinical management of CF lung disease. METHODS From December 2021 to April 2022 a panel of Italian experts endorsed by the national CF scientific society derived and graded a set of statements on the pulmonary management of adults with cystic fibrosis through a modified Delphi methodology. RESULTS The panel produced 13 statements exploring possible modifications in the fields of inhaled antibiotics and mucoactives; airway clearance and physical activity; chronic macrolides and bronchodilators; and lung transplant referral. The areas that the experts considered most urgent to explore were the impact of ETI on the role of inhaled antibiotics and lung transplant. CONCLUSIONS The list of priorities that emerged from this study could be useful to guide and inform clinical research on the most urgent area of impact of ETI on CF lung disease and its clinical management.
Collapse
Affiliation(s)
- Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | | | - Rosaria Casciaro
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, 16147, Genoa, Italy
| | - Clara Ceruti
- Health Professions Department Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Center, Policlinico Umberto I Hospital, Viale Regina Elena 324, 00161, Rome, Italy
| | - Benedetta Fabrizzi
- Cystic Fibrosis Regional Reference Center, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona 60126, Italy
| | - Cristina Lucanto
- Regional Centre for Cystic Fibrosis, A. O. U. Policlinico G.Martino, Messina, Italy
| | - Barbara Messore
- Adult Cystic Fibrosis Center, Azienda Ospedaliera Universitaria San Luigi Gonzaga, 10043, Orbassano, Italy
| | - Giovanna Pisi
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Giovanni Taccetti
- Cystic Fibrosis Center, Anna Meyer Children's University Hospital, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Paolo Tarsia
- Respiratory Unit, Metropolitan Hospital Niguarda, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Integrata di Verona, Pl. Aristide Stefani 1, 37126, Verona, Italy
| |
Collapse
|
27
|
Tümmler B, Burgel PR. Editorial: Real-world experience with CFTR modulator therapy. Front Pharmacol 2023; 14:1331829. [PMID: 38035017 PMCID: PMC10682817 DOI: 10.3389/fphar.2023.1331829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Burkhard Tümmler
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Pierre-Régis Burgel
- Université Paris Cité, Institut Cochin, Inserm U1016, Paris, France
- Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
28
|
Affiliation(s)
- Hartmut Grasemann
- From the Division of Respiratory Medicine, Department of Pediatrics, and Translational Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto
| | - Felix Ratjen
- From the Division of Respiratory Medicine, Department of Pediatrics, and Translational Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto
| |
Collapse
|
29
|
Steinke E, Stahl M. Sustained Improvement of Cystic Fibrosis Lung Disease following Initiation of Elexacaftor/Tezacaftor/Ivacaftor Therapy: Lessons from Real-World Studies. Am J Respir Crit Care Med 2023; 208:911-913. [PMID: 37756441 PMCID: PMC10870856 DOI: 10.1164/rccm.202309-1646ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center Charité - Universitätsmedizin Berlin Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin Berlin, Germany
- German Center for Lung Research (DZL) Associated Partner Site Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center Charité - Universitätsmedizin Berlin Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin Berlin, Germany
- German Center for Lung Research (DZL) Associated Partner Site Berlin, Germany
| |
Collapse
|
30
|
Wucherpfennig L, Triphan SMF, Wege S, Kauczor HU, Heussel CP, Sommerburg O, Stahl M, Mall MA, Eichinger M, Wielpütz MO. Elexacaftor/Tezacaftor/Ivacaftor Improves Bronchial Artery Dilatation Detected by Magnetic Resonance Imaging in Patients with Cystic Fibrosis. Ann Am Thorac Soc 2023; 20:1595-1604. [PMID: 37579262 DOI: 10.1513/annalsats.202302-168oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Rationale: Magnetic resonance imaging (MRI) detects improvements in mucus plugging and bronchial wall thickening, but not in lung perfusion in patients with cystic fibrosis (CF) treated with elexacaftor/tezacaftor/ivacaftor (ETI). Objectives: To determine whether bronchial artery dilatation (BAD), a key feature of advanced lung disease, indicates irreversibility of perfusion abnormalities and whether BAD could be reversed in CF patients treated with ETI. Methods: A total of 59 adults with CF underwent longitudinal chest MRI, including magnetic resonance angiography twice, comprising 35 patients with CF (mean age, 31 ± 7 yr) before (MRI1) and after (MRI2) at least 1 month (mean duration, 8 ± 4 mo) on ETI therapy and 24 control patients with CF (mean age, 31 ± 7 yr) without ETI. MRI was assessed using the validated chest MRI score, and the presence and total lumen area of BAD were assessed with commercial software. Results: The MRI global score was stable in the control group from MRI1 to MRI2 (mean difference, 1.1 [-0.3, 2.4]; P = 0.054), but it was reduced in the ETI group (-10.1 [-0.3, 2.4]; P < 0.001). In the control and ETI groups, BAD was present in almost all patients at baseline (95% and 94%, respectively), which did not change at MRI2. The BAD total lumen area did not change in the control group from MRI1 to MRI2 (1.0 mm2 [-0.2, 2.2]; P = 0.099) but decreased in the ETI group (-7.0 mm2 [-8.9, -5.0]; P < 0.001). This decrease correlated with improvements in the MRI global score (r = 0.540; P < 0.001). Conclusions: Our data show that BAD may be partially reversible under ETI therapy in adult patients with CF who have established disease.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Sabine Wege
- Department of Pulmonology and Respiratory Medicine, Cystic Fibrosis Center, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Claus P Heussel
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Translational Pulmonology and
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Translational Pulmonology and
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Berlin, Germany; and
- Berlin Institute of Health at Charité - University Medicine Berlin, Berlin, Germany
| | - Marcus A Mall
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Translational Pulmonology and
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Berlin, Germany; and
- Berlin Institute of Health at Charité - University Medicine Berlin, Berlin, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
31
|
McNally P, Lester K, Stone G, Elnazir B, Williamson M, Cox D, Linnane B, Kirwan L, Rea D, O'Regan P, Semple T, Saunders C, Tiddens HAWM, McKone E, Davies JC. Improvement in Lung Clearance Index and Chest Computed Tomography Scores with Elexacaftor/Tezacaftor/Ivacaftor Treatment in People with Cystic Fibrosis Aged 12 Years and Older - The RECOVER Trial. Am J Respir Crit Care Med 2023; 208:917-929. [PMID: 37703083 DOI: 10.1164/rccm.202308-1317oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023] Open
Abstract
Rationale: Clinical trials have shown that use of elexacaftor/tezacaftor/ivacaftor (ETI) is associated with improvements in sweat chloride, pulmonary function, nutrition, and quality of life in people with cystic fibrosis (CF). Little is known about the impact of ETI on ventilation inhomogeneity and lung structure. Objectives: RECOVER is a real-world study designed to measure the impact of ETI in people with CF. The primary endpoints were lung clearance (lung clearance index; LCI2.5) and FEV1. Secondary endpoints included spirometry-controlled chest computed tomography (CT) scores. Methods: The study was conducted in seven sites in Ireland and the United Kingdom. Participants ages 12 years and older who were homozygous for the F508del mutation (F508del/F508del) or heterozygous for F508del and a minimum-function mutation (F508del/MF) were recruited before starting ETI and were followed up over 12 months. LCI2.5 was measured using nitrogen multiple breath washout (MBW) at baseline and at 6 and 12 months. Spirometry was performed as per the criteria of the American Thoracic Society and the European Respiratory Society. Spirometry-controlled chest CT scans were performed at baseline and at 12 months. CT scans were scored using the Perth Rotterdam Annotated Grid Morphometric Analysis (PRAGMA) system. Other outcome measures include weight, height, Cystic Fibrosis Quality of Life Questionnaire-Revised (CFQ-R), and sweat chloride. Measurements and Main Results: One hundred seventeen people with CF ages 12 and older were recruited to the study. Significant improvements were seen in LCI scores (-2.5; 95% confidence interval [CI], -3.0, -2.0) and in the percents predicted for FEV1 (8.9; 95% CI, 7.0, 10.9), FVC (6.6; 95% CI, 4.9, 8.3), and forced expiratory flow between 25% and 75% of expired volume (12.4; 95% CI, 7.8, 17.0). Overall PRAGMA-CF scores reflecting airway disease improved significantly (-3.46; 95% CI, -5.23, -1.69). Scores for trapped air, mucus plugging, and bronchial wall thickening improved significantly, but bronchiectasis scores did not. Sweat chloride levels decreased in both F508del/F508del (-43.1; 95% CI, -47.4, -38.9) and F508del/MF (-42.8; 95% CI, -48.5, -37.2) groups. Scores on the Respiratory Domain of the CFQ-R improved by 14.2 points (95% CI, 11.3, 17.2). At 1 year, sweat chloride levels were significantly lower for the F508del/F508del group compared with scores for the F508del/MF group (33.93 vs. 53.36, P < 0.001). Conclusions: ETI is associated with substantial improvements in LCI2.5, spirometry, and PRAGMA-CF CT scores in people with CF ages 12 years and older. ETI led to improved nutrition and quality of life. People in the F508del/F508del group had significantly lower sweat chloride on ETI treatment compared with the F508del/MF group. Clinical trial registered with www.clinicaltrials.gov (NCT04602468).
Collapse
Affiliation(s)
- Paul McNally
- Department of Pediatrics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | - Karen Lester
- Department of Pediatrics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | - Gavin Stone
- Department of Pediatrics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | | | | | - Des Cox
- Children's Health Ireland, Dublin, Ireland
| | - Barry Linnane
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Laura Kirwan
- Cystic Fibrosis Registry of Ireland, Dublin, Ireland
| | - David Rea
- Children's Health Ireland, Dublin, Ireland
| | - Paul O'Regan
- Cystic Fibrosis Registry of Ireland, Dublin, Ireland
| | - Tom Semple
- Royal Brompton Hospital, London, United Kingdom
| | | | | | - Edward McKone
- St. Vincent's University Hospital, Dublin, Ireland; and
| | - Jane C Davies
- Royal Brompton Hospital, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Wucherpfennig L, Kauczor HU, Eichinger M, Wielpütz MO. [Magnetic resonance imaging of the lung : State of the art]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:849-862. [PMID: 37851088 DOI: 10.1007/s00117-023-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Due to the low proton density of the lung parenchyma and the rapid signal decay at the air-tissue interfaces, for a long time the lungs were difficult to access using magnetic resonance imaging (MRI); however, technical advances could address most of these obstacles. Pulmonary alterations associated with tissue proliferation ("plus pathologies"), can now be detected with high diagnostic accuracy because of the locally increased proton density. Compared to computed tomography (CT), MRI provides a comprehensive range of functional imaging procedures (respiratory mechanics, perfusion and ventilation). In addition, as a radiation-free noninvasive examination modality, it enables repeated examinations for assessment of the course or monitoring of the effects of treatment, even in children. This article discusses the technical aspects, gives suggestions for protocols and explains the role of MRI of the lungs in the routine assessment of various diseases.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Hans-Ulrich Kauczor
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Mark O Wielpütz
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland.
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland.
| |
Collapse
|
33
|
Tümmler B. Puzzle resolved: CFTR mediates chloride homeostasis by segregating absorption and secretion to different cell types. J Clin Invest 2023; 133:e174667. [PMID: 37843282 PMCID: PMC10575718 DOI: 10.1172/jci174667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
In the lungs, the cystic fibrosis transmembrane conductance regulator (CFTR) regulates ion transport in surface-airway epithelia and submucosal glands, thus determining airway surface liquid (ASL) volume and mucus hydration. In this issue of the JCI, Lei Lei and colleagues report that the CFTR-rich and barttin/Cl- channel-expressing ionocytes mediate chloride absorption across airway epithelia, whereas the more abundant basal cells and secretory cells mediate chloride secretion. Thus, CFTR-mediated secretion and absorption of chloride ions in the lung are segregated by cell type, which has implications for future molecular therapies for cystic fibrosis lung disease.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| |
Collapse
|
34
|
Hisert KB, Birket SE, Clancy JP, Downey DG, Engelhardt JF, Fajac I, Gray RD, Lachowicz-Scroggins ME, Mayer-Hamblett N, Thibodeau P, Tuggle KL, Wainwright CE, De Boeck K. Understanding and addressing the needs of people with cystic fibrosis in the era of CFTR modulator therapy. THE LANCET. RESPIRATORY MEDICINE 2023; 11:916-931. [PMID: 37699420 DOI: 10.1016/s2213-2600(23)00324-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Cystic fibrosis is a multiorgan disease caused by impaired function of the cystic fibrosis transmembrane conductance regulator (CFTR). Since the introduction of the CFTR modulator combination elexacaftor-tezacaftor-ivacaftor (ETI), which acts directly on mutant CFTR to enhance its activity, most people with cystic fibrosis (pwCF) have seen pronounced reductions in symptoms, and studies project marked increases in life expectancy for pwCF who are eligible for ETI. However, modulator therapy has not cured cystic fibrosis and the success of CFTR modulators has resulted in immediate questions about the new state of cystic fibrosis disease and clinical challenges in the care of pwCF. In this Series paper, we summarise key questions about cystic fibrosis disease in the era of modulator therapy, highlighting state-of-the-art research and clinical practices, knowledge gaps, new challenges faced by pwCF and the potential for future health-care challenges, and the pressing need for additional therapies to treat the underlying genetic or molecular causes of cystic fibrosis.
Collapse
Affiliation(s)
| | - Susan E Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Isabelle Fajac
- Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Robert D Gray
- Institution of Regeneration and Repair, Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | | - Nicole Mayer-Hamblett
- Department of Pediatrics, Department of Biostatistics, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
35
|
Mayer-Hamblett N, Clancy JP, Jain R, Donaldson SH, Fajac I, Goss CH, Polineni D, Ratjen F, Quon BS, Zemanick ET, Bell SC, Davies JC, Jain M, Konstan MW, Kerper NR, LaRosa T, Mall MA, McKone E, Pearson K, Pilewski JM, Quittell L, Rayment JH, Rowe SM, Taylor-Cousar JL, Retsch-Bogart G, Downey DG. Advancing the pipeline of cystic fibrosis clinical trials: a new roadmap with a global trial network perspective. THE LANCET. RESPIRATORY MEDICINE 2023; 11:932-944. [PMID: 37699421 PMCID: PMC10982891 DOI: 10.1016/s2213-2600(23)00297-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023]
Abstract
The growing use of modulator therapies aimed at restoring cystic fibrosis transmembrane conductance regulator (CFTR) protein function in people with cystic fibrosis has fundamentally altered clinical trial strategies needed to advance new therapeutics across an orphan disease population that is now divided by CFTR modulator eligibility. The development of a robust pipeline of nucleic acid-based therapies (NABTs)-initially directed towards the estimated 10% of the cystic fibrosis population who are genetically ineligible for, or intolerant of, CFTR modulators-is dependent on the optimisation of restricted trial participant resources across multiple development programmes, a challenge that will preclude the use of gold standard placebo-controlled trials. Advancement of a full pipeline of symptomatic therapies across the entire cystic fibrosis population will be challenged by smaller effect sizes and uncertainty regarding their clinical importance in a growing modulator-treated population with more mild and stable pulmonary disease. In this Series paper, we aim to lay the foundation for clinical trial strategy and community partnership that must deviate from established and familiar precedent to advance the future pipeline of cystic fibrosis therapeutics.
Collapse
Affiliation(s)
- Nicole Mayer-Hamblett
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | | | - Raksha Jain
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott H Donaldson
- Division of Pulmonary and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Isabelle Fajac
- Assistance Publique, Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Christopher H Goss
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine University of Washington, Seattle, WA, USA
| | - Deepika Polineni
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Felix Ratjen
- Translational Medicine Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Division of Respiratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia; Children's Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK; Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Manu Jain
- University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael W Konstan
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | | | | | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Lung Research, Berlin, Germany; Berlin Institute of Health, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Edward McKone
- St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | | | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynne Quittell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - George Retsch-Bogart
- Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, USA
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
36
|
Dettmer S, Weinheimer O, Sauer-Heilborn A, Lammers O, Wielpütz MO, Fuge J, Welte T, Wacker F, Ringshausen FC. Qualitative and quantitative evaluation of computed tomography changes in adults with cystic fibrosis treated with elexacaftor-tezacaftor-ivacaftor: a retrospective observational study. Front Pharmacol 2023; 14:1245885. [PMID: 37808186 PMCID: PMC10552920 DOI: 10.3389/fphar.2023.1245885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: The availability of highly effective triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination therapy with elexacaftor-tezacaftor-ivacaftor (ETI) has improved pulmonary outcomes and quality of life of people with cystic fibrosis (pwCF). The aim of this study was to assess computed tomography (CT) changes under ETI visually with the Brody score and quantitatively with dedicated software, and to correlate CT measures with parameters of clinical response. Methods: Twenty two adult pwCF with two consecutive CT scans before and after ETI treatment initiation were retrospectively included. CT was assessed visually employing the Brody score and quantitatively by YACTA, a well-evaluated scientific software computing airway dimensions and lung parenchyma with wall percentage (WP), wall thickness (WT), lumen area (LA), bronchiectasis index (BI), lung volume and mean lung density (MLD) as parameters. Changes in CT metrics were evaluated and the visual and quantitative parameters were correlated with each other and with clinical changes in sweat chloride concentration, spirometry [percent predicted of forced expiratory volume in one second (ppFEV1)] and body mass index (BMI). Results: The mean (SD) Brody score improved with ETI [55 (12) vs. 38 (15); p < 0.001], incl. sub-scores for mucus plugging, peribronchial thickening, and parenchymal changes (all p < 0.001), but not for bronchiectasis (p = 0.281). Quantitatve WP (p < 0.001) and WT (p = 0.004) were reduced, conversely LA increased (p = 0.003), and BI improved (p = 0.012). Lung volume increased (p < 0.001), and MLD decreased (p < 0.001) through a reduction of ground glass opacity areas (p < 0.001). Changes of the Brody score correlated with those of quantitative parameters, exemplarily WT with the sub-score for mucus plugging (r = 0.730, p < 0.001) and peribronchial thickening (r = 0.552, p = 0.008). Changes of CT parameters correlated with those of clinical response parameters, in particular ppFEV1 with the Brody score (r = -0.606, p = 0.003) and with WT (r = -0.538, p = 0.010). Discussion: Morphological treatment response to ETI can be assessed using the Brody score as well as quantitative CT parameters. Changes in CT correlated with clinical improvements. The quantitative analysis with YACTA proved to be an objective, reproducible and simple method for monitoring lung disease, particularly with regard to future interventional clinical trials.
Collapse
Affiliation(s)
- Sabine Dettmer
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Annette Sauer-Heilborn
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Oliver Lammers
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
37
|
Salari A, Xiu R, Amiri M, Pallenberg ST, Schreiber R, Dittrich AM, Tümmler B, Kunzelmann K, Seidler U. The Anion Channel TMEM16a/Ano1 Modulates CFTR Activity, but Does Not Function as an Apical Anion Channel in Colonic Epithelium from Cystic Fibrosis Patients and Healthy Individuals. Int J Mol Sci 2023; 24:14214. [PMID: 37762516 PMCID: PMC10531629 DOI: 10.3390/ijms241814214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Studies in human colonic cell lines and murine intestine suggest the presence of a Ca2+-activated anion channel, presumably TMEM16a. Is there a potential for fluid secretion in patients with severe cystic fibrosis transmembrane conductance regulator (CFTR) mutations by activating this alternative pathway? Two-dimensional nondifferentiated colonoid-myofibroblast cocultures resembling transit amplifying/progenitor (TA/PE) cells, as well as differentiated monolayer (DM) cultures resembling near-surface cells, were established from both healthy controls (HLs) and patients with severe functional defects in the CFTR gene (PwCF). F508del mutant and CFTR knockout (null) mice ileal and colonic mucosa was also studied. HL TA/PE monolayers displayed a robust short-circuit current response (ΔIeq) to UTP (100 µM), forskolin (Fsk, 10 µM) and carbachol (CCH, 100 µM), while ΔIeq was much smaller in differentiated monolayers. The selective TMEM16a inhibitor Ani9 (up to 30 µM) did not alter the response to luminal UTP, significantly decreased Fsk-induced ΔIeq, and significantly increased CCH-induced ΔIeq in HL TA/PE colonoid monolayers. The PwCF TA/PE and the PwCF differentiated monolayers displayed negligible agonist-induced ΔIeq, without a significant effect of Ani9. When TMEM16a was localized in intracellular structures, a staining in the apical membrane was not detected. TMEM16a is highly expressed in human colonoid monolayers resembling transit amplifying cells of the colonic cryptal neck zone, from both HL and PwCF. While it may play a role in modulating agonist-induced CFTR-mediated anion currents, it is not localized in the apical membrane, and it has no function as an apical anion channel in cystic fibrosis (CF) and healthy human colonic epithelium.
Collapse
Affiliation(s)
- Azam Salari
- Department of Gastroenterology, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (R.X.); (M.A.)
| | - Renjie Xiu
- Department of Gastroenterology, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (R.X.); (M.A.)
| | - Mahdi Amiri
- Department of Gastroenterology, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (R.X.); (M.A.)
| | - Sophia Theres Pallenberg
- Department of Pediatric Pneumonology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany (A.-M.D.)
| | - Rainer Schreiber
- Institute of Physiology, University of Regensburg, 93040 Regensburg, Germany; (R.S.); (K.K.)
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumonology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany (A.-M.D.)
| | - Burkhard Tümmler
- Department of Pediatric Pneumonology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany (A.-M.D.)
| | - Karl Kunzelmann
- Institute of Physiology, University of Regensburg, 93040 Regensburg, Germany; (R.S.); (K.K.)
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (R.X.); (M.A.)
| |
Collapse
|
38
|
Graeber SY, Balázs A, Ziegahn N, Rubil T, Vitzthum C, Piehler L, Drescher M, Seidel K, Rohrbach A, Röhmel J, Thee S, Duerr J, Mall MA, Stahl M. Personalized CFTR Modulator Therapy for G85E and N1303K Homozygous Patients with Cystic Fibrosis. Int J Mol Sci 2023; 24:12365. [PMID: 37569738 PMCID: PMC10418744 DOI: 10.3390/ijms241512365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
CFTR modulator therapy with elexacaftor/tezacaftor/ivacaftor (ETI) has been approved for people with CF and at least one F508del allele in Europe. In the US, the ETI label has been expanded to 177 rare CFTR mutations responsive in Fischer rat thyroid cells, including G85E, but not N1303K. However, knowledge on the effect of ETI on G85E or N1303K CFTR function remains limited. In vitro effects of ETI were measured in primary human nasal epithelial cultures (pHNECs) of a G85E homozygous patient and an N1303K homozygous patient. Effects of ETI therapy in vivo in these patients were assessed using clinical outcomes, including multiple breath washout and lung MRI, and the CFTR biomarkers sweat chloride concentration (SCC), nasal potential difference (NPD) and intestinal current measurement (ICM), before and after initiation of ETI. ETI increased CFTR-mediated chloride transport in G85E/G85E and N1303K/N1303K pHNECs. In the G85E/G85E and the N1303K/N1303K patient, we observed an improvement in lung function, SCC, and CFTR function in the respiratory and rectal epithelium after initiation of ETI. The approach of combining preclinical in vitro testing with subsequent in vivo verification can facilitate access to CFTR modulator therapy and enhance precision medicine for patients carrying rare CFTR mutations.
Collapse
Affiliation(s)
- Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Niklas Ziegahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Tihomir Rubil
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Constanze Vitzthum
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Linus Piehler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Marika Drescher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Kathrin Seidel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Alexander Rohrbach
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
39
|
Schaupp L, Addante A, Völler M, Fentker K, Kuppe A, Bardua M, Duerr J, Piehler L, Röhmel J, Thee S, Kirchner M, Ziehm M, Lauster D, Haag R, Gradzielski M, Stahl M, Mertins P, Boutin S, Graeber SY, Mall MA. Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on sputum viscoelastic properties, airway infection and inflammation in patients with cystic fibrosis. Eur Respir J 2023; 62:2202153. [PMID: 37414422 DOI: 10.1183/13993003.02153-2022] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/21/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Recent studies demonstrated that the triple combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) improves lung function and reduces pulmonary exacerbations in cystic fibrosis (CF) patients with at least one F508del allele. However, effects of ETI on downstream consequences of CFTR dysfunction, i.e. abnormal viscoelastic properties of airway mucus, chronic airway infection and inflammation have not been studied. The aim of this study was to determine the longitudinal effects of ETI on airway mucus rheology, microbiome and inflammation in CF patients with one or two F508del alleles aged ≥12 years throughout the first 12 months of therapy. METHODS In this prospective observational study, we assessed sputum rheology, the microbiome, inflammation markers and proteome before and 1, 3 and 12 months after initiation of ETI. RESULTS In total, 79 patients with CF and at least one F508del allele and 10 healthy controls were enrolled in this study. ETI improved the elastic modulus and viscous modulus of CF sputum at 3 and 12 months after initiation (all p<0.01). Furthermore, ETI decreased the relative abundance of Pseudomonas aeruginosa in CF sputum at 3 months and increased the microbiome α-diversity at all time points. In addition, ETI reduced interleukin-8 at 3 months (p<0.05) and free neutrophil elastase activity at all time points (all p<0.001), and shifted the CF sputum proteome towards healthy. CONCLUSIONS Our data demonstrate that restoration of CFTR function by ETI improves sputum viscoelastic properties, chronic airway infection and inflammation in CF patients with at least one F508del allele over the first 12 months of therapy; however, levels close to healthy were not reached.
Collapse
Affiliation(s)
- Laura Schaupp
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Kerstin Fentker
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Markus Bardua
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Linus Piehler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Ziehm
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Lauster
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Michael Gradzielski
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Sébastien Boutin
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein/Campus, Lübeck, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| |
Collapse
|
40
|
Stahl M, Roehmel J, Eichinger M, Doellinger F, Naehrlich L, Kopp MV, Dittrich AM, Lee C, Sommerburg O, Tian S, Xu T, Wu P, Joshi A, Ray P, Duncan ME, Wielpütz MO, Mall MA. Effects of Lumacaftor/Ivacaftor on Cystic Fibrosis Disease Progression in Children 2 through 5 Years of Age Homozygous for F508del-CFTR: A Phase 2 Placebo-controlled Clinical Trial. Ann Am Thorac Soc 2023; 20:1144-1155. [PMID: 36943405 PMCID: PMC10405608 DOI: 10.1513/annalsats.202208-684oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/21/2023] [Indexed: 03/23/2023] Open
Abstract
Rationale: Lumacaftor/ivacaftor (LUM/IVA) was shown to be safe and well tolerated in children 2 through 5 years of age with cystic fibrosis (CF) homozygous for F508del-CFTR in a Phase 3 open-label study. Improvements in sweat chloride concentration, markers of pancreatic function, and lung clearance index2.5 (LCI2.5), along with increases in growth parameters, suggested the potential for early disease modification with LUM/IVA treatment. Objective: To further assess the effects of LUM/IVA on CF disease progression in children 2 through 5 years of age using chest magnetic resonance imaging (MRI). Methods: This Phase 2 study had two parts: a 48-week, randomized, double-blind, placebo-controlled treatment period in which children 2 through 5 years of age with CF homozygous for F508del-CFTR received either LUM/IVA or placebo (Part 1) followed by an open-label period in which all children received LUM/IVA for an additional 48 weeks (Part 2). The results from Part 1 are reported. The primary endpoint was absolute change from baseline in chest MRI global score at Week 48. Secondary endpoints included absolute change in LCI2.5 through Week 48 and absolute changes in weight-for-age, stature-for-age, and body mass index-for-age z-scores at Week 48. Additional endpoints included absolute changes in sweat chloride concentration, fecal elastase-1 levels, serum immunoreactive trypsinogen, and fecal calprotectin through Week 48. The primary endpoint was analyzed using Bayesian methods, where the actual Bayesian posterior probability of LUM/IVA being superior to placebo in the chest MRI global score at Week 48 was calculated using a vague normal prior distribution; secondary and additional endpoints were analyzed using descriptive summary statistics. Results: Fifty-one children were enrolled and received LUM/IVA (n = 35) or placebo (n = 16). For the change in chest MRI global score at Week 48, the Bayesian posterior probability of LUM/IVA being better than placebo (treatment difference, <0; higher score indicates greater abnormality) was 76%; the mean treatment difference was -1.5 (95% credible interval, -5.5 to 2.6). Treatment with LUM/IVA also led to within-group numerical improvements in LCI2.5, growth parameters, and biomarkers of pancreatic function as well as greater decreases in sweat chloride concentration compared with placebo from baseline through Week 48. Safety data were consistent with the established safety profile of LUM/IVA. Conclusions: This placebo-controlled study suggests the potential for early disease modification with LUM/IVA treatment, including that assessed by chest MRI, in children as young as 2 years of age. Clinical trial registered with www.clinicaltrials.gov (NCT03625466).
Collapse
Affiliation(s)
- Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
| | - Monika Eichinger
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, and
| | - Felix Doellinger
- Department of Radiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Matthias V. Kopp
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
- Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Anna-Maria Dittrich
- Department for Pediatric Pulmonology, Allergology, and Neonatology and
- BREATH, German Center for Lung Research, Hannover Medical School, Hannover, Germany; and
| | | | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon Tian
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Tu Xu
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Pan Wu
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Aniket Joshi
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Partha Ray
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | | | - Mark O. Wielpütz
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, and
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
41
|
Schütz K, Pallenberg ST, Kontsendorn J, DeLuca D, Sukdolak C, Minso R, Büttner T, Wetzke M, Dopfer C, Sauer-Heilborn A, Ringshausen FC, Junge S, Tümmler B, Hansen G, Dittrich AM. Spirometric and anthropometric improvements in response to elexacaftor/tezacaftor/ivacaftor depending on age and lung disease severity. Front Pharmacol 2023; 14:1171544. [PMID: 37469865 PMCID: PMC10352657 DOI: 10.3389/fphar.2023.1171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction: Triple-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy with elexacaftor/tezacaftor/ivacaftor (ETI) was introduced in August 2020 in Germany for people with CF (pwCF) ≥12 years (yrs.) of age and in June 2021 for pwCF ≥6 yrs of age. In this single-center study, we analyzed longitudinal data on the percent-predicted forced expiratory volume (ppFEV1) and body-mass-index (BMI) for 12 months (mo.) after initiation of ETI by linear mixed models and regression analyses to identify age- and severity-dependent determinants of response to ETI. Methods: We obtained data on 42 children ≥6-11 yrs, 41 adolescents ≥12-17 yrs, and 143 adults by spirometry and anthropometry prior to ETI, and 3 and 12 mo. after ETI initiation. Data were stratified by the age group and further sub-divided into age-specific ppFEV1 impairment. To achieve this, the age strata were divided into three groups, each according to their baseline ppFEV1: lowest 25%, middle 50%, and top 25% of ppFEV1. Results: Adolescents and children with more severe lung disease prior to ETI (within the lowest 25% of age-specific ppFEV1) showed higher improvements in lung function than adults in this severity group (+18.5 vs. +7.5; p = 0.002 after 3 mo. and +13.8 vs. +7.2; p = 0.012 after 12 mo. of ETI therapy for ≥12-17 years and +19.8 vs. +7.5; p = 0.007 after 3 mo. for children ≥6-11 yrs). In all age groups, participants with more severe lung disease showed higher BMI gains than those with medium or good lung function (within the middle 50% or top 25% of age-specific ppFEV1). Regression analyses identified age as a predictive factor for FEV1 increase at 3 mo. after ETI initiation, and age and ppFEV1 at ETI initiation as predictive factors for FEV1 increase 12 mo. after ETI initiation. Discussion: We report initial data, which suggest that clinical response toward ETI depends on age and lung disease severity prior to ETI initiation, which argue for early initiation of ETI.
Collapse
Affiliation(s)
- Katharina Schütz
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Sophia Theres Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Julia Kontsendorn
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - David DeLuca
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Cinja Sukdolak
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Tina Büttner
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Sibylle Junge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Fainardi V, Skenderaj K, Ciuni A, Milanese G, Deolmi M, Longo F, Spaggiari C, Sverzellati N, Esposito S, Pisi G. Structural changes in lung morphology detected by MRI after modulating therapy with elexacaftor/tezacaftor/ivacaftor in adolescent and adult patients with cystic fibrosis. Respir Med 2023:107328. [PMID: 37321310 DOI: 10.1016/j.rmed.2023.107328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) improves CFTR function in cystic fibrosis (CF) patients homozygous or heterozygous for F508del mutation. The aim of the study was to evaluate the response to ELX/TEZ/IVA treatment both clinically and morphologically in terms of bronchiectasis, bronchial wall thickening, mucus plugging, abscess and consolidations. METHODS We retrospectively collected data from CF patients followed at Parma CF Centre (Italy) treated by ELX/TEZ/IVA between March and November 2021. Post-treatment changes in respiratory function, quality of life, sweat chloride concentration, body mass index, pulmonary exacerbations and lung structure by chest magnetic resonance imaging (MRI) were assessed. T2-and T1-weighted sequences were acquired with a 20 min-long scanning protocol on a 1.5T MRI scanner (Philips Ingenia) without administration of intravenous contrast media. RESULTS 19 patients (32.5 ± 10.2 years) were included in the study. After 6 months of treatment with ELX/TEZ/IVA, MRI showed significant improvements in the morphological score (p < 0.001), with a reduction in bronchial wall thickening (p < 0.001) and mucus plugging (p 0.01). Respiratory function showed significant improvement in predicted FEV1% (58.5 ± 17.5 vs 71.4 ± 20.1, p < 0.001), FVC% (79.0 ± 11.1 vs 88.3 ± 14.4, p < 0.001), FEV1/FVC (0.61 ± 0.16 vs 0.67 ± 0.15, <0.001) and LCI2.5% (17.8 ± 4.3 vs 15.8 ± 4.1 p < 0.005). Significant improvement was found in body mass index (20.6 ± 2.7 vs 21.9 ± 2.4, p < 0.001), pulmonary exacerbations (2.3 ± 1.3 vs 1.4 ± 1.3 p 0.018) and sweat chloride concentration (96.5 ± 36.6 vs 41.1 ± 16.9, p < 0.001). CONCLUSIONS Our study confirms the efficacy of ELX/TEZ/IVA in CF patients not only from a clinical point of view but also in terms of morphological changes of the lungs.
Collapse
Affiliation(s)
- Valentina Fainardi
- Cystic Fibrosis Unit, Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126, Parma, Italy.
| | - Kaltra Skenderaj
- Cystic Fibrosis Unit, Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126, Parma, Italy.
| | - Andrea Ciuni
- Section of Radiology, Unit of Surgical Sciences, Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| | - Gianluca Milanese
- Section of Radiology, Unit of Surgical Sciences, Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| | - Michela Deolmi
- Cystic Fibrosis Unit, Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126, Parma, Italy.
| | - Francesco Longo
- Respiratory Disease and Lung Function Unit, Azienda Ospedaliero-Universitaria, 43126, Parma, Italy.
| | - Cinzia Spaggiari
- Cystic Fibrosis Unit, Pediatric Clinic, Azienda Ospedaliero-Universitaria, 43126, Parma, Italy.
| | - Nicola Sverzellati
- Section of Radiology, Unit of Surgical Sciences, Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| | - Susanna Esposito
- Cystic Fibrosis Unit, Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126, Parma, Italy.
| | - Giovanna Pisi
- Cystic Fibrosis Unit, Pediatric Clinic, Azienda Ospedaliero-Universitaria, 43126, Parma, Italy.
| |
Collapse
|
43
|
Berges J, Graeber SY, Hämmerling S, Yu Y, Krümpelmann A, Stahl M, Hirtz S, Scheuermann H, Mall MA, Sommerburg O. Effects of lumacaftor-ivacaftor therapy on cystic fibrosis transmembrane conductance regulator function in F508del homozygous patients with cystic fibrosis aged 2-11 years. Front Pharmacol 2023; 14:1188051. [PMID: 37324488 PMCID: PMC10266342 DOI: 10.3389/fphar.2023.1188051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Rationale: Lumacaftor/ivacaftor was approved for the treatment of patients with cystic fibrosis who are homozygous for F508del aged 2 years and older following positive results from phase three trials. However, the improvement in CFTR function associated with lumacaftor/ivacaftor has only been studied in patients over 12 years of age, while the rescue potential in younger children is unknown. Methods: In a prospective study, we aimed to evaluate the effect of lumacaftor/ivacaftor on the CFTR biomarkers sweat chloride concentration and intestinal current measurement as well as clinical outcome parameters in F508del homozygous CF patients 2-11 years before and 8-16 weeks after treatment initiation. Results: A total of 13 children with CF homozygous for F508del aged 2-11 years were enrolled and 12 patients were analyzed. Lumacaftor/ivacaftor treatment reduced sweat chloride concentration by 26.8 mmol/L (p = 0.0006) and showed a mean improvement in CFTR activity, as assessed by intestinal current measurement in the rectal epithelium, of 30.5% compared to normal (p = 0.0015), exceeding previous findings of 17.7% of normal in CF patients homozygous for F508del aged 12 years and older. Conclusion: Lumacaftor/ivacaftor partially restores F508del CFTR function in children with CF who are homozygous for F508del, aged 2-11 years, to a level of CFTR activity seen in patients with CFTR variants with residual function. These results are consistent with the partial short-term improvement in clinical parameters.
Collapse
Affiliation(s)
- Julian Berges
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Susanne Hämmerling
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Yin Yu
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Arne Krümpelmann
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Stephanie Hirtz
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Heike Scheuermann
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Olivier M, Kavvalou A, Welsner M, Hirtz R, Straßburg S, Sutharsan S, Stehling F, Steindor M. Real-life impact of highly effective CFTR modulator therapy in children with cystic fibrosis. Front Pharmacol 2023; 14:1176815. [PMID: 37229253 PMCID: PMC10203630 DOI: 10.3389/fphar.2023.1176815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Recently, cystic fibrosis transmembrane regulator modulator therapy with elexacaftor/tezacaftor/ivacaftor has become available for children with cystic fibrosis (CF) carrying at least one F508del mutation. Objective: To assess the intermediate term effects of elexacaftor/tezacaftor/ivacaftor in children with cystic fibrosis in a real-world setting. Methods: We performed a retrospective analysis of records of children with cystic fibrosis, who started elexacaftor/tezacaftor/ivacaftor between 8/2020 and 10/2022. Pulmonary function tests, nutritional status, sweat chloride and laboratory data were assessed before, 3 and 6 months after the start of elexacaftor/tezacaftor/ivacaftor respectively. Results: Elexacaftor/tezacaftor/ivacaftor was started in 22 children 6-11 years and in 24 children 12-17 years. Twenty-seven (59%) patients were homozygous for F508del (F/F) and 23 (50%) patients were transitioned from ivacaftor/lumacaftor (IVA/LUM) or tezacaftor/ivacaftor (TEZ/IVA) to elexacaftor/tezacaftor/ivacaftor. Overall, mean sweat chloride concentration decreased by 59.3 mmol/L (95% confidence interval: -65.0 to -53.7 mmol/L, p < 0.0001) under elexacaftor/tezacaftor/ivacaftor. Sweat chloride concentration also decreased significantly after transition from IVA/LUM or TEZ/IVA to elexacaftor/tezacaftor/ivacaftor (-47.8 mmol/l; 95% confidence interval: -57.6 to -37.8 mmol/l, n = 14, p < 0.0001). Sweat chloride reduction was more marked in children with the F/F than in those with the F/MF genotype (69.4 vs 45.9 mmol/L, p < 0.0001). At 3 months follow-up, body-mass-index-z-score increased by 0.31 (95% CI, 0.2-0.42, p < 0.0001) with no further increase at 6 months. BMI-for-age-z-score was more markedly improved in the older group. Overall pulmonary function (percent predicted FEV1) at 3 months follow-up increased by 11.4% (95% CI: 8.0-14.9, p < 0.0001) with no further significant change after 6 months. No significant differences were noted between the age groups. Children with the F/MF genotype had a greater benefit regarding nutritional status and pulmonary function tests than those with the F/F genotype. Adverse events led to elexacaftor/tezacaftor/ivacaftor dose reduction in three cases and a temporary interruption of therapy in four cases. Conclusion: In a real-world setting, elexacaftor/tezacaftor/ivacaftor therapy had beneficial clinical effects and a good safety profile in eligible children with cystic fibrosis comparable to previously published data from controlled clinical trials. The positive impact on pulmonary function tests and nutritional status seen after 3 months of elexacaftor/tezacaftor/ivacaftor therapy was sustained at 6 months follow-up.
Collapse
Affiliation(s)
- Margarete Olivier
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Kavvalou
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthias Welsner
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen—Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Raphael Hirtz
- Pediatric Endocrinology, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Svenja Straßburg
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen—Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen—Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Steindor
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Mayer-Hamblett N, Ratjen F, Russell R, Donaldson SH, Riekert KA, Sawicki GS, Odem-Davis K, Young JK, Rosenbluth D, Taylor-Cousar JL, Goss CH, Retsch-Bogart G, Clancy JP, Genatossio A, O'Sullivan BP, Berlinski A, Millard SL, Omlor G, Wyatt CA, Moffett K, Nichols DP, Gifford AH, Kloster M, Weaver K, Chapdu C, Xie J, Skalland M, Romasco M, Heltshe S, Simon N, VanDalfsen J, Mead A, Buckingham R, Seidel K, Midamba N, Couture L, Case BZ, Au W, Rockers E, Cooke D, Olander A, Bondick I, Johnson M, VanHousen L, Nicholson B, Omlor G, Parrish M, Roberts D, Head J, Carey J, Caverly L, Dangerfield J, Linnemann R, Fullmer J, Roman C, Mogayzel P, Reyes D, Harmala A, Lysinger J, Bergeron J, Virella-Lowell I, Brown P, Godusevic L, Casey A, Paquette L, Lahiri T, Sweet J, Donaldson S, Harris J, Parnell S, Szentpetery S, Froh D, Tharrington E, Jain M, Nelson R, Kadon S, McPhail G, McBennett K, Rone T, Dasenbrook E, Weaver D, Johnson T, McCoy K, Jain R, Mcleod M, Klosterman M, Sharma P, Jones A, Mueller G, Janney R, Taylor-Cousar J, Cross M, Hoppe J, Cahill J, Mukadam Z, Finto J, Schultz K, Villalta SD, Smith A, Millard S, Symington T, Graff G, Kitch D, Sanders D, Thompson M, Pena T, Teresi M, Gafford J, Schaeffer D, Mermis J, Scott L, Escobar H, Williams K, Dorman D, O'Sullivan B, Bethay R, Danov Z, Berlinski A, Turbeville K, Johannes J, Rodriguez A, Marra B, Zanni R, Morton R, Simeon T, Braun A, Dondlinger N, Biller J, Hubertz E, Antos N, Roth L, Billings J, Larson C, Balaji P, McNamara J, Clark T, Moffett K, Griffith R, Martinez N, Hussain S, Malveaux H, Egan M, Guzman C, DeCelie-Germana J, Galvin S, Savant A, Falgout N, Walker P, Demarco T, DiMango E, Ycaza M, Ballo J, Tirakitsoontorn P, Layish D, Serr D, Livingston F, Wooldridge S, Milla C, Spano J, Davis R, Elidemir O, Chittivelu S, Scott A, Alam S, Dorgan D, Butoryak M, Weiner D, Renna H, Wyatt C, Klein B, Stone A, Lessard M, Schechter MS, Johnson B, Scofield S, Liou T, Vroom J, Akong K, Gil M, Betancourt L, Singer J, Ly N, Moreno C, Aitken M, Gambol T, Genatossio A, Gibson R, Lambert A, Milton J, Rosenbluth D, Smith S, Green D, Hodge D, Fortner C, Forell M, Karlnoski R, Patel K, Daines C, Ryan E, Amaro-Galvez R, Dohanich E, Lennox A, Messer Z, Hanes H, Powell K, Polineni D. Discontinuation versus continuation of hypertonic saline or dornase alfa in modulator treated people with cystic fibrosis (SIMPLIFY): results from two parallel, multicentre, open-label, randomised, controlled, non-inferiority trials. THE LANCET. RESPIRATORY MEDICINE 2023; 11:329-340. [PMID: 36343646 PMCID: PMC10065895 DOI: 10.1016/s2213-2600(22)00434-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Reducing treatment burden is a priority for people with cystic fibrosis, whose health has benefited from using new modulators that substantially increase CFTR protein function. The SIMPLIFY study aimed to assess the effects of discontinuing nebulised hypertonic saline or dornase alfa in individuals using the CFTR modulator elexacaftor plus tezacaftor plus ivacaftor (ETI). METHODS The SIMPLIFY study included two parallel, multicentre, open-label, randomised, controlled, non-inferiority trials at 80 participating clinics across the USA in the Cystic Fibrosis Therapeutics Development Network. We included individuals with cystic fibrosis aged 12-17 years with percent predicted FEV1 (ppFEV1) of 70% or more, or those aged 18 years or older with ppFEV1 of 60% or more, if they had been taking ETI and either (or both) mucoactive therapies (≥3% hypertonic saline or dornase alfa) for at least 90 days before screening. Participants on both hypertonic saline and dornase alfa were randomly assigned to one of the two trials, and those on a single therapy were assigned to the applicable trial. All participants were then randomly assigned 1:1 to continue or discontinue therapy for 6 weeks using permuted blocks of varying size, stratified by baseline ppFEV1 (week 0; ≥90% or <90%), single or concurrent use of hypertonic saline and dornase alfa, previous SIMPLIFY study participation (yes or no), and age (≥18 or <18 years). For participants randomly assigned to continue their therapy during a given trial, this therapy was instructed to be taken at least once daily according to each participant's pre-existing, clinically prescribed regimen. Hypertonic saline concentration was required to be at least 3%. The primary objective for each trial was to determine whether discontinuing was non-inferior to continuing, measured by the 6-week change in ppFEV1 in the per-protocol population. We established a non-inferiority margin of -3% for the difference between groups in the 6-week change in ppFEV1. Safety outcomes were analysed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT04378153. FINDINGS From Aug 25, 2020, to May 25, 2022, a total of 672 unique participants were screened for eligibility for one or both trials, resulting in 847 total random assignments across both trials with 594 unique participants. 370 participants were randomly assigned in the hypertonic saline trial and 477 in the dornase alfa trial. Participants across both trials had an average ppFEV1 of 96·9%. Discontinuing treatment was non-inferior to continuing treatment with respect to the absolute 6-week change in ppFEV1 in both the hypertonic saline trial (-0·19% [95% CI -0·85 to 0·48] in the discontinuation group [n=133] vs 0·14% [-0·51 to 0·78] in the continuation group [n=140]; between-group difference -0·32% [-1·25 to 0·60]) and dornase alfa trial (0·18% [-0·38 to 0·74] in the discontinuation group [n=199] vs -0·16% [-0·73 to 0·41] in the continuation group [n=193]; between-group difference 0·35% [-0·45 to 1·14]), with consistent results in the intention-to-treat populations. In the hypertonic saline trial, 64 (35%) of 184 in the discontinuation group versus 44 (24%) of 186 participants in the continuation group and, in the dornase alfa trial, 89 (37%) of 240 in the discontinuation group versus 55 (23%) of 237 in the continuation group had at least one adverse event. INTERPRETATION In individuals with cystic fibrosis on ETI with relatively well preserved pulmonary function, discontinuing daily hypertonic saline or dornase alfa for 6 weeks did not result in clinically meaningful differences in pulmonary function when compared with continuing treatment.
Collapse
|
46
|
McCoy KS, Blind J, Johnson T, Olson P, Raterman L, Bai S, Eisner M, Sheikh SI, Druhan S, Young C, Pasley K. Clinical change 2 years from start of elexacaftor-tezacaftor-ivacaftor in severe cystic fibrosis. Pediatr Pulmonol 2023; 58:1178-1184. [PMID: 36650567 DOI: 10.1002/ppul.26318] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
RATIONALE Limited published research is available on the impact of elexacaftor/tezacaftor/ivacaftor (ETI) beyond the initial few months postdrug initiation, especially for those who initiated therapy via individual investigational new drug application. The experiences of patients with cystic fibrosis (CF) experiencing severe lung disease were reviewed for significant improvements in clinical symptoms and quality of life. OBJECTIVES To examine clinical outcomes 2 years post-ETI in patients with CF and advanced lung disease. METHODS This single center institutional review board-approved, retrospective chart review assessed clinical markers (percent predicted forced expiratory volume in 1 s, weight, sweat chloride), quality of life and computed tomography scans in patients with advanced lung disease who met criteria for compassionate use/expanded access program due to high risk of death or transplant need within 2 years. RESULTS Eighteen identified patients (ages 15-49 years) initiated drug between July and September 2019. Clinical markers indicated that therapy was well tolerated, not discontinued by any participant, and lab values did not indicate medical concern or discontinuation. Monitoring results indicated the safety of modulator therapy as there were no adverse clinical occurrences and all patients presented universal stabilization. There were no deaths and no transplants by the end of the study. CONCLUSIONS This study focused on patients with CF eligible for modulator therapy and were initiated due to advanced lung disease. Initiation of modulator therapy was deemed safe and resulted in objective positive changes in nutrition, cough, FEV1 , subjective reports of clinical status, level of activity, and a reduction in burden of treatment.
Collapse
Affiliation(s)
- Karen S McCoy
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jill Blind
- Investigational Pharmacy, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Terri Johnson
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Patti Olson
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Laura Raterman
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Shasha Bai
- Department of Pediatrics at Emory University School of Medicine, Pediatric Biostatistics Core, Atlanta, Georgia, USA
| | - Mariah Eisner
- Biostatistics Resource, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Shahid I Sheikh
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stephan Druhan
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Cody Young
- Radiology Department, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kimberly Pasley
- Pulmonary and Sleep Medicine Division, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
47
|
Pallenberg ST, Held I, Dopfer C, Minso R, Nietert MM, Hansen G, Tümmler B, Dittrich AM. Differential effects of ELX/TEZ/IVA on organ-specific CFTR function in two patients with the rare CFTR splice mutations c.273+1G>A and c.165-2A>G. Front Pharmacol 2023; 14:1153656. [PMID: 37050906 PMCID: PMC10083416 DOI: 10.3389/fphar.2023.1153656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction: Evidence for the efficiency of highly-effective triple-CFTR-modulatory therapy with elexacaftor/tezacaftor/ivacaftor (ETI), either demonstrated in clinical trials or by in vitro testing, is lacking for about 10% of people with cystic fibrosis (pwCF) with rare mutations. Comprehensive assessment of CFTR function can provide critical information on the impact of ETI on CFTR function gains for such rare mutations, lending argument of the prescription of ETI. The mutation c.165-2A>G is a rare acceptor splice mutation that has not yet been functionally characterized. We here describe the functional changes induced by ETI in two brothers who are compound heterozygous for the splice mutations c.273+1G>C and c.165-2A>G.Methods: We assessed the effects of ETI on CFTR function by quantitative pilocarpine iontophoresis (QPIT), nasal potential difference measurements (nPD), intestinal current measurements (ICM), β-adrenergic sweat secretion tests (SST) and multiple breath washout (MBW) prior to and 4 months after the initiation of ETI.Results: Functional CFTR analysis prior to ETI showed no CFTR function in the respiratory and intestinal epithelia and in the sweat gland reabsorptive duct in either brother. In contrast, β-adrenergic stimulated, CFTR-mediated sweat secretion was detectable in the CF range. Under ETI, both brothers continued to exhibit high sweat chloride concentration in QPIT, evidence of low residual CFTR function in the respiratory epithelia, but normalized β-adrenergically stimulated production of primary sweat.Discussion: Our results are the first to demonstrate that the c.165-2A>G/c.273+1G>C mutation genotype permits mutant CFTR protein expression. We showed organ-specific differences in the expression of CFTR and consecutive responses to ETI of the c.165-2A>G/c.273+1G>C CFTR mutants that are probably accomplished by non-canonical CFTR mRNA isoforms. This showcase tells us that the individual response of rare CFTR mutations to highly-effective CFTR modulation cannot be predicted from assays in standard cell cultures, but requires the personalized multi-organ assessment by CFTR biomarkers.
Collapse
Affiliation(s)
- Sophia T. Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- *Correspondence: Sophia T. Pallenberg,
| | - Inka Held
- Kinderärzte Friesenweg—CF-Zentrum Altona (Ambulanz), Hamburg, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Manuel M. Nietert
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| |
Collapse
|
48
|
Tümmler B. Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor. Front Pharmacol 2023; 14:1158207. [PMID: 37025483 PMCID: PMC10072268 DOI: 10.3389/fphar.2023.1158207] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Triple combination therapy with the CFTR modulators elexacaftor (ELX), tezacaftor (TEZ) and ivacaftor (IVA) has been qualified as a game changer in cystic fibrosis (CF). We provide an overview of the body of literature on ELX/TEZ/IVA published between November 2019 and February 2023 after approval by the regulators. Recombinant ELX/TEZ/IVA-bound Phe508del CFTR exhibits a wild type conformation in vitro, but in patient's tissue a CFTR glyoisoform is synthesized that is distinct from the wild type and Phe508del isoforms. ELX/TEZ/IVA therapy improved the quality of life of people with CF in the real-life setting irrespective of their anthropometry and lung function at baseline. ELX/TEZ/IVA improved sinonasal and abdominal disease, lung function and morphology, airway microbiology and the basic defect of impaired epithelial chloride and bicarbonate transport. Pregnancy rates were increasing in women with CF. Side effects of mental status changes deserve particular attention in the future.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
49
|
Efficacy and Safety of Elexacaftor-Tezacaftor-Ivacaftor in the Treatment of Cystic Fibrosis: A Systematic Review. CHILDREN 2023; 10:children10030554. [PMID: 36980112 PMCID: PMC10047761 DOI: 10.3390/children10030554] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Elexacaftor/Tezacaftor/Ivacaftor (ELX/TEZ/IVA) is a new CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) modulator treatment, used over the last few years, which has shown an improvement in different clinical outcomes in patients with cystic fibrosis (CF). The objective of this study was a systematic research of the literature on the efficacy and safety of this CFTR modulator on patients with CF. A search of Pubmed was conducted for randomized clinical trials and observational studies published from 2012 to September 2022. The included full manuscripts comprised nine clinical trials and 16 observational studies, whose participants were aged ≥12 years or were children 6–11 years old with at least one Phe508del mutation and/or advanced lung disease (ALD). These studies reported that ELX/TEZ/IVA has a significant positive effect on the lung function of patients with CF, by ameliorating parameters such as FEV1, LCI, pulmonary exacerbations or sweat chloride concentration, increasing BMI and improving quality of their life. Its role in cystic fibrosis-related diabetes (CFRD) is not yet clear. It was found that this new CFTR modulator has an overall favorable safety profile, with mild to moderate adverse events. Further studies are needed for a deeper understanding of the impact of CFTR modulators on other CF manifestations, or the possibility of treating with ELX/TEZ/IVA CF patients with rare CFTR mutations.
Collapse
|
50
|
Bacalhau M, Camargo M, Magalhães-Ghiotto GAV, Drumond S, Castelletti CHM, Lopes-Pacheco M. Elexacaftor-Tezacaftor-Ivacaftor: A Life-Changing Triple Combination of CFTR Modulator Drugs for Cystic Fibrosis. Pharmaceuticals (Basel) 2023; 16:ph16030410. [PMID: 36986509 PMCID: PMC10053019 DOI: 10.3390/ph16030410] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Cystic fibrosis (CF) is a potentially fatal monogenic disease that causes a progressive multisystemic pathology. Over the last decade, the introduction of CF transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has profoundly modified the lives of many people with CF (PwCF) by targeting the fundamental cause of the disease. These drugs consist of the potentiator ivacaftor (VX-770) and the correctors lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). In particular, the triple combination of CFTR modulators composed of elexacaftor, tezacaftor, and ivacaftor (ETI) represents a life-changing therapy for the majority of PwCF worldwide. A growing number of clinical studies have demonstrated the safety and efficacy of ETI therapy in both short- and long-term (up to two years of follow-up to date) and its ability to significantly reduce pulmonary and gastrointestinal manifestations, sweat chloride concentration, exocrine pancreatic dysfunction, and infertility/subfertility, among other disease signs and symptoms. Nevertheless, ETI therapy-related adverse effects have also been reported, and close monitoring by a multidisciplinary healthcare team remains vital. This review aims to address and discuss the major therapeutic benefits and adverse effects reported by the clinical use of ETI therapy for PwCF.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Grace A V Magalhães-Ghiotto
- Department of Biotechnology, Genetics, and Cell Biology, Biological Sciences Center, State University of Maringa, Maringa 87020-900, PR, Brazil
| | - Sybelle Drumond
- Center for Research in Bioethics and Social Health, School of Magistracy of the State of Rio de Janeiro, Rio de Janeiro 20010-090, RJ, Brazil
| | - Carlos Henrique M Castelletti
- Molecular Prospecting and Bioinformatics Group, Keizo Asami Institute, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|