1
|
Lisboa CD, Maciel de Souza JL, Gaspar CJ, Turck P, Ortiz VD, Teixeira Proença IC, Fernandes TRG, Fernandes E, Tasca S, Carraro CC, Belló-Klein A, Sander da Rosa Araujo A, Luz de Castro A. Melatonin effects on oxidative stress and on TLR4/NF-kβ inflammatory pathway in the right ventricle of rats with pulmonary arterial hypertension. Mol Cell Endocrinol 2024; 592:112330. [PMID: 39002930 DOI: 10.1016/j.mce.2024.112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Pulmonary arterial hypertension (PAH) is characterised by an increase in mean pulmonary arterial pressure and a compromised the right ventricle (RV), together with progression to heart failure and premature death. Studies have evaluated the role of melatonin as a promising therapeutic strategy for PAH. The objective of this study was to evaluate melatonin's effects on oxidative stress and on the TLR4/NF-kβ inflammatory pathway in the RV of rats with PAH. Male Wistar rats were divided into the following groups: control, monocrotaline (MCT), and monocrotaline plus melatonin groups. These two last groups received one intraperitoneal injection of MCT (60 mg/kg) on the first day of experimental protocol. The monocrotaline plus melatonin group received 10 mg/kg/day of melatonin by gavage for 21 days. Echocardiographic analysis was performed, and the RV was collected for morphometric analysis oxidative stress and molecular evaluations. The main findings of the present study were that melatonin administration attenuated the reduction in RV function that was induced by monocrotaline, as assessed by TAPSE. In addition, melatonin prevented RV diastolic area reduction caused by PAH. Furthermore, animals treated with melatonin did not show an increase in ROS levels or in NF-kβ expression. In addition, the monocrotaline plus melatonin group showed a reduction in TLR4 expression when compared with control and monocrotaline groups. To our knowledge, this is the first study demonstrating a positive effect of melatonin on the TLR4/NF-kβ pathway in the RV of rats with PAH. In this sense, this study makes it possible to think of melatonin as a possible ally in mitigating RV alterations caused by PAH.
Collapse
Affiliation(s)
- Cristiane Dias Lisboa
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - José Luciano Maciel de Souza
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Custódio José Gaspar
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Patrick Turck
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Vanessa Duarte Ortiz
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Isabel Cristina Teixeira Proença
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Tânia Regina G Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Elissa Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Silvio Tasca
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600, Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Sarkar T, Nguyen T, Moinuddin SM, Stenmark KR, Nozik ES, Saha D, Ahsan F. A Protocol for Fabrication and on-Chip Cell Culture to Recreate PAH-Afflicted Pulmonary Artery on a Microfluidic Device. MICROMACHINES 2022; 13:mi13091483. [PMID: 36144106 PMCID: PMC9504537 DOI: 10.3390/mi13091483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 05/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disease that affects people of all ethnic origins and age groups including newborns. In PAH, pulmonary arteries and arterioles undergo a series of pathological changes including remodeling of the entire pulmonary vasculatures and extracellular matrices, mis-localized growth of pulmonary arterial cells, and development of glomeruloid-like lesions called plexiform lesions. Traditionally, various animal and cellular models have been used to understand PAH pathophysiology, investigate sex-disparity in PAH and monitor therapeutic efficacy of PAH medications. However, traditional models can only partially capture various pathological features of PAH, and they are not adaptable to combinatorial study design for deciphering intricately intertwined complex cellular processes implicated in PAH pathogenesis. While many microfluidic chip-based models are currently available for major diseases, no such disease-on-a-device model is available for PAH, an under investigated disease. In the absence of any chip-based models of PAH, we recently proposed a five-channel polydimethylsiloxane (PDMS)-based microfluidic device that can emulate major pathological features of PAH. However, our proposed model can make a bigger impact on the PAH field only when the larger scientific community engaged in PAH research can fabricate the device and develop the model in their laboratory settings. With this goal in mind, in this study, we have described the detailed methodologies for fabrication and development of the PAH chip model including a thorough explanation of scientific principles for various steps for chip fabrication, a detailed list of reagents, tools and equipment along with their source and catalogue numbers, description of laboratory setup, and cautionary notes. Finally, we explained the methodologies for on-chip cell seeding and application of this model for studying PAH pathophysiology. We believe investigators with little or no training in microfluidic chip fabrication can fabricate this eminently novel PAH-on-a-chip model. As such, this study will have a far-reaching impact on understanding PAH pathophysiology, unravelling the biological mystery associated with sexual dimorphism in PAH, and developing PAH therapy based on patient sex and age.
Collapse
Affiliation(s)
- Tanoy Sarkar
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
| | - Trieu Nguyen
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
| | - Sakib M. Moinuddin
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
| | - Kurt R. Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eva S. Nozik
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
- Correspondence: (D.S.); (F.A.)
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
- MedLuidics, Elk Grove, CA 95757, USA
- Correspondence: (D.S.); (F.A.)
| |
Collapse
|
3
|
Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: A network approach. Pulm Pharmacol Ther 2015; 35:8-16. [DOI: 10.1016/j.pupt.2015.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022]
|
4
|
Buyukakilli B, Gurgul S, Citirik D, Hallioglu O, Ozeren M, Tasdelen B. Determination of the effects of pulmonary arterial hypertension and therapy on the cardiovascular system of rats by impedance cardiography. Croat Med J 2015; 55:498-506. [PMID: 25358882 PMCID: PMC4228293 DOI: 10.3325/cmj.2014.55.498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim To evaluate the effects of bosentan, sildenafil, and combined therapy on the cardiovascular system using impedance cardiography (ICG) in rats with monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Methods Seventy male Wistar-albino rats were randomized into five groups. A single dose of MCT was given to all rats, except to the control group. After 4 weeks, bosentan, sildenafil, and combined treatment was started and lasted for 3 weeks. The last group that developed PAH did not receive any medication. Echocardiographic evaluation was performed to determine the PAH development. Thoracic fluid content index (TFCI), stroke volume index (SI), heart rate (HR), cardiac index (CI), and myocardial contractility index (IC) were determined. All procedures were performed at the baseline and after 4 and 7 weeks. Results Echocardiographic parameters showed that the all MCT-injected rats developed PAH. There were no significant inter- and intra-group differences in TFCI, SI, and IC (P > 0.05), but at the 7th week, CI value in the sildenafil-treated PAH rats was significantly higher than in other groups and HR of PAH rats with combined therapy was significantly lower than in other groups. Conclusion PAH did not have an effect on LV function of rats, or if it did, the effect was compensated by physiological processes. Also, sildenafil treatment deteriorated the LV cardiac index.
Collapse
Affiliation(s)
- Belgin Buyukakilli
- Belgin Buyukakilli, Professor Head of the Department of Biophysics, Faculty of Medicine, Mersin University, TR-33343 Mersin, Turkey,
| | | | | | | | | | | |
Collapse
|
5
|
Ravi Y, Selvendiran K, Meduru S, Citro L, Naidu S, Khan M, Rivera BK, Sai-Sudhakar CB, Kuppusamy P. Dysregulation of PTEN in cardiopulmonary vascular remodeling induced by pulmonary hypertension. Cell Biochem Biophys 2014; 67:363-72. [PMID: 22205501 DOI: 10.1007/s12013-011-9332-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pulmonary hypertension (PH) is a disorder of lung vasculature characterized by arterial narrowing. Phosphatase-and-tensin homolog on chromosome 10 (PTEN), associated in the progression of multiple cancers, is implicated in arterial remodeling. However, the involvement of PTEN in PH remains unclear. The objective of the present study was to determine the role of PTEN in pulmonary vascular remodeling using established models of PH. The study used rat models of PH, induced by monocrotaline (MCT) administration (60 mg/kg) or continuous hypoxic exposure (10% oxygen) for 3 weeks. Pulmonary artery smooth muscle cells (SMCs) were used for in vitro confirmation. Development of PH was verified by hemodynamic, morphological and histopathology analyses. PTEN and key downstream proteins in pulmonary and cardiac tissues were analyzed by western blotting and RT-PCR. PTEN was significantly decreased (MCT, 53%; Hypoxia, 40%), pAkt was significantly increased (MCT, 42%; Hypoxia, 55%) in tissues of rats with PH. Similar results were observed in SMCs exposed to hypoxia (1% oxygen) for 48 h. Ubiquitination assay showed that PTEN degradation occurs via proteasomal degradation pathway. Western blotting demonstrated a significant downregulation of cell-cycle regulatory proteins p53 and p27, and upregulation of cyclin-D1 in the lungs of both models. The results showed that PTEN-mediated modulation of PI3K pathway was independent of the focal adhesion kinase and fatty acid synthase. The study, for the first time, established that PTEN plays a key role in the progression of pulmonary hypertension. The findings may have potential for the treatment of pulmonary hypertension using PTEN as a target.
Collapse
Affiliation(s)
- Yazhini Ravi
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nour S, Dai G, Carbognani D, Feng M, Yang D, Lila N, Chachques JC, Wu G. Intrapulmonary shear stress enhancement: a new therapeutic approach in pulmonary arterial hypertension. Pediatr Cardiol 2012; 33:1332-42. [PMID: 22562774 DOI: 10.1007/s00246-012-0322-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/12/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH) is a dysfunctional endothelium disease with increased pulmonary vascular resistance (PVR) and poor prognosis. Current therapies are still insufficient. Here we propose a new pulsatile device as a more effective tool for PAH management compared with traditional treatments. MATERIALS AND METHODS Twelve piglets (10.3 ± 3.8 kg) were given either intrapulmonary pulsatile [P (n = 6)] or nonpulsatile [NP (n = 6)] tadalafil treatment. After median sternotomy and heparin injection (250 IU/kg), both groups underwent aorto-pulmonary surgical shunt for 1 h. During a second 1 h period in group P, a catheter prototype, driven by a small ventilator, was introduced into the pulmonary trunk and pulsated intermittently at 110 bpm irrespective of heart rate (90.6 ± 10.74 bpm). In group NP, tadalafil was given orally (1 mg/kg). RESULTS Hemodynamics and cardiac output (CO) were significantly (p < 0.05) improved in group P compared with group NP: CO was 0.56 ± 0.0.26 versus 0.54 ± 0.11 (L/min), respectively. Mean pulmonary artery pressure (PAP) was decreased in group P compared with group NP: PAP was 9.6 ± 2.97 versus 32.2 ± 5.07, respectively. Vascular resistances (dynes.s.cm(-5)/kg) were significantly lower in group P versus group NP: pulmonary resistance was 85 ± 42.12 versus 478 ± 192.91 and systemic resistance was 298.8 ± 172.85 versus 1301 ± 615.79, respectively. Using Western blot analysis, endogenous NO synthase expression in PA segments was nonsignificantly (p > 0.05) greater in group P (0.81 ± 0.78) versus (0.62 ± 0.35) group NP. CONCLUSION Induced with an appropriate device, intrapulmonary shear stress-mediated endothelial function enhancement provides a more effective nearly physiological therapy for PAH.
Collapse
Affiliation(s)
- Sayed Nour
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidou Hospital, University Paris Descartes, 75015, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Onat AM, Pehlivan Y, Turkbeyler IH, Demir T, Kaplan DS, Ceribasi AO, Orkmez M, Tutar E, Taysi S, Sayarlioglu M, Kisacik B. Urotensin Inhibition with Palosuran Could Be a Promising Alternative in Pulmonary Arterial Hypertension. Inflammation 2012; 36:405-12. [DOI: 10.1007/s10753-012-9559-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Forrest AS, Joyce TC, Huebner ML, Ayon RJ, Wiwchar M, Joyce J, Freitas N, Davis AJ, Ye L, Duan DD, Singer CA, Valencik ML, Greenwood IA, Leblanc N. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension. Am J Physiol Cell Physiol 2012; 303:C1229-43. [PMID: 23034390 DOI: 10.1152/ajpcell.00044.2012] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pulmonary artery smooth muscle cells (PASMCs) are more depolarized and display higher Ca(2+) levels in pulmonary hypertension (PH). Whether the functional properties and expression of Ca(2+)-activated Cl- channels (Cl(Ca)), an important excitatory mechanism in PASMCs, are altered in PH is unknown. The potential role of Cl(Ca) channels in PH was investigated using the monocrotaline (MCT)-induced PH model in the rat. Three weeks postinjection with a single dose of MCT (50 mg/kg ip), the animals developed right ventricular hypertrophy (heart weight measurements) and changes in pulmonary arterial flow (pulse-waved Doppler imaging) that were consistent with increased pulmonary arterial pressure and PH. Whole cell patch experiments revealed an increase in niflumic acid (NFA)-sensitive Ca(2+)-activated Cl(-) current [I(Cl(Ca))] density in PASMCs from large conduit and small intralobar pulmonary arteries of MCT-treated rats vs. aged-matched saline-injected controls. Quantitative RT-PCR and Western blot analysis revealed that the alterations in I(Cl(Ca)) were accompanied by parallel changes in the expression of TMEM16A, a gene recently shown to encode for Cl(Ca) channels. The contraction to serotonin of conduit and intralobar pulmonary arteries from MCT-treated rats exhibited greater sensitivity to nifedipine (1 μM), an l-type Ca(2+) channel blocker, and NFA (30 or 100 μM, with or without 10 μM indomethacin to inhibit cyclooxygenases) or T16A(Inh)-A01 (10 μM), TMEM16A/Cl(Ca) channel inhibitors, than that of control animals. In conclusion, augmented Cl(Ca)/TMEM16A channel activity is a major contributor to the changes in electromechanical coupling of PA in this model of PH. TMEM16A-encoded channels may therefore represent a novel therapeutic target in this disease.
Collapse
Affiliation(s)
- Abigail S Forrest
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557-0573, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Current pathophysiological concepts and management of pulmonary hypertension. Int J Cardiol 2012; 155:350-61. [PMID: 21641060 DOI: 10.1016/j.ijcard.2011.05.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/14/2011] [Accepted: 05/13/2011] [Indexed: 01/23/2023]
Abstract
Pulmonary hypertension (PH), increasingly recognized as a major health burden, remains underdiagnosed due mainly to the unspecific symptoms. Pulmonary arterial hypertension (PAH) has been extensively investigated. Pathophysiological knowledge derives mostly from experimental models. Paradoxically, common non-PAH PH forms remain largely unexplored. Drugs targeting lung vascular tonus became available during the last two decades, notwithstanding the disease progresses in many patients. The aim of this review is to summarize recent advances in epidemiology, pathophysiology and management with particular focus on associated myocardial and systemic compromise and experimental therapeutic possibilities. PAH, currently viewed as a panvasculopathy, is due to a crosstalk between endothelial and smooth muscle cells, inflammatory activation and altered subcellular pathways. Cardiac cachexia and right ventricular compromise are fundamental determinants of PH prognosis. Combined vasodilator therapy is already mainstay for refractory cases, but drugs directed at these new pathophysiological pathways may constitute a significant advance.
Collapse
|
10
|
Mahajan AK, Hogarth DK. Bronchial thermoplasty: therapeutic success in severe asthma associated with persistent airflow obstruction. J Asthma 2012; 49:527-9. [PMID: 22515527 DOI: 10.3109/02770903.2012.676124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Severe persistent asthma is a disabling condition associated with significant morbidity and rising mortality worldwide. The recent advent of bronchial thermoplasty (BT) has offered a revolutionary therapeutic option for the treatment of severe persistent asthma. This minimally invasive bronchoscopic procedure focuses on anatomical manipulation of bronchial smooth muscle to attenuate airway hyperresponsiveness. CASE REPORT This case report describes treatment of a 42-year-old female with BT for her debilitating asthma. Following a complicated treatment course of BT, she attained significant relief from her symptoms and had noticeably improved functionality. CONCLUSION This case represents BT success and a change to the traditional paradigm governing the treatment of refractory asthma.
Collapse
Affiliation(s)
- Amit K Mahajan
- Department of Pulmonary and Critical Care Medicine, University of Chicago Medical Center, Chicago, IL 60637, USA
| | | |
Collapse
|
11
|
Bauer NR, Moore TM, McMurtry IF. Rodent models of PAH: are we there yet? Am J Physiol Lung Cell Mol Physiol 2007; 293:L580-2. [PMID: 17660327 DOI: 10.1152/ajplung.00281.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Saji K, Sakuma M, Suzuki J, Takahashi T, Demachi J, Nawata J, Kitamukai O, Onoue N, Sugimura K, Tada T, Fukui S, Kagaya Y, Watanabe J, Shirato K. Efficacy of acute inhalation of nitric oxide in patients with primary pulmonary hypertension using chronic use of continuous epoprostenol infusion. Circ J 2005; 69:335-8. [PMID: 15731541 DOI: 10.1253/circj.69.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND There have only been a few reports published on combination therapy for patients with primary pulmonary hypertension (PPH). METHODS AND RESULTS Fifteen patients with PPH (4 men and 11 women, 34.5+/-12.1 years old) had received chronic administration of epoprostenol and the additive effects of inhaled nitric oxide (NO) and the hemodynamic changes were evaluated. In addition, the difference in the effect of acute NO loading before and after the epoprostenol therapy was compared in 6 of these patients. Under chronic use of epoprostenol, mean pulmonary arterial pressure, mean right atrial pressure and pulmonary vascular resistance were decreased with acute inhalation of NO. However, cardiac output, mean aortic pressure and systemic vascular resistance were unchanged. As a result, the pulmonary to systemic vascular resistance ratio was reduced. Moreover, after chronic use of epoprostenol, the change (delta) in cardiac output with NO inhalation was increased and the NO-induced decrease in pulmonary vascular resistance was augmented compared to those before the induction. CONCLUSION Nitric oxide inhalation further improved the hemodynamics when combined with chronic use of epoprostenol in PPH patients. These results suggest the possibility that combination therapies can be used in the treatment for PPH patients.
Collapse
Affiliation(s)
- Kenya Saji
- Department of Cardiovascular Medicine, Tohoku University Graduated School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|