1
|
Ávila-Rodríguez D, Segura-Villalobos DL, Ibarra-Sánchez A, González-Espinosa C, Macías-Silva M. TGF-β y células cebadas: reguladores del desarrollo del tumor. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
El Factor de crecimiento transformante β (TGF-β) es una citocina pleiotrópica implicada en distintas condiciones patológicas, como desórdenes autoinmunes, alergias y en los últimos años, en el cáncer. Esta citocina ejerce efectos supresores de tumores que las células cancerosas deben evadir para lograr la progresión del tumor. Sin embargo, paradójicamente, el TGF-β también modula procesos inflamatorios que favorecen la progresión del tumor, como el reclutamiento de células del sistema inmune al sitio del mismo; entre estas células se encuentran las células cebadas (CCs), las cuales, a su vez también participan en la regulación del tumor, a través de la secreción de distintos mediadores proinflamatorios, proangiogénicos y factores de crecimiento. En esta revisión se describen algunos avances en la comprensión del papel del TGF-β en la regulación de las CCs y la contribución de éstas en el desarrollo y la metástasis de tumores sólidos. El entendimiento de la función del TGF-β y de las células cebadas durante el desarrollo del cáncer es fundamental para el diseño de nuevas terapias que inhiban la progresión del tumor.
Collapse
|
2
|
Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion Molecules: Master Controllers of the Circulatory System. Compr Physiol 2016; 6:945-73. [PMID: 27065171 DOI: 10.1002/cphy.c150020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.
Collapse
Affiliation(s)
- Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Respirology and the Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine, Pediatrics, and Biomedical Research, National Jewish Health, Denver, Colorado, USA
- Departments of Medicine, and Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
3
|
Novotný T, Krejčí J, Malíková J, Švehlík V, Wasserbauer R, Uhlík J, Vajner L. Mast cell stabilization with sodium cromoglycate modulates pulmonary vessel wall remodeling during four-day hypoxia in rats. Exp Lung Res 2015; 41:283-92. [DOI: 10.3109/01902148.2015.1018558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
El Chami H, Hassoun PM. Inflammatory mechanisms in the pathogenesis of pulmonary arterial hypertension. Compr Physiol 2013; 1:1929-41. [PMID: 23733693 DOI: 10.1002/cphy.c100028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is a prominent feature of human and experimental pulmonary hypertension (PH) as suggested by infiltration of various inflammatory cells and increased expression of certain cytokines in remodeled pulmonary vessels. Macrophages, T and B lymphocytes, and dendritic cells are found in the vascular lesions of idiopathic pulmonary arterial hypertension (PAH) as well as in PAH associated with connective tissue diseases or infectious etiologies such as HIV. In addition, PAH is often characterized by the presence of circulating chemokines and cytokines, increased expression of growth (such as VEGF and PDGF) and transcriptional (e.g., nuclear factor of activated T cells or NFAT) factors, and viral protein components (e.g., HIV-1 Nef), which directly contribute to further recruitment of inflammatory cells and the pulmonary vascular remodeling process. These inflammatory pathways may thus serve as potential specific therapeutic targets. This article provides an overview of inflammatory pathways involving chemokines and cytokines as well as growth factors, highlighting their potential role in pulmonary vascular remodeling and the possibility of future targeted therapy.
Collapse
Affiliation(s)
- Hala El Chami
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
5
|
Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol 2013; 2:675-709. [PMID: 23606929 DOI: 10.1002/cphy.c100081] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pulmonary vasculature comprises three anatomic compartments connected in series: the arterial tree, an extensive capillary bed, and the venular tree. Although, in general, this vasculature is thin-walled, structure is nonetheless complex. Contributions to structure (and thus potentially to function) from cells other than endothelial and smooth muscle cells as well as those from the extracellular matrix should be considered. This review is multifaceted, bringing together information regarding (i) classification of pulmonary vessels, (ii) branching geometry in the pulmonary vascular tree, (iii) a quantitative view of structure based on morphometry of the vascular wall, (iv) the relationship of nerves, a variety of interstitial cells, matrix proteins, and striated myocytes to smooth muscle and endothelium in the vascular wall, (v) heterogeneity within cell populations and between vascular compartments, (vi) homo- and heterotypic cell-cell junctional complexes, and (vii) the relation of the pulmonary vasculature to that of airways. These issues for pulmonary vascular structure are compared, when data is available, across species from human to mouse and shrew. Data from studies utilizing vascular casting, light and electron microscopy, as well as models developed from those data, are discussed. Finally, the need for rigorous quantitative approaches to study of vascular structure in lung is highlighted.
Collapse
Affiliation(s)
- Mary I Townsley
- University of South Alabama, Department of Physiology, and Center for Lung Biology, Mobile, Alabama, USA.
| |
Collapse
|
6
|
Wang Z, Chesler NC. Pulmonary vascular mechanics: important contributors to the increased right ventricular afterload of pulmonary hypertension. Exp Physiol 2013; 98:1267-73. [PMID: 23666792 DOI: 10.1113/expphysiol.2012.069096] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic hypoxia causes pulmonary vasoconstriction and vascular remodelling, which lead to hypoxic pulmonary hypertension (HPH). Hypoxic pulmonary hypertension is associated with living at high altitudes and is a complication of many lung diseases, including chronic obstructive pulmonary disease, cystic fibrosis and obstructive sleep apnoea. Pulmonary vascular changes that occur with HPH include stiffening and narrowing of the pulmonary arteries that appear to involve all vascular cell types and sublayers of the arterial wall. Right ventricular (RV) changes that occur with HPH include RV hypertrophy and RV fibrosis, often with preserved systolic and diastolic function and ventricular-vascular coupling efficiency. Both vascular stiffening and vascular narrowing are important contributors to RV afterload via increases in oscillatory and steady ventricular work, respectively. The increased blood viscosity that occurs in HPH can be dramatic and is another important contributor to RV afterload. However, the viscosity, vascular mechanics and ventricular changes that occur with HPH are all reversible. Furthermore, even with continued hypoxia the vascular remodelling does not progress to the obliterative, plexiform lesions that are seen clinically in severe pulmonary hypertension. In animal models, the RV changes appear adaptive, not maladaptive. In summary, HPH-induced vascular mechanical changes affect ventricular function, but both are adaptive and reversible, which differentiates HPH from severe pulmonary hypertension. The mechanisms of adaptation and reversibility may provide useful insight into therapeutic targets for the clinical disease state.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | | |
Collapse
|
7
|
Bartelds B, van Loon RLE, Mohaupt S, Wijnberg H, Dickinson MG, Boersma B, Takens J, van Albada M, Berger RM. Mast Cell Inhibition Improves Pulmonary Vascular Remodeling in Pulmonary Hypertension. Chest 2012; 141:651-660. [DOI: 10.1378/chest.11-0663] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
8
|
Abstract
Hypoxic pulmonary hypertension (HPH) is a syndrome characterized by the increase of pulmonary vascular tone and the structural remodeling of peripheral pulmonary arteries. Mast cells have an important role in many inflammatory diseases and they are also involved in tissue remodeling. Tissue hypoxia is associated with mast cell activation and the release of proteolytic enzymes, angiogenic and growth factors which mediate tissue destruction and remodeling in a variety of physiological and pathological conditions. Here we focused on the role of mast cells in the pathogenesis of hypoxic pulmonary hypertension from the past to the present.
Collapse
Affiliation(s)
- H Maxová
- Department of Pathophysiology, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
9
|
Maxová H, Hezinová A, Vízek M. Disodium cromoglycate attenuates hypoxia induced enlargement of end-expiratory lung volume in rats. Physiol Res 2011; 60:831-4. [PMID: 22106819 DOI: 10.33549/physiolres.932200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mechanism responsible for the enlargement of end-expiratory lung volume (EELV) induced by chronic hypoxia remains unclear. The fact that the increase in EELV persists after return to normoxia suggests involvement of morphological changes. Because hypoxia has been also shown to activate lung mast cells, we speculated that they could play in the mechanism increasing EELV similar role as in vessel remodeling in hypoxic pulmonary hypertension (HPH). We, therefore, tested an effect of mast cells degranulation blocker disodium cromoglycate (DSCG) on hypoxia induced EELV enlargement. Ventilatory parameters, EELV and right to left heart weight ratio (RV/LV+S) were measured in male Wistar rats. The experimental group (H+DSCG) was exposed to 3 weeks of normobaric hypoxia and treated with DSCG during the first four days of hypoxia, control group was exposed to hypoxia only (H), two others were kept in normoxia as non-treated (N) and treated (N+DSCG) groups. DSCG treatment significantly attenuated the EELV enlargement (H+DSCG = 6.1+/-0.8; H = 9.2+/-0.9; ml +/-SE) together with the increase in minute ventilation (H + DSCG = 190+/-8; H = 273 +/- 10; ml/min +/- SE) and RV/LV + S (H + DSCG = 0.39 +/- 0.03; H = 0.50 +/- 0.06).
Collapse
Affiliation(s)
- H Maxová
- Department of Pathophysiology, Second Faculty of Medicine, Charles University in Prague, Praha, Czech Republic.
| | | | | |
Collapse
|
10
|
Kwon JS, Kim YS, Cho AS, Cho HH, Kim JS, Hong MH, Jeong SY, Jeong MH, Cho JG, Park JC, Kang JC, Ahn Y. The novel role of mast cells in the microenvironment of acute myocardial infarction. J Mol Cell Cardiol 2011; 50:814-25. [PMID: 21295578 DOI: 10.1016/j.yjmcc.2011.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
Mast cells are multifunctional cells containing various mediators, such as cytokines, tryptase, and histamine, and they have been identified in infarct myocardium. Here, we elucidated the roles of mast cells in a myocardial infarction (MI) rat model. We studied the physiological and functional roles of mast cell granules (MCGs), isolated from rat peritoneal fluid, on endothelial cells, neonatal cardiomyocytes, and infarct heart (1-hour occlusion of left coronary artery followed by reperfusion). The number of mast cells had two peak time points of appearance in the infarct region at 1day and 21days after MI induction in rats (p<0.05 in each compared with sham-operated heart). Simultaneous injection of an optimal dose of MCGs modulated the microenvironment and resulted in the increased infiltration of macrophages and decreased apoptosis of cardiomyocytes without change in the mast cell number in infarct myocardium. Moreover, MCG injection attenuated the progression of MI through angiogenesis and preserved left ventricular function after MI. MCG-treated cardiomyocytes were more resistant to hypoxic injury through phosphorylation of Akt, and MCG-treated endothelial cells showed enhanced migration and tube formation. We have shown that MCGs have novel cardioprotective roles in MI via the prolonged survival of cardiomyocytes and the induction of angiogenesis.
Collapse
Affiliation(s)
- Jin Sook Kwon
- Stem Cell Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li XQ, Wang HM, Yang CG, Zhang XH, Han DD, Wang HL. Fluoxetine inhibited extracellular matrix of pulmonary artery and inflammation of lungs in monocrotaline-treated rats. Acta Pharmacol Sin 2011; 32:217-22. [PMID: 21217769 DOI: 10.1038/aps.2010.187] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM To investigate the effects of the selective serotonin reuptake inhibitor (SSRI) fluoxetine on extracellular matrix (ECM) remodeling of the pulmonary artery and inflammation of the lungs in pulmonary arterial hypertension (PAH) induced by monocrotaline in rats. METHODS MCT-induced chronic PAH was established in Wistar rats. After treatment with fluoxetine for 3 weeks, pulmonary hemodynamic measurement and morphological investigation of lung tissues were undertaken. The main components of the ECM, elastin and collagen, were detected using Van Gieson stain and Orcein stain, respectively, or using Victoria-ponceau's double stain. The ECM proteolytic enzymes matrix metalloproteinase (MMP)-2 and MMP-9, and the tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2, were detected by Western blot. Inflammation of lung tissue was assayed using lung morphology and inflammatory cytokine expression. RESULTS Fluoxetine (2 and 10 mg/kg) significantly inhibited MCT-induced PAH, attenuated pulmonary arterial muscularization and ECM remodeling, and decreased MMP/TIMP expression. Fluoxetine also suppressed inflammatory responses in lung tissue and inhibited the expression of the inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP-1) and intercellular adhesion molecule-1 (ICAM-1). CONCLUSION Fluoxetine inhibited MCT-induced ECM remodeling of the pulmonary artery and inflammation of lung tissue. These effects were related to its inhibition on MMPs/TIMPs and cytokine productions.
Collapse
|
12
|
Cannabinoids reduce granuloma-associated angiogenesis in rats by controlling transcription and expression of mast cell protease-5. Br J Pharmacol 2008; 154:1672-9. [PMID: 18552882 DOI: 10.1038/bjp.2008.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic inflammatory conditions, such as granulomas, are associated with angiogenesis. Mast cells represent the main cell type orchestrating angiogenesis, through the release of their granule content. Therefore, compounds able to modulate mast cell behaviour may be considered as a new pharmacological approach to treat angiogenesis-dependent events. Here, we tested the effect of selective cannabinoid (CB) receptor agonists in a model of angiogenesis-dependent granuloma formation induced by lambda-carrageenin in rats. EXPERIMENTAL APPROACH Granulomas were induced by lambda-carrageenin-soaked sponges implanted subcutaneously on the back of male Wistar rats. After 96 h, implants were removed and granuloma formation was measured (wet weight); angiogenesis was evaluated by histological analysis and by the measurement of haemoglobin content. Mast cells in the granulomas were evaluated histologically and by RT-PCR and immunoblotting analysis for mast cell-derived proteins (rat mast cell protease-5 (rMCP-5) and nerve growth factor). Selective CB1 and CB2 receptor agonists(,) ACEA and JWH-015 (0.001-0.1 mg mL(-1)), were given locally only once, at the time of implantation. KEY RESULTS The CB1 and CB2 receptor agonists decreased the weight and vascularization of granulomas after 96 h. This treatment also reduced mast cell number and activation in granulomatous tissue. Specifically, these compounds prevented the transcription and expression of rMCP-5, a protein involved in sprouting and advance of new blood vessels. CONCLUSION AND IMPLICATIONS Modulation of mast cell function by cannabinoids reduced granuloma formation and associated angiogenesis. Therefore cannabinoid-related drugs may be useful in the management of granulomatous diseases accompanied by angiogenesis.
Collapse
|
13
|
Xiang M, Wang J. Management of atherosclerosis with antiallergic medicine: a lesson from the mouse model. Future Cardiol 2007; 3:595-9. [PMID: 19804280 DOI: 10.2217/14796678.3.6.595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Sun J, Sukhova GK, Wolters PJ et al.: Mast cells promote atherosclerosis by releasing pro-inflammatory cytokines. Nat. Med. 13, 719-724 (2007). Mast cells are important components in human allergic response and innate immunity. These cells have been implicated in the pathogenesis of atherosclerosis since the 1950s, and a series of studies have proposed their roles in the pathologic events critical to atherogenesis. Despite these studies and hypotheses, there is no evidence to suggest a direct participation of these allergic cells in atherosclerosis. Using mast cell-deficient mice and intravenous mast cell reconstitution technology with a conventional mouse atherosclerosis model, Dr Sun et al. revealed that mast cells contribute to atherogenesis by releasing proinflammatory cytokines, which are utilized to stimulate vascular cell-protease expression and further tissue remodeling. Mice that lack these cells are resistant to diet-induced atherosclerosis. These data suggest that stabilization of mast cells with antiallergic medicine may be utilized in controlling or preventing the initiation and progression of atherosclerosis in humans.
Collapse
Affiliation(s)
- Meixiang Xiang
- Medical College of Zhejiang University Hangzhou, Department of Cardiology, 2nd Affiliated Hospital, Zhejiang 310009, China.
| | | |
Collapse
|
14
|
Swindle EJ, Metcalfe DD. The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes. Immunol Rev 2007; 217:186-205. [PMID: 17498060 DOI: 10.1111/j.1600-065x.2007.00513.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), including nitric oxide, are produced in cells by a variety of enzymatic and non-enzymatic mechanisms. At high levels, both types of oxidants are used to kill ingested organisms within phagocytes. At low levels, RNOS may diffuse outside cells where they impact the vasculature and nervous system. Recent evidence suggests that low levels of ROS produced within cells are involved in cell signaling. Along with these physiological roles, many pathological conditions exist where detrimental high-level ROS and RNOS are produced. Many situations in which ROS/RNOS are associated also involve mast cell activation. In innate immunity, such mast cells are involved in the immune response toward pathogens. In acquired immunity, activation of mast cells by cross-linking of receptor-bound immunoglobulin E causes the release of mediators involved in the allergic inflammatory response. In this review, we describe the principle pathways for ROS and RNOS generation by cells and discuss the existence of such pathways in mast cells. In addition, we examine the evidence for a functional role for ROS and RNOS in mast cell secretory responses and discuss evidence for a direct relationship between ROS, RNOS, and mast cells in mast cell-dependent inflammatory conditions.
Collapse
Affiliation(s)
- Emily J Swindle
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-6961, USA.
| | | |
Collapse
|
15
|
Cantini-Salignac C, Lartaud I, Schrijen F, Atkinson J, Chabot F. Metalloproteinase-9 in circulating monocytes in pulmonary hypertension. Fundam Clin Pharmacol 2006; 20:405-10. [PMID: 16867026 DOI: 10.1111/j.1472-8206.2006.00417.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of matrix metalloproteinases (MMPs) in pulmonary hypertension (PH) is complex as MMPs are involved in both the vascular and cardiac remodelling associated with PH. To gain insight into this problem, monocytes were isolated from pulmonary arterial blood in patients suffering from PH, related to chronic obstructive pulmonary disease (n = 6), chronic pulmonary thromboembolism (n = 3) or pulmonary arterial hypertension (n = 8). The severity of PH was associated with decreases in cardiac index (CI) and mixed venous blood oxygen saturation (SO(2)), and an increase in right atrial pressure (). Monocyte pro-MMP-9 content (zymography) was positively correlated with SO(2) (r = 0.73, P < 0.05) and CI (r = 0.66, P < 0.05), and negatively with (r = 0.54, P < 0.05); there was no significant correlation with pulmonary vascular resistance. In conclusion, the pro-MMP-9 content of circulating monocytes was lower in the more severe forms of PH which showed heart failure suggesting that such MMP enzymatic activity reflects heart failure following pulmonary vascular and myocardial remodelling in PH.
Collapse
MESH Headings
- Biomarkers/blood
- Blood Pressure
- Cardiac Output, Low/blood
- Cardiac Output, Low/etiology
- Cardiac Output, Low/physiopathology
- Female
- Heart Atria/physiopathology
- Humans
- Hypertension, Pulmonary/blood
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/physiopathology
- Male
- Matrix Metalloproteinase 2/blood
- Matrix Metalloproteinase 9/blood
- Middle Aged
- Monocytes/enzymology
- Oxygen/blood
- Pulmonary Artery/physiopathology
- Pulmonary Disease, Chronic Obstructive/blood
- Pulmonary Disease, Chronic Obstructive/complications
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Embolism/blood
- Pulmonary Embolism/complications
- Pulmonary Embolism/physiopathology
- Respiratory Function Tests
- Severity of Illness Index
- Vascular Resistance
- Ventricular Remodeling
Collapse
|
16
|
Vajner L, Vytásek R, Lachmanová V, Uhlík J, Konrádová V, Novotná J, Hampl V, Herget J. Acute and chronic hypoxia as well as 7-day recovery from chronic hypoxia affects the distribution of pulmonary mast cells and their MMP-13 expression in rats. Int J Exp Pathol 2006; 87:383-91. [PMID: 16965566 PMCID: PMC2517379 DOI: 10.1111/j.1365-2613.2006.00493.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chronic hypoxia results in pulmonary hypertension due to vasoconstriction and structural remodelling of peripheral lung blood vessels. We hypothesize that vascular remodelling is initiated in the walls of prealveolar pulmonary arteries by collagenolytic metalloproteinases (MMP) released from activated mast cells. Distribution of mast cells and their expression of interstitial collagenase, MMP-13, in lung conduit, small muscular, and prealveolar arteries was determined quantitatively in rats exposed for 4 and 20 days to hypoxia as well as after 7-day recovery from 20-day hypoxia (10% O2). Mast cells were identified using Toluidine Blue staining, and MMP-13 expression was detected using monoclonal antibody. After 4, but not after 20 days of hypoxia, a significant increase in the number of mast cells and their MMP-13 expression was found within walls of prealveolar arteries. In rats exposed for 20 days, MMP-13 positive mast cells accumulated within the walls of conduit arteries and subpleurally. In recovered rats, MMP-13 positive mast cells gathered at the prealveolar arterial level as well as in the walls of small muscular arteries; these mast cells stayed also in the conduit part of the pulmonary vasculature. These data support the hypothesis that perivascular pulmonary mast cells contribute to the vascular remodelling in hypoxic pulmonary hypertension in rats by releasing interstitial collagenase.
Collapse
Affiliation(s)
- Ludek Vajner
- Department of Histology and Embryology, Charles University, Prague.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Brower GL, Janicki JS. Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. J Card Fail 2006; 11:548-56. [PMID: 16198252 DOI: 10.1016/j.cardfail.2005.05.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Left ventricular (LV) hypertrophy and dilation are important compensatory responses to chronic volume overload; however, the mechanisms responsible for this LV remodeling have not been well characterized. Previous observations that the number of myocardial mast cells are increased in congestive heart failure (CHF) suggested the hypothesis that mast cells might be involved in the ventricular remodeling induced by a chronic volume overload. METHODS AND RESULTS Accordingly, the intent of this study was to determine the contribution of mast cells to LV remodeling, dysfunction, and morbidity/mortality secondary to CHF in the infrarenal aortocaval fistula model of sustained volume overload. To this end, LV end-diastolic pressure, size, and function (ie, isovolumetric pressure-volume relations in the blood-perfused isolated heart) were assessed in both nedocromil sodium treated and untreated rats at 8 weeks after fistula and compared with age-matched controls. Nedocromil, a mast cell-stabilizing drug, effectively prevented the LV dilation and decreased contractility seen in the untreated fistula group in a dose-dependent fashion, resulting in a significant reduction in the incidence of morbidity/mortality from CHF. CONCLUSION The ability of mast cell stabilization to prevent ventricular dilation induced by chronic volume overload identifies a key role for mast cells in the regulation of myocardial remodeling.
Collapse
Affiliation(s)
- Gregory L Brower
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama, USA
| | | |
Collapse
|
18
|
Edwards ST, Cruz AC, Donnelly S, Dazin PF, Schulman ES, Jones KD, Wolters PJ, Hoopes C, Dolganov GM, Fang KC. c-Kit immunophenotyping and metalloproteinase expression profiles of mast cells in interstitial lung diseases. J Pathol 2005; 206:279-90. [PMID: 15887294 DOI: 10.1002/path.1780] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diverse interstitial lung diseases (ILD) demonstrate mesenchymal infiltration by an abundance of activated mast cells whose role in parenchymal fibrogenesis remains unclear. Since mast cells differentiate in a dynamic, tissue-specific manner via signals transduced by c-Kit receptor, we examined the effect of ILD microenvironments on c-Kit expression and metalloproteinase phenotypes of mesenchymal mast cell populations. Immunohistochemical and flow cytometric analyses characterized surface expression of c-Kit on mast cells in tissues obtained from patients with idiopathic pulmonary fibrosis, systemic sclerosis, sarcoidosis, and lymphangioleiomyomatosis, thus identifying a unique immunophenotype not shared by normal lung mast cells. Isolation of c-Kit+/FcepsilonRI+/CD34- mast cells via immunocytometric sorting of heterogeneous cell populations from mechanically disaggregated lung tissues permitted analysis of gene expression patterns by two-step real-time polymerase chain reaction. Transcriptional profiling identified expression of c-Kit and the neutral serine proteases, tryptase and chymase, establishing the identity of sorted populations as mature mast cells. Mast cells harvested from ILD tissues demonstrated characteristic metalloproteinase phenotypes which included expression of matrix metalloproteinase (MMP)-1 and a disintegrin and metalloproteinase (ADAM)-9, -10, and -17. Immunohistochemical co-localization guided by gene profiling data confirmed expression of chymase, MMP-1, and ADAM-17 protein in subpopulations of mast cells in remodelling interstitium. Gene profiling of harvested mast cells also showed increased transcript copy numbers for TNFalpha and CC chemokine receptor 2, which play critical roles in lung injury. We conclude that ILD microenvironments induce unique c-Kit receptor and metalloproteinase mast cell phenotypes.
Collapse
Affiliation(s)
- Samuel T Edwards
- Cardiovascular Research Institute, University of California, San Francisco, California 94143-0911, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Varayoud J, Ramos JG, Bosquiazzo VL, Muñoz-de-Toro M, Luque EH. Mast cells degranulation affects angiogenesis in the rat uterine cervix during pregnancy. Reproduction 2004; 127:379-87. [PMID: 15016957 DOI: 10.1530/rep.1.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During pregnancy, it is essential that sufficient nutrients are supplied by the vascular system to support the dramatic modifications of the rat uterine cervix. Angiogenesis refers to the growth of new blood vessels from pre-existing microcirculation and mast cells have been associated with this process. This study examined the modifications of the vascular compartment and the distribution of mast cells on cervical tissue during pregnancy. Using disodium cromoglycate as a mast cell stabilizer, we determined the effects of the mast cell degranulation on cervical angiogenesis. Mast cell distribution and their degranulation status were evaluated by immunohistochemistry. Endothelial cell proliferation was measured by bromodeoxyuridine incorporation. Vascular areas (absolute and relative) and maturation indices were assessed by quantitative immunohistochemistry of von Willebrand factor and alpha-smooth muscle actin respectively. Mast cells were predominantly observed during the first half of pregnancy in the perivascular zones. The values of bromodeoxyuridine incorporation, absolute vascular area and vascular maturation index exhibited a significant increase throughout pregnancy. All animals that received mast cell stabilizer showed more than 40% of non-degranulated mast cells. Treated rats exhibited a decrease in endothelial proliferation and in relative vascular area; in addition, a large proportion of mature blood vessels was observed, suggesting a diminished level of new vessel formation. The effects of the mast cell stabilizer were sustained beyond the end of treatment. This is the first report that brings evidence that mast cell degranulation could be a necessary process to contribute to the normal angiogenesis of the rat cervix during pregnancy. Further investigations are needed to elucidate the possible implications of abnormal vascular development of the uterine cervix on the physiological process of ripening and parturition.
Collapse
Affiliation(s)
- J Varayoud
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
20
|
Jiang BH, Maruyama J, Yokochi A, Iwasaki M, Amano H, Mitani Y, Maruyama K. Prolonged Nitric Oxide Inhalation Fails to Regress Hypoxic Vascular Remodeling in Rat Lung. Chest 2004; 125:2247-52. [PMID: 15189948 DOI: 10.1378/chest.125.6.2247] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE The purpose of present study was to investigate whether long-term nitric oxide (NO) inhalation during the recovery in air might improve the regression of chronic hypoxic pulmonary hypertension (PH) and vascular changes. MATERIALS AND METHODS The rats were exposed to 10 ppm of NO in air for 10 days (n = 12) and 30 days (n = 4), or 40 ppm of NO in air for 10 days (n = 6) and 30 days (n = 12) following 10 days of hypobaric hypoxia (380 mm Hg, 10% oxygen). For each NO group, air control rats following hypoxic exposure were studied at the same time (n = 13, 11, 9, and 11, respectively). Normal air rats (n = 6) without hypoxic exposure and rats (n = 7) following 10 days of hypoxic exposure were used as normal and chronic hypoxic control groups, respectively. Muscularization of normally nonmuscular peripheral arteries and medial hypertrophy of normally muscular arteries were assessed by light microscopy. An additional 16 rats were used to investigate the recovery of pulmonary artery pressure with (n = 8) and without NO inhalation (n = 8) after 10 days of hypobaric hypoxia. RESULTS Long-term hypoxia-induced PH, right ventricular hypertrophy (RVH), and hypertensive pulmonary vascular changes, each of which regressed partly after recovery in room air. There were no differences among rats with and without NO during each recovery period in RVH, medial wall thickness of muscular artery, and the percentages of muscularized arteries at the alveolar wall and duct levels. Continuous inhaled 40 ppm NO decreased pulmonary artery pressure from 40.1 +/- 1.1 to 29.9 +/- 3.8 mm Hg (mean +/- SE) [n = 8], which was not different in the rats without NO inhalation (n = 8). Urine nitrate level was higher in rats that had inhaled NO. CONCLUSION Continuous NO inhalation showed no effect on regression of pulmonary vascular remodeling in chronic hypoxic PH after returning to room air.
Collapse
Affiliation(s)
- Bao Hua Jiang
- Department of Anesthesiology and the Intensive Care Unit, Faculty of Medicine, University of Mie, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Nagata M, Shijubo N, Walls AF, Ichimiya S, Abe S, Sato N. Chymase-positive mast cells in small sized adenocarcinoma of the lung. Virchows Arch 2003; 443:565-73. [PMID: 12827514 DOI: 10.1007/s00428-003-0842-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 05/20/2003] [Indexed: 12/19/2022]
Abstract
Mast cells accumulate in angiogenesis-dependent situations of lung adenocarcinoma. Human mast cells are divided into two major subsets: MCT (mast cells with immunoreactivity for tryptase but not chymase) and MCTC (reactive for tryptase and chymase). Chymase is an important mediator of tissue remodeling, but research into chymase-containing mast cell subpopulations has been hampered by the lack of reagents suitable for use with formalin-fixed tissue. We stained chymase using CC1 antibody in 66 cases of small sized lung adenocarcinoma as well as CD34 and tryptase. There were significant positive correlations of microvessel counts with MCT-type and MCTC-type mast cell counts in lung adenocarcinomas. When analyzed according to Noguchi's classification, MCT-type and MCTC-type mast cells were significantly increased in Noguchi type-C tumors [localized bronchioloalveolar carcinoma (LBAC) with active fibroblastic proliferation] compared with in Noguchi type-A (LBAC) plus type-B tumors (LBAC with alveolar collapse). Members in the high-count group of MCTC-type but not MCT-type mast cells showed a significantly worse outcome than those in the low-count group in LBACs. Counting chymase-positive (MCTC-type) mast cells in tumor stroma may be a good prognosis predictor for LBACs, especially Noguchi type-C tumors.
Collapse
Affiliation(s)
- Manabu Nagata
- Third Department of Internal Medicine, Sapporo Medical University School of Medicine, South-1, West-16 Chuo-ku, 060-8543 Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Herget J, Novotna J, Bibova J, Povysilova V, Vankova M, Hampl V. Metalloproteinase inhibition by Batimastat attenuates pulmonary hypertension in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 2003; 285:L199-208. [PMID: 12665462 DOI: 10.1152/ajplung.00167.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic hypoxia induces lung vascular remodeling, which results in pulmonary hypertension. We hypothesized that a previously found increase in collagenolytic activity of matrix metalloproteinases during hypoxia promotes pulmonary vascular remodeling and hypertension. To test this hypothesis, we exposed rats to hypoxia (fraction of inspired oxygen = 0.1, 3 wk) and treated them with a metalloproteinase inhibitor, Batimastat (30 mg/kg body wt, daily ip injection). Hypoxia-induced increases in concentration of collagen breakdown products and in collagenolytic activity in pulmonary vessels were inhibited by Batimastat, attesting to the effectiveness of Batimastat administration. Batimastat markedly reduced hypoxic pulmonary hypertension: pulmonary arterial blood pressure was 32 +/- 3 mmHg in hypoxic controls, 24 +/- 1 mmHg in Batimastat-treated hypoxic rats, and 16 +/- 1 mmHg in normoxic controls. Right ventricular hypertrophy and muscularization of peripheral lung vessels were also diminished. Batimastat had no influence on systemic arterial pressure or cardiac output and was without any effect in rats kept in normoxia. We conclude that stimulation of collagenolytic activity in chronic hypoxia is a substantial causative factor in the pathogenesis of pulmonary vascular remodeling and hypertension.
Collapse
Affiliation(s)
- Jan Herget
- Department of Physiology, Charles Univ. Second Medical School, Plzenská 130/221, 15000 Praha 5, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Kunori Y, Koizumi M, Masegi T, Kasai H, Kawabata H, Yamazaki Y, Fukamizu A. Rodent alpha-chymases are elastase-like proteases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5921-30. [PMID: 12444981 DOI: 10.1046/j.1432-1033.2002.03316.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the alpha-chymases of primates and dogs are known as chymotrypsin-like proteases, the enzymatic properties of rodent alpha-chymases (rat mast cell protease 5/rMCP-5 and mouse mast cell protease 5/mMCP-5) have not been fully understood. We report that recombinant rMCP-5 and mMCP-5 are elastase-like proteases, not chymotrypsin-like proteases. An enzyme assay using chromogenic peptidyl substrates showed that mast cell protease-5s (MCP-5s) have a clear preference for small aliphatic amino acids (e.g. alanine, isoleucine, valine) in the P1 site of substrates. We used site-directed mutagenesis and computer modeling approaches to define the determinant residue for the substrate specificity of mMCP-5, and found that the mutant possessing a Gly substitution of the Val at position 216 (V216G) lost elastase-like activity but acquired chymase activity, suggesting that the Val216 dominantly restricts the substrate specificity of mMCP-5. Structural models of mMCP-5 and the V216G mutant based on the crystal structures of serine proteases (rMCP-2, human cathepsin G, and human chymase) revealed the active site differences that can account for the marked differences in substrate specificity of the two enzymes between elastase and chymase. These findings suggest that rodent alpha-chymases have unique biological activity different from the chymases of other species.
Collapse
Affiliation(s)
- Yuichi Kunori
- TEIJIN Institute for Biomedical Research, Hino, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Brower GL, Chancey AL, Thanigaraj S, Matsubara BB, Janicki JS. Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 2002; 283:H518-25. [PMID: 12124196 DOI: 10.1152/ajpheart.00218.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objectives of this study were to investigate the temporal response of left ventricular (LV) matrix metalloproteinase (MMP) activity and collagen volume fraction (CVF) induced by an aortocaval fistula and the role of cardiac mast cells in regulating MMP activity. LV tissue was analyzed for MMP activity, CVF, and mast cell number in rats euthanized at 0.5, 1, 2, 3, 5, 14, 21, 35, and 56 days. Additional rats treated with the mast cell membrane-stabilizing drug cromolyn sodium were euthanized 1, 2, and 3 days postfistula. Marked increases in MMP activity occurred rapidly and remained significantly elevated for 5 days before returning toward normal. A significant decrease in CVF occurred by day 5, but thereafter CVF rebounded to normal or above normal values. The number of myocardial mast cells also significantly increased postfistula, and there was a close association between mast cell density and MMP activity. Cromolyn treatment prevented the increase in mast cell number and MMP activity. Thus it is concluded that cardiac mast cells play a major role in the regulation of MMP activity.
Collapse
Affiliation(s)
- Gregory L Brower
- Department of Anatomy, Physiology and Pharmacology, 106 Greene Hall, Auburn University, Auburn, AL 36849-5517, USA.
| | | | | | | | | |
Collapse
|
25
|
Toda S, Koike N, Sugihara H. Thyrocyte integration, and thyroid folliculogenesis and tissue regeneration: perspective for thyroid tissue engineering. Pathol Int 2001; 51:403-17. [PMID: 11422801 DOI: 10.1046/j.1440-1827.2001.01218.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thyroid gland is composed of many ball-like structures called thyroid follicles, which are supported by the interfollicular extracellular matrix (ECM) and a capillary network. The component thyrocytes are highly integrated in their specific structural and functional polarization. In conventional monolayer and floating culture systems, thyrocytes cannot organize themselves into follicles with normal polarity. In contrast, in 3-D collagen gel culture, thyrocytes easily form stable follicles with physiological polarity. Integration of thyrocyte growth and differentiation results ultimately in thyroid folliculogenesis. This culture method and subacute thyroiditis are two promising models for addressing mechanisms of folliculogenesis, because thyroid-follicle formation actively occurs both in the culture system and at the regenerative phase of the disorder. The understanding of the mechanistic basis of folliculogenesis is prerequisite for generation of artificial thyroid tissue, which would enable a more physiological strategy to the treatment of hypothyroidism caused by various diseases and surgical processes than conventional hormone replacement therapy. We review here thyrocyte integration, and thyroid folliculogenesis and tissue regeneration. We also briefly discuss a perspective for thyroid tissue regeneration and engineering.
Collapse
Affiliation(s)
- S Toda
- Department of Pathology, Saga Medical School and; Koike Thyroid Hospital, Saga, Japan.
| | | | | |
Collapse
|
26
|
Frank BT, Rossall JC, Caughey GH, Fang KC. Mast cell tissue inhibitor of metalloproteinase-1 is cleaved and inactivated extracellularly by alpha-chymase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2783-92. [PMID: 11160345 DOI: 10.4049/jimmunol.166.4.2783] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that mast cell alpha-chymase cleaves and activates progelatinase B (progel B). Outside of cells, progel B is complexed with tissue inhibitor of metalloproteinase (TIMP)-1, which hinders zymogen activation and inhibits activity of mature forms. The current work demonstrates that dog BR mastocytoma cells, HMC-1 cells, and murine bone marrow-derived mast cells secrete TIMP-1 whose electrophoretic profile in supernatants suggests degranulation-dependent proteolysis. Alpha-chymase cleaves uncomplexed TIMP-1, reducing its ability to inhibit gel B, whereas tryptase has no effect. Sequencing of TIMP-1's alpha-chymase-mediated cleavage products reveals hydrolysis at Phe(12)-Cys(13) and Phe(23)-Val(24) in loop 1 and Phe(101)-Val(102) and Trp(105)-Asn(106) in loop 3 of the NH(2)-terminal domain. TIMP-1 in a ternary complex with progel B and neutrophil gelatinase-associated lipocalin is also susceptible to alpha-chymase cleavage, yielding products like those resulting from processing of free TIMP-1. Thus, alpha-chymase cleaves free and gel B-bound TIMP-1. Incubation of the progel B-TIMP-1-neutrophil gelatinase-associated lipocalin complex with alpha-chymase increases gel B activity 2- to 5-fold, suggesting that alpha-chymase activates progel B whether it exists as free monomer or as a complex with TIMP-1. Furthermore, inhibition of alpha-chymase blocks degranulation-induced TIMP-1 processing (absent in alpha-chymase-deficient HMC-1 cells). Purified alpha-chymase processes TIMP-1 in BR supernatants, generating products like those induced by degranulation. In summary, these results suggest that controlled exocytosis of mast cell alpha-chymase activates progel B even in the presence of TIMP-1. This is the first identification of a protease that overcomes inhibition by bound TIMP-1 to activate progel B without involvement of other proteases.
Collapse
Affiliation(s)
- B T Frank
- Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
27
|
Vieillard-Baron A, Frisdal E, Eddahibi S, Deprez I, Baker AH, Newby AC, Berger P, Levame M, Raffestin B, Adnot S, d'Ortho MP. Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer or doxycycline aggravates pulmonary hypertension in rats. Circ Res 2000; 87:418-25. [PMID: 10969041 DOI: 10.1161/01.res.87.5.418] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic hypoxic pulmonary hypertension (PH) results from persistent vasoconstriction, excess muscularization, and extracellular matrix remodeling of pulmonary arteries. The matrix metalloproteinases (MMPs) are a family of proteinases implicated in extracellular matrix turnover and hence in smooth muscle and endothelial cell migration and proliferation. Because MMP expression and activity are increased in PH, we designed the present study to investigate whether inhibition of lung MMPs in rats subjected to chronic hypoxia (CH) contributes to or protects against vascular remodeling and PH. To achieve lung MMP inhibition, rats exposed to 10% O(2) for 15 days were treated with either doxycycline (20 mg/kg per day by gavage starting 2 days before and continuing throughout the CH period) or a single dose of recombinant adenovirus (Ad) for the human tissue inhibitors of metalloproteinases-1 (hTIMP-1) gene (Ad.hTIMP-1, 10(8) plaque-forming units given intratracheally 2 days before CH initiation). Control groups either received no treatment or were treated with an adenovirus containing no gene in the expression cassette (Ad.Null). Efficacy of hTIMP-1 gene transfer was assessed both by ELISA on bronchoalveolar lavages and by hTIMP-1 immunofluorescence on lung sections. MMP inhibition in lungs was evaluated by in situ zymography and gelatinolytic activity assessment using [(3)H]gelatin. Rats treated with either doxycycline or Ad.hTIMP-1 had higher pulmonary artery pressure and right heart ventricular hypertrophy more severe than their respective controls. Worsening of PH was associated with increased muscularization and periadventitial collagen accumulation in distal arteries. In conclusion, our study provides compelling evidence that MMPs play a pivotal role in protecting against pulmonary artery remodeling.
Collapse
|
28
|
Cowan KN, Jones PL, Rabinovitch M. Regression of hypertrophied rat pulmonary arteries in organ culture is associated with suppression of proteolytic activity, inhibition of tenascin-C, and smooth muscle cell apoptosis. Circ Res 1999; 84:1223-33. [PMID: 10347097 DOI: 10.1161/01.res.84.10.1223] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Increased elastase activity and deposition of the matrix glycoprotein tenascin-C (TN), codistributing with proliferating smooth muscle cells (SMCs), are features of pulmonary vascular disease. In pulmonary artery (PA) SMC cultures, TN is regulated by matrix metalloproteinases (MMPs) and mechanical stress. On attached collagen gels, MMPs upregulate TN, leading to SMC proliferation, whereas on floating collagen, reduced MMPs suppress TN and induce SMC apoptosis. We now investigate the response of SMCs in the whole vessel by comparing attached and floating conditions using either normal PAs derived from juvenile pigs or normal or hypertrophied rat PAs that were embedded in collagen gels for 8 days. Normal porcine PAs in attached collagen gels were characterized by increasing activity of MMP-2 and MMP-9 assessed by zymography and TN deposition detected by Western immunoblotting and densitometric analysis of immunoreactivity. PAs on floating collagen showed reduced activity of both MMPs and deposition of TN. Tenascin-rich foci were associated with proliferating cell nuclear antigen immunoreactivity, and TN-poor areas with apoptosis, by terminal deoxynucleotidyl transferase-mediated nick end labeling assay, but no difference in wall thickness was observed. Although normal rat PAs were similar to piglet vessels, hypertrophied rat PAs showed an amplified response. Increased elastase, MMP-2, TN, and elastin deposition, as well as SMC proliferating cell nuclear antigen positivity, correlated with progressive medial thickening on attached collagen, whereas reduced MMP-2, elastase, TN, and induction of SMC apoptosis accompanied regression of the thickened media on floating collagen. In showing that hypertrophied SMCs in the intact vessel can be made to apoptose and that resorption of extracellular matrix can be achieved by inhibition of elastase and MMPs, our study suggests novel strategies to reverse vascular disease.
Collapse
Affiliation(s)
- K N Cowan
- Division of Cardiovascular Research/Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children/University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
29
|
Fang KC, Wolters PJ, Steinhoff M, Bidgol A, Blount JL, Caughey GH. Mast Cell Expression of Gelatinases A and B Is Regulated by kit Ligand and TGF-β. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Our prior work shows that cultured BR cells derived from dog mastocytomas secrete the 92-kDa proenzyme form of gelatinase B. We provided a possible link between mast cell activation and metalloproteinase-mediated matrix degradation by demonstrating that α-chymase, a serine protease released from secretory granules by degranulating mast cells, converts progelatinase B to an enzymatically active form. The current work shows that these cells also secrete gelatinase A. Furthermore, gelatinases A and B both colocalize to α-chymase-expressing cells of canine airway, suggesting that normal mast cells are a source of gelatinases in the lung. In BR cells, gelatinase B and α-chymase expression are regulated, whereas gelatinase A expression is constitutive. Progelatinase B mRNA and enzyme expression are strongly induced by the critical mast cell growth factor, kit ligand, which is produced by fibroblasts and other stromal cells. Induction of progelatinase B is blocked by U-73122, Ro31-8220, and thapsigargin, implicating phospholipase C, protein kinase C, and Ca2+, respectively, in the kit ligand effect. The profibrotic cytokine TGF-β virtually abolishes the gelatinase B mRNA signal and also attenuates kit ligand-mediated induction of gelatinase B expression, suggesting that an excess of TGF-β in inflamed or injured tissues may alter mast cell expression of gelatinase B, which is implicated in extracellular matrix degradation, angiogenesis, and apoptosis. In summary, these data provide the first evidence that normal mast cells express gelatinases A and B and suggest pathways by which their regulated expression by mast cells can influence matrix remodeling and fibrosis.
Collapse
Affiliation(s)
- Kenneth C. Fang
- *Cardiovascular Research Institute and Departments of
- †Medicine and
| | - Paul J. Wolters
- *Cardiovascular Research Institute and Departments of
- †Medicine and
| | | | - Afshin Bidgol
- *Cardiovascular Research Institute and Departments of
| | | | | |
Collapse
|
30
|
Thakker-Varia S, Tozzi CA, Poiani GJ, Babiarz JP, Tatem L, Wilson FJ, Riley DJ. Expression of matrix-degrading enzymes in pulmonary vascular remodeling in the rat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L398-406. [PMID: 9700102 DOI: 10.1152/ajplung.1998.275.2.l398] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exposure of rats to hypoxia causes pulmonary arterial remodeling, which is partly reversible after return to air. We hypothesized that degradation of excess collagen in remodeled pulmonary arteries in the posthypoxic period is mediated by endogenous matrix metalloproteinases (MMPs). Total proteolytic, collagenolytic, and gelatinolytic activities, levels of stromelysin-1 and tissue inhibitor of metalloprotease-1 (TIMP-1), and immunolocalization of stromelysin-1 in main pulmonary arteries were determined after exposure of rats to 10% O2 for 10 days followed by normoxia. We observed transient increases in total proteolytic, collagenolytic, and gelatinolytic activities and expression of approximately 72-, 68-, and 60-kDa gelatinases by zymography within 3 days of cessation of hypoxic exposure. The level of TIMP-1 increased as the stromelysin-1 level increased. Immunoreactive stromelysin-1 was localized predominantly in the luminal region of normal and hypertensive pulmonary arteries. These results are consistent with the notion that endogenous MMPs may mediate the breakdown of excess collagen in remodeled pulmonary arteries during the early posthypoxic period.
Collapse
Affiliation(s)
- S Thakker-Varia
- Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | | | | | | | | | | | |
Collapse
|