1
|
Tian H, Ge K, Wang L, Gao P, Chen A, Wang F, Guo F, Wang F, Zhang Q. Advances in PGD2/PTGDR2 signaling pathway in tumors: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:1055-1067. [PMID: 38704736 PMCID: PMC11378995 DOI: 10.17305/bb.2024.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Studies have shown that the prostaglandin (PG) family acts as an allergic inflammatory mediator in malignant diseases. Furthermore, prostaglandin E2 (PGE2) and its related receptors, as well as the prostaglandin D2 (PGD2)/PGD2 receptor (PTGDR2), play irreplaceable roles in tumorigenesis and anti-tumor therapy. Several experiments have demonstrated that PGD2 signaling through PTGDR2 not only directly inhibits cancer cell survival, proliferation, and migration but also reduces resistance toward conventional chemotherapeutic agents. Recent studies from our and other laboratories have shown that PGD2, its ligands, and related metabolites can significantly alter the tumor microenvironment (TME) by promoting the secretion of chemokines and cytokines, thereby inhibiting tumor progression. Additionally, reduced PGD2 expression has been associated with poor prognosis in patients with gastric, breast, lung, and pancreatic cancers, validating the preclinical findings and their clinical relevance. This review focuses on the current understanding of PGD2/PTGDR2 expression patterns and biological activity in cancer, proposing questions to guide the assessment of PGD2 and its receptors as potential targets for effective cancer therapies.
Collapse
Affiliation(s)
- Hengjin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Kunpeng Ge
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Lulu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Peiyao Gao
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Amin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Feifan Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fangzheng Guo
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
| | - FengChao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Prostaglandin D2 Attenuates Lipopolysaccharide-Induced Acute Lung Injury through the Modulation of Inflammation and Macrophage Polarization. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acute lung injury (ALI) is a well-known respiratory disease and a leading cause of death worldwide. Despite advancements in the medical field, developing complete treatment strategies against this disease is still a challenge. In the current study, the therapeutic role of prostaglandin D2 (PGD2) was investigated on lipopolysaccharide (LPS)-induced lung injury in mice models and RAW264.7 macrophages through anti-inflammatory, histopathology, immunohistochemistry, and TUNEL staining. The overproduction of cytokines by RAW264.7 macrophages was observed after stimulation with LPS. However, pretreatment with PGD2 decreased the production of cytokines. The level of inflammatory markers was significantly restored in the PGD2 treatment group (TNF-α = 58.6 vs. 78.5 pg/mL; IL-1β = 29.3 vs. 36.6 pg/mL; IL-6 = 75.4 vs. 98.2 pg/mL; and CRP = 0.84 vs. 1.14 ng/mL). The wet/dry weight ratio of the lungs was quite significant in the disease control (LPS-only treatment) group. Moreover, the histological changes as determined by haematoxylin and eosin (H&E) staining clearly showed that PGD2 treatment maintains the lung tissue architecture. The iNOS expression pattern was increased in lung tissues of LPS-treated animals, whereas, in mice treated with PGD2, the expression of iNOS protein decreased. Flow cytometry data demonstrated that LPS intoxication enhanced apoptosis, which significantly decreased with PGD2 treatment. In conclusion, all these observations indicate that PGD2 provides an anti-inflammatory response in RAW264.7 macrophages and in ALI, and they suggest a therapeutic potential in lung pathogenesis.
Collapse
|
3
|
Herrero R, Sánchez G, Asensio I, López E, Ferruelo A, Vaquero J, Moreno L, de Lorenzo A, Bañares R, Lorente JA. Liver-lung interactions in acute respiratory distress syndrome. Intensive Care Med Exp 2020; 8:48. [PMID: 33336286 PMCID: PMC7746785 DOI: 10.1186/s40635-020-00337-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with liver diseases are at high risk for the development of acute respiratory distress syndrome (ARDS). The liver is an important organ that regulates a complex network of mediators and modulates organ interactions during inflammatory disorders. Liver function is increasingly recognized as a critical determinant of the pathogenesis and resolution of ARDS, significantly influencing the prognosis of these patients. The liver plays a central role in the synthesis of proteins, metabolism of toxins and drugs, and in the modulation of immunity and host defense. However, the tools for assessing liver function are limited in the clinical setting, and patients with liver diseases are frequently excluded from clinical studies of ARDS. Therefore, the mechanisms by which the liver participates in the pathogenesis of acute lung injury are not totally understood. Several functions of the liver, including endotoxin and bacterial clearance, release and clearance of pro-inflammatory cytokines and eicosanoids, and synthesis of acute-phase proteins can modulate lung injury in the setting of sepsis and other severe inflammatory diseases. In this review, we summarized clinical and experimental support for the notion that the liver critically regulates systemic and pulmonary responses following inflammatory insults. Although promoting inflammation can be detrimental in the context of acute lung injury, the liver response to an inflammatory insult is also pro-defense and pro-survival. A better understanding of the liver–lung axis will provide valuable insights into new diagnostic targets and therapeutic strategies for clinical intervention in patients with or at risk for ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain. .,CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain. .,Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.
| | - Gema Sánchez
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.,Laboratory of Biochemistry, Hospital Universitario de Getafe, Madrid, Spain
| | - Iris Asensio
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - Eva López
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain
| | - Antonio Ferruelo
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - Laura Moreno
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba de Lorenzo
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - José A Lorente
- Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Muthumalage T, Lucas JH, Wang Q, Lamb T, McGraw MD, Rahman I. Pulmonary Toxicity and Inflammatory Response of E-Cigarette Vape Cartridges Containing Medium-Chain Triglycerides Oil and Vitamin E Acetate: Implications in the Pathogenesis of EVALI. TOXICS 2020; 8:toxics8030046. [PMID: 32605182 PMCID: PMC7560420 DOI: 10.3390/toxics8030046] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Recently, there has been an outbreak of a condition named e-cigarette or vaping products-associated lung injury (EVALI). The primary components of vaping products include tetrahydrocannabinol (THC), vitamin E acetate (VEA) and medium-chain triglycerides (MCT), may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products. We hypothesized that these CBD/counterfeit vape cartridges and their constituents (VEA and MCT) induce pulmonary toxicity, mediated by oxidative damage and inflammatory responses, leading to acute lung injury. We studied the potential mechanisms of CBD/counterfeit vape cartridge aerosol induced inflammatory response by evaluating the generation of reactive oxygen species by MCT, VEA, and cartridges and their effects on the inflammatory state of pulmonary epithelium and immune cells both in vitro and in vivo. Cells exposed to these aerosols generated reactive oxygen species, caused cytotoxicity, induced epithelial barrier dysfunction, and elicited an inflammatory response. Using a murine model, the parameters of acute toxicity to aerosol inhalation were assessed. Infiltration of neutrophils and lymphocytes was accompanied by significant increases in IL-6, eotaxin, and G-CSF in the bronchoalveolar lavage fluid (BALF). In mouse BALF, eicosanoid inflammatory mediators, leukotrienes, were significantly increased. Plasma from e-cig users also showed increased levels of hydroxyeicosatetraenoic acid (HETEs) and various eicosanoids. Exposure to CBD/counterfeit vape cartridge aerosols showed the most significant effects and toxicity compared to MCT and VEA. In addition, we determined SARS-CoV-2 related proteins and found no impact associated with aerosol exposures from these tested cartridges. Overall, this study demonstrates acute exposure to specific CBD/counterfeit vape cartridges induces in vitro cytotoxicity, barrier dysfunction, and inflammation and in vivo mouse exposure induces acute inflammation with elevated proinflammatory markers in the pathogenesis of EVALI.
Collapse
Affiliation(s)
- Thivanka Muthumalage
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
| | - Joseph H. Lucas
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
| | - Qixin Wang
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
| | - Thomas Lamb
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
| | - Matthew D. McGraw
- Division of Pediatric Pulmonology, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
- Correspondence: ; Tel.: +1-(585)-275-6911
| |
Collapse
|
5
|
Muthumalage T, Lucas JH, Wang Q, Lamb T, McGraw MD, Rahman I. Pulmonary toxicity and inflammatory response of e-cigarettes containing medium-chain triglyceride oil and vitamin E acetate: Implications in the pathogenesis of EVALI but independent of SARS-COV-2 COVID-19 related proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32587960 DOI: 10.1101/2020.06.14.151381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recently, there has been an outbreak associated with the use of e-cigarette or vaping products, associated lung injury (EVALI). The primary components of vaping products, vitamin E acetate (VEA) and medium-chain triglycerides (MCT) may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products. We hypothesized that these e-cig cartridges and their constituents (VEA and MCT) induce pulmonary toxicity, mediated by oxidative damage and inflammatory responses, leading to acute lung injury. We studied the potential mechanisms of cartridge aerosol induced inflammatory response by evaluating the generation of reactive oxygen species by MCT, VEA, and cartridges, and their effects on the inflammatory state of pulmonary epithelium and immune cells both in vitro and in vivo. Cells exposed to these aerosols generated reactive oxygen species, caused cytotoxicity, induced epithelial barrier dysfunction, and elicited an inflammatory response. Using a murine model, the parameters of acute toxicity to aerosol inhalation were assessed. Infiltration of neutrophils and lymphocytes was accompanied by significant increases in IL-6, eotaxin, and G-CSF in the bronchoalveolar lavage fluid (BALF). In mouse plasma, eicosanoid inflammatory mediators, leukotrienes, were significantly increased. Plasma from e-cig users also showed increased levels of hydroxyeicosatetraenoic acid (HETEs) and various eicosanoids. Exposure to e-cig cartridge aerosols showed the most significant effects and toxicity compared to MCT and VEA. In addition, we determined at SARS-COV-2 related proteins and found no impact associated with aerosol exposures from these tested cartridges. Overall, this study demonstrates acute exposure to specific e-cig cartridges induces in vitro cytotoxicity, barrier dysfunction, and inflammation and in vivo mouse exposure induces acute inflammation with elevated pro-inflammatory markers in the pathogenesis of EVALI.
Collapse
|
6
|
Horikami D, Toya N, Kobayashi K, Omori K, Nagata N, Murata T. L-PGDS-derived PGD2
attenuates acute lung injury by enhancing endothelial barrier formation. J Pathol 2019; 248:280-290. [DOI: 10.1002/path.5253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/31/2018] [Accepted: 02/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Daiki Horikami
- Department of Animal Radiology; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Naoki Toya
- Department of Animal Radiology; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Koji Kobayashi
- Department of Animal Radiology; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Keisuke Omori
- Department of Animal Radiology; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Nanae Nagata
- Department of Animal Radiology; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Takahisa Murata
- Department of Animal Radiology; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Tokyo Japan
| |
Collapse
|
7
|
Lu W, Yao X, Ouyang P, Dong N, Wu D, Jiang X, Wu Z, Zhang C, Xu Z, Tang Y, Zou S, Liu M, Li J, Zeng M, Lin P, Cheng F, Huang J. Drug Repurposing of Histone Deacetylase Inhibitors That Alleviate Neutrophilic Inflammation in Acute Lung Injury and Idiopathic Pulmonary Fibrosis via Inhibiting Leukotriene A4 Hydrolase and Blocking LTB4 Biosynthesis. J Med Chem 2017; 60:1817-1828. [PMID: 28218840 DOI: 10.1021/acs.jmedchem.6b01507] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acute lung injury (ALI) and idiopathic pulmonary fibrosis (IPF) are both serious public health problems with high incidence and mortality rate in adults, and with few drugs available for the efficient treatment in clinic. In this study, we identified that two known histone deacetylase (HDAC) inhibitors, suberanilohydroxamic acid (SAHA, 1) and its analogue 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl]benzamide (2), are effective inhibitors of Leukotriene A4 hydrolase (LTA4H), a key enzyme in the biosynthesis of leukotriene B4 (LTB4), across a panel of 18 HDAC inhibitors, using enzymatic assay, thermofluor assay, and X-ray crystallographic investigation. Importantly, both 1 and 2 markedly diminish early neutrophilic inflammation in mouse models of ALI and IPF under a clinical safety dose. Detailed mechanisms of down-regulation of proinflammatory cytokines by 1 or 2 were determined in vivo. Collectively, 1 and 2 would provide promising agents with well-known clinical safety for potential treatment in patients with ALI and IPF via pharmacologically inhibiting LAT4H and blocking LTB4 biosynthesis.
Collapse
Affiliation(s)
- Weiqiang Lu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Ping Ouyang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Ningning Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Dang Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Xingwu Jiang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Chen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Zhongyu Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Shien Zou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University , Shanghai 200011, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Minghua Zeng
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), School of Chemistry & Chemical Engineering, Guangxi Normal University , Guilin 541004, China
| | - Ping Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, Sichuan, China
| | - Feixiong Cheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, Sichuan, China.,Center for Complex Networks Research, Northeastern University , Boston, Massachusetts 02115, United States.,Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
8
|
Bhowmick R, Maung N, Hurley BP, Ghanem EB, Gronert K, McCormick BA, Leong JM. Systemic disease during Streptococcus pneumoniae acute lung infection requires 12-lipoxygenase-dependent inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:5115-23. [PMID: 24089193 DOI: 10.4049/jimmunol.1300522] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute pulmonary infection by Streptococcus pneumoniae is characterized by high bacterial numbers in the lung, a robust alveolar influx of polymorphonuclear cells (PMNs), and a risk of systemic spread of the bacterium. We investigated host mediators of S. pneumoniae-induced PMN migration and the role of inflammation in septicemia following pneumococcal lung infection. Hepoxilin A3 (HXA3) is a PMN chemoattractant and a metabolite of the 12-lipoxygenase (12-LOX) pathway. We observed that S. pneumoniae infection induced the production of 12-LOX in cultured pulmonary epithelium and in the lungs of infected mice. Inhibition of the 12-LOX pathway prevented pathogen-induced PMN transepithelial migration in vitro and dramatically reduced lung inflammation upon high-dose pulmonary challenge with S. pneumoniae in vivo, thus implicating HXA3 in pneumococcus-induced pulmonary inflammation. PMN basolateral-to-apical transmigration in vitro significantly increased apical-to-basolateral transepithelial migration of bacteria. Mice suppressed in the expression of 12-LOX exhibited little or no bacteremia and survived an otherwise lethal pulmonary challenge. Our data suggest that pneumococcal pulmonary inflammation is required for high-level bacteremia and systemic infection, partly by disrupting lung epithelium through 12-LOX-dependent HXA3 production and subsequent PMN transepithelial migration.
Collapse
Affiliation(s)
- Rudra Bhowmick
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Nang Maung
- Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bryan P Hurley
- Mucosal Immunology Laboratory, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Elsa Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
9
|
Anti-inflammatory role of PGD2 in acute lung inflammation and therapeutic application of its signal enhancement. Proc Natl Acad Sci U S A 2013; 110:5205-10. [PMID: 23479612 DOI: 10.1073/pnas.1218091110] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We investigated the role of prostaglandin D2 (PGD2) signaling in acute lung injury (ALI), focusing on its producer-effector interaction in vivo. Administration of endotoxin increased edema and neutrophil infiltration in the WT mouse lung. Gene disruption of hematopoietic PGD synthase (H-PGDS) aggravated all of the symptoms. Experiments involving bone marrow transplantation between WT and H-PGDS-deficient mice showed that PGD2 derived from alveolar nonhematopoietic lineage cells (i.e., endothelial cells and epithelial cells) promotes vascular barrier function during the early phase (day 1), whereas neutrophil-derived PGD2 attenuates its own infiltration and cytokine expression during the later phase (day 3) of ALI. Treatment with either an agonist to the PGD2 receptor, DP, or a degradation product of PGD2, 15-deoxy-Δ(12,14)-PGJ2, exerted a therapeutic action against ALI. Data obtained from bone marrow transplantation between WT and DP-deficient mice suggest that the DP signal in alveolar endothelial cells is crucial for the anti-inflammatory reactions of PGD2. In vitro, DP agonism directly enhanced endothelial barrier formation, and 15-deoxy-Δ(12,14)-PGJ2 attenuated both neutrophil migration and cytokine expression. These observations indicate that the PGD2 signaling between alveolar endothelial/epithelial cells and infiltrating neutrophils provides anti-inflammatory effects in ALI, and suggest the therapeutic potential of these signaling enhancements.
Collapse
|
10
|
Rossaint J, Nadler JL, Ley K, Zarbock A. Eliminating or blocking 12/15-lipoxygenase reduces neutrophil recruitment in mouse models of acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R166. [PMID: 22973824 PMCID: PMC3682261 DOI: 10.1186/cc11518] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute lung injury (ALI) is a common disease in critically ill patients with a high morbidity and mortality. 12/15-lipoxygenase (12/15-LO) is an enzyme generating 12-hydroxy-eicosatetraenoic acid (12-HETE) and 15-HETE from arachidonic acid. It has been shown that 12/15-LO is involved in the regulation of vascular permeability during ALI. METHODS To test whether 12/15-LO participates in leukocyte recruitment into the lung, we investigated the role of 12/15-LO in mouse models of lipopolysaccharide (LPS)-induced pulmonary inflammation and acid-induced ALI, a clinically relevant model of acute lung injury. RESULTS The increase in neutrophil recruitment following LPS inhalation was reduced in 12/15-LO-deficient (Alox15(-/-)) mice and in wild-type (WT) mice after the blocking of 12/15-LO with a pharmacological inhibitor. Bone marrow chimeras revealed that 12/15-LO in hematopoietic cells regulates neutrophil accumulation in the interstitial and alveolar compartments, whereas the accumulation of neutrophils in the intravascular compartment is regulated by 12/15-LO in non-hematopoietic and hematopoietic cells. Mechanistically, the increased plasma levels of the chemokine CXCL1 in Alox15(-/-) mice led to a reduced response of the neutrophil chemokine receptor CXCR2 to stimulation with CXCL1, which in turn abrogated neutrophil recruitment. Alox15(-/-) mice also showed decreased edema formation, reduced neutrophil recruitment and improved gas exchange in an acid-induced ALI model. CONCLUSIONS Our findings suggest that 12/15-LO modulates neutrophil recruitment into the lung by regulating chemokine/chemokine receptor homeostasis.
Collapse
|
11
|
Zarbock A, Distasi MR, Smith E, Sanders JM, Kronke G, Harry BL, von Vietinghoff S, Buscher K, Nadler JL, Ley K. Improved survival and reduced vascular permeability by eliminating or blocking 12/15-lipoxygenase in mouse models of acute lung injury (ALI). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:4715-22. [PMID: 19752233 PMCID: PMC2753988 DOI: 10.4049/jimmunol.0802592] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute lung injury (ALI) is a prevalent disease associated with high mortality. 12/15-lipoxygenase (12/15-LO) is an enzyme producing 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE from arachidonic acid. To test whether 12/15-LO is involved in increasing vascular permeability in the lung, we investigated the role of 12/15-LO in murine models of LPS-induced pulmonary inflammation and clinically relevant acid-induced ALI. The vascular permeability increase upon LPS inhalation was abolished in Alox15(-/-) mice lacking 12/15-LO and in wild-type mice after pharmacological blockade of 12/15-LO. Alox15(-/-) mice also showed improved gas exchange, reduced permeability increase, and prolonged survival in the acid-induced ALI model. Bone marrow chimeras and reconstitution experiments revealed that 12-HETE produced by hematopoietic cells regulates vascular permeability through a CXCR2-dependent mechanism. Our findings suggest that 12/15-LO-derived 12-HETE is a key mediator of vascular permeability in acute lung injury.
Collapse
Affiliation(s)
- Alexander Zarbock
- Robert M. Berne Cardiovascular Research Center, Department of Anesthesiology and Critical Care Medicine, University of Muenster, Albert-Schweitzer Strasse 33, Muenster 48149, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Miyahara T, Hamanaka K, Weber DS, Anghelescu M, Frost JR, King JA, Parker JC. Cytosolic phospholipase A2 and arachidonic acid metabolites modulate ventilator-induced permeability increases in isolated mouse lungs. J Appl Physiol (1985) 2007; 104:354-62. [PMID: 18006865 DOI: 10.1152/japplphysiol.00959.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that the cytosolic phospholipase A(2) (cPLA2) pathway is involved in ventilator-induced lung injury (VILI) produced by high peak inflation pressures (PIP) (J Appl Physiol 98: 1264-1271, 2005), but the relative contributions of the various downstream products of cPLA2 on the acute permeability response were not determined. Therefore, we investigated the role of cPLA2 and the downstream products of arachidonic acid metabolism in the high-PIP ventilation-induced increase in vascular permeability. We perfused isolated mouse lungs and measured the capillary filtration coefficient (K(fc)) after 30 min of ventilation with 9, 25, and 35 cmH2O PIP. In high-PIP-ventilated lungs, K(fc) increased significantly, 2.7-fold, after ventilation with 35 cmH2O PIP compared with paired baseline values and low-PIP-ventilated lungs. Also, increased phosphorylation of lung cPLA2 suggested enzyme activation after high-PIP ventilation. However, treatment with 40 mg/kg arachidonyl trifluoromethyl ketone (an inhibitor of cPLA2) or a combination of 30 microM ibuprofen [a cyclooxygenase (COX) inhibitor], 100 microM nordihydroguaiaretic acid [a lipoxygenase (LOX) inhibitor], and 10 microM 17-octadecynoic acid (a cytochrome P-450 epoxygenase inhibitor) prevented the high-PIP-induced increase in K(fc). Combinations of the inhibitors of COX, LOX, or cytochrome P-450 epoxygenase did not prevent significant increases in K(fc), even though bronchoalveolar lavage levels of the COX or LOX products were significantly reduced. These results suggest that multiple mediators from each pathway contribute to the acute ventilator-induced permeability increase in isolated mouse lungs by mutual potentiation.
Collapse
Affiliation(s)
- Takashige Miyahara
- Dept. of Physiology, MSB 3074, College of Medicine, Univ. of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|