1
|
Cheshire P, Zhafira AS, Banakh I, Rahman MM, Carmichael I, Herson M, Cleland H, Akbarzadeh S. Xeno-free expansion of adult keratinocytes for clinical application: the use of human-derived feeder cells and serum. Cell Tissue Res 2019; 376:389-400. [PMID: 30666537 DOI: 10.1007/s00441-018-02986-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/17/2018] [Indexed: 01/25/2023]
Abstract
Cultured epithelial autograft (CEA) was the birth of skin tissue engineering and encompassed methodologies for the isolation and expansion of autologous basal keratinocytes for burn treatment that are still practiced at some specialised units around the world. One of the limitations of CEA, however, is the reliance on animal-derived material during the manufacturing process and despite all efforts to date, no xeno-free alternative with proven efficacy has been reported. Here, we investigate whether human-derived fibroblast feeder cells and human serum can sufficiently and effectively provide a suitable microenvironment for adult keratinocyte isolation and expansion. Human dermal fibroblasts and epidermal keratinocytes were isolated from discarded skin during abdominoplasty and breast reduction procedures and cultured in xeno-free conditions. We report that these xeno-free adult keratinocytes form similar numbers of colony-forming units as those cultured using the Green's methods; however, xeno-free keratinocytes express lower levels of α6 integrin (CD49f; a progenitor and stem cell marker). We identified IL-8 as a potential growth factor secreted by adult human fibroblasts that may enhance keratinocyte colony formation in human serum. Finally, we propose a step-by-step xeno-free isolation and cultivation methodology for adult keratinocytes that can be tested further in serial cultivation for clinical application.
Collapse
Affiliation(s)
- Perdita Cheshire
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Aqila S Zhafira
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Ilia Banakh
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
| | - Md Mostafizur Rahman
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
| | - Irena Carmichael
- Monash Micro Imaging, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Marisa Herson
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Heather Cleland
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Shiva Akbarzadeh
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia.
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Chan ASL, Lau WWI, Szeto ACH, Wang J, Wong YH. Differential Regulation of CXCL8 Production by Different G Protein Subunits with Synergistic Stimulation by Gi- and Gq-Regulated Pathways. J Mol Biol 2016; 428:3869-84. [PMID: 27040396 DOI: 10.1016/j.jmb.2016.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/14/2023]
Abstract
CXCL8 (also known as interleukin-8 or IL-8) is a proinflammatory chemokine that not only modulates the inflammatory and immune responses, but whose upregulation is often associated with diseases including various types of cancer. Although numerous ligands for G protein-coupled receptors (GPCRs) have been shown to stimulate the production of CXCL8, the specificity of the G protein signal remains undefined. By expressing the constitutively active Gα subunits in HEK293 cells, CXCL8 production was herein demonstrated to be most effectively stimulated by Gαq family members, while those of Gαs and Gα12 elicited much weaker activities, and Gαi being totally ineffective. However, in cell lines such as HepG2, HeLa, and MCF-7 that endogenously express Gβγ-responsive phospholipase Cβ isoforms (PLCβ2/3), activation of the Gi-coupled α2-adrenoceptor significantly stimulated CXCL8 production. This Gi-induced CXCL8 production was apparently mediated via specific Gβγ dimers and required the presence of PLCβ2/3. Co-activation of Gi-coupled α2-adrenoceptor and Gq-coupled bradykinin receptor resulted in a synergistic CXCL8 production, with Gβγ-responsive PLCβ2/3, Src, ERK, and STAT3 serving as critical signaling intermediates. The treatment of HepG2 and B-10 endothelial cells with bradykinin stimulated CXCL8 production and cell proliferation. Interestingly, the latter response was driven by CXCL8 autocrine signaling because it was abolished by SB225002, an antagonist that prevents CXCL8 from binding to CXCR2. Collectively, our results provide a mechanistic basis for various G protein subfamilies to regulate the production of CXCL8, which may then lead to paracrine and/or autocrine signaling with major implications in both normal physiology and pathophysiological conditions.
Collapse
Affiliation(s)
- Anthony S L Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Winnie W I Lau
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Aydan C H Szeto
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiuling Wang
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Peng XD, Zhao GQ, Lin J, Jiang N, Xu Q, Zhu CC, Qu JQ, Cong L, Li H. Fungus induces the release of IL-8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways. Int J Ophthalmol 2015; 8:441-7. [PMID: 26085988 DOI: 10.3980/j.issn.2222-3959.2015.03.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
AIM To identify whether Aspergillus fumigatus (A. fumigatus) hyphae antigens induced the release of interleukin-8 (IL-8) in anti-fungal innate immunity of cultured human corneal epithelial cells (HCECs) and determine the involvement of intracellular signalling pathways. METHODS HCECs were treated with A. fumigatus hyphae antigens with different concentrations and time. The cytoplasmic calcium of HCECs were assessed by fluorescence imaging. Western blot was used to detect the expression of Ca(2+)-dependent protein kinase C (PKC). The IL-8 levels were determined by specific human IL-8 enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR). Using a series of pharmacological inhibitors, we examined the upstream signalling pathway responsible for IL-8 expression in response to A. fumigatus hyphae antigens. RESULTS Cells exposed to A. fumigatus hyphae antigens showed higher level of IL-8 mRNA expression and protein production. We demonstrated here that stimulation of HCECs with A. fumigatus hyphae triggers an intracellular Ca(2+) flux and results in the activation of Ca(2+)-dependent PKC (α, βI and βII) which can be attenuated by pre-treatment of cells with laminarin, suggesting that Dectin-1 signals pathway induced cytoplasmic calcium and influence the activation of PKC in HCECs. Inhibitors of Ca(2+)-dependent PKC (Ro-31-8220 and Go6976) significantly abolished hyphae-induced expression of IL-8. CONCLUSION Our findings suggest that A. fumigatus hyphae-induced IL-8 expression was regulated by the activation of Dectin-1-mediated Ca(2+)-dependent PKC in HCECs.
Collapse
Affiliation(s)
- Xu-Dong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Cheng Zhu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jian-Qiu Qu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Lin Cong
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
4
|
Tripathi T, Alizadeh H. Role of protease-activated receptors 2 (PAR2) in ocular infections and inflammation. ACTA ACUST UNITED AC 2014; 1. [PMID: 26078987 DOI: 10.14800/rci.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protease-activated receptors (PARs) belong to a unique family of G protein-coupled receptors (GPCRs) that are cleaved at an activation site within the N-terminal exodomain by a variety of proteinases, essentially of the serine (Ser) proteinase family. After cleavage, the new N-terminal sequence functions as a tethered ligand, which binds intramolecularly to activate the receptor and initiate signaling. Cell signals induced through the activation of PARs appear to play a significant role in innate and adoptive immune responses of the cornea, which is constantly exposed to proteinases under physiological or pathophysiological conditions. Activation of PARs interferes with all aspects of the corneal physiology such as barrier function, transports, innate and adoptive immune responses, and functions of corneal nerves. It is not known whether the proteinase released from the microorganism can activate PARs and triggers the inflammatory responses. The role of PAR2 expressed by the corneal epithelial cells and activation by serine protease released from microorganism is discussed here. Recent evidences suggest that activation of PAR2, by the serine proteinases, play an important role in innate and inflammatory responses of the corneal infection.
Collapse
Affiliation(s)
- Trivendra Tripathi
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, 76107, USA
| | - Hassan Alizadeh
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, 76107, USA
| |
Collapse
|
5
|
Tripathi T, Abdi M, Alizadeh H. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2014; 55:3912-21. [PMID: 24876278 DOI: 10.1167/iovs.14-14486] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. METHODS Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. RESULTS Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P < 0.05). Protease-activated receptor 2 antagonist significantly inhibited aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P < 0.05). Protease-activated receptor 1 agonists, but not aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist (P < 0.05). Protease-activated receptor 1 antagonist did not alter aPA-stimulated IL-8 mRNA expression and protein production in HCE cells. Flow cytometry and immunocytochemistry showed that aPA and SLIGRL-NH2 (PAR2 agonist) upregulated PAR2 surface protein as compared to that in unstimulated HCE cells. Thrombin, but not aPA, stimulated PAR1 surface protein in HCE cells. CONCLUSIONS Acanthamoeba plasminogen activator specifically induces expression and production of IL-8 in HCE cells via PAR2 pathway, and PAR2 antagonists may be used as a therapeutic target in AK.
Collapse
Affiliation(s)
- Trivendra Tripathi
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Mahshid Abdi
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Hassan Alizadeh
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, United States
| |
Collapse
|
6
|
Markiewicz M, Richard E, Marks N, Ludwicka-Bradley A. Impact of endothelial microparticles on coagulation, inflammation, and angiogenesis in age-related vascular diseases. J Aging Res 2013; 2013:734509. [PMID: 24288612 PMCID: PMC3830876 DOI: 10.1155/2013/734509] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022] Open
Abstract
Endothelial microparticles (EMPs) are complex vesicular structures that originate from plasma membranes of activated or apoptotic endothelial cells. EMPs play a significant role in vascular function by altering the processes of inflammation, coagulation, and angiogenesis, and they are key players in the pathogenesis of several vascular diseases. Circulating EMPs are increased in many age-related vascular diseases such as coronary artery disease, peripheral vascular disease, cerebral ischemia, and congestive heart failure. Their elevation in plasma has been considered as both a biomarker and bioactive effector of vascular damage and a target for vascular diseases. This review focuses on the pleiotropic roles of EMPs and the mechanisms that trigger their formation, particularly the involvement of decreased estrogen levels, thrombin, and PAI-1 as major factors that induce EMPs in age-related vascular diseases.
Collapse
Affiliation(s)
- Margaret Markiewicz
- Division of Rheumatology and Immunology, Medical University of South Carolina, 114 Doughty Street, STB, Charleston, SC 29425, USA
| | - Erin Richard
- Department of Biology, College of Charleston, Rita Liddy Hollings Science Center, Charleston, SC 29424, USA
| | - Natalia Marks
- Department of Radiology, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Anna Ludwicka-Bradley
- Division of Rheumatology and Immunology, Medical University of South Carolina, 114 Doughty Street, STB, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Coagulation and coagulation signalling in fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1018-27. [PMID: 23298546 DOI: 10.1016/j.bbadis.2012.12.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 12/29/2022]
Abstract
Following tissue injury, a complex and coordinated wound healing response comprising coagulation, inflammation, fibroproliferation and tissue remodelling has evolved to nullify the impact of the original insult and reinstate the normal physiological function of the affected organ. Tissue fibrosis is thought to result from a dysregulated wound healing response as a result of continual local injury or impaired control mechanisms. Although the initial insult is highly variable for different organs, in most cases, uncontrolled or sustained activation of mesenchymal cells into highly synthetic myofibroblasts leads to the excessive deposition of extracellular matrix proteins and eventually loss of tissue function. Coagulation was originally thought to be an acute and transient response to tissue injury, responsible primarily for promoting haemostasis by initiating the formation of fibrin plugs to enmesh activated platelets within the walls of damaged blood vessels. However, the last 20years has seen a major re-evaluation of the role of the coagulation cascade following tissue injury and there is now mounting evidence that coagulation plays a critical role in orchestrating subsequent inflammatory and fibroproliferative responses during normal wound healing, as well as in a range of pathological contexts across all major organ systems. This review summarises our current understanding of the role of coagulation and coagulation initiated signalling in the response to tissue injury, as well as the contribution of uncontrolled coagulation to fibrosis of the lung, liver, kidney and heart. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
8
|
Carter CA, Misra M, Pelech S. Proteomic analyses of lung lysates from short-term exposure of Fischer 344 rats to cigarette smoke. J Proteome Res 2011; 10:3720-31. [PMID: 21627322 DOI: 10.1021/pr200345y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A short-term 5 day mainstream cigarette smoke exposure study was conducted in Fischer 344 rats to identify changes in lung proteins. Groups of 10 male and female rats at 5 weeks of age were assigned to one of four exposure groups. Animals received either nose-only filtered air (Air Control) or 75, 200, or 400 mg total particulate matter (TPM)/m(3) of diluted cigarette smoke. Exposures were conducted for 3 h per day, for 5 consecutive days. One lung per animal was frozen in liquid nitrogen and processed for proteomic analyses. Lung lysates from control verses treated animals were screened with 650 antibodies for changes in signaling protein levels and phosphorylation using antibody microarray technology, and then over 100 of the top protein hits were assessed by immunoblotting. The top smoke-altered proteins were further evaluated using reverse lysate microarrays. Major protein changes showed medium to strong bands on Western blots, depended on dose and gender, and included protein-serine kinases (Cot/Tpl2, ERK1/2, GSK3α/β, MEK6, PKCα/γ, RSK1), protein phosphatases (PP4/A'2, PP1Cβ), and other proteins (caspase 5, CRMP2, Hsc70, Hsp60, Rac1 and STAT2). The most pronounced changes occurred with 75 mg TPM/m(3) exposed females and 200 mg TPM/m(3) exposed males. Smoke-altered proteins regulate apoptosis, stress response, cell structure, and inflammation. Changes in identified proteins may serve as early indicators of lung damage.
Collapse
Affiliation(s)
- Charleata A Carter
- A. W. Spears Research Center, 420 N. English Street, Lorillard Tobacco Company, Greensboro, North Carolina 27405, USA
| | | | | |
Collapse
|
9
|
Bogatkevich GS, Ludwicka-Bradley A, Nietert PJ, Akter T, van Ryn J, Silver RM. Antiinflammatory and antifibrotic effects of the oral direct thrombin inhibitor dabigatran etexilate in a murine model of interstitial lung disease. ACTA ACUST UNITED AC 2011; 63:1416-25. [PMID: 21312187 DOI: 10.1002/art.30255] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Activation of the coagulation cascade leading to generation of thrombin has been documented extensively in various forms of lung injury, including that associated with systemic sclerosis. We previously demonstrated that the direct thrombin inhibitor dabigatran inhibits thrombin-induced profibrotic signaling in lung fibroblasts. This study was undertaken to test whether dabigatran etexilate attenuates lung injury in a murine model of interstitial lung disease. METHODS Lung injury was induced in female C57BL/6 mice by a single intratracheal instillation of bleomycin. Dabigatran etexilate was given as supplemented chow beginning on day 1 of bleomycin instillation (early treatment, study of antiinflammatory effect) or on day 8 following bleomycin instillation (late treatment, study of antifibrotic effect). Mice were killed 2 weeks or 3 weeks after bleomycin instillation, and lung tissue, bronchoalveolar lavage (BAL) fluid, and plasma were investigated. RESULTS Both early treatment and late treatment with dabigatran etexilate attenuated the development of bleomycin-induced pulmonary fibrosis. Dabigatran etexilate significantly reduced thrombin activity and levels of transforming growth factor β1 in BAL fluid, while simultaneously reducing the number of inflammatory cells and protein concentrations. Histologically evident lung inflammation and fibrosis were significantly decreased in dabigatran etexilate-treated mice. Additionally, dabigatran etexilate reduced collagen, connective tissue growth factor, and α-smooth muscle actin expression in mice with bleomycin-induced lung fibrosis, whereas it had no effect on basal levels of these proteins. CONCLUSION Inhibition of thrombin using the oral direct thrombin inhibitor dabigatran etexilate has marked antiinflammatory and antifibrotic effects in a bleomycin model of pulmonary fibrosis. Our data provide preclinical information about the feasibility and efficacy of dabigatran etexilate as a new therapeutic approach for the treatment of interstitial lung disease.
Collapse
|
10
|
Cooper DM, Pechkovsky DV, Hackett TL, Knight DA, Granville DJ. Granzyme K activates protease-activated receptor-1. PLoS One 2011; 6:e21484. [PMID: 21760880 PMCID: PMC3128063 DOI: 10.1371/journal.pone.0021484] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022] Open
Abstract
Granzyme K (GrK) is a trypsin-like serine protease that is elevated in patients with sepsis and acute lung inflammation. While GrK was originally believed to function exclusively as a pro-apoptotic protease, recent studies now suggest that GrK may possess other non-cytotoxic functions. In the context of acute lung inflammation, we hypothesized that GrK induces pro-inflammatory cytokine release through the activation of protease-activated receptors. The direct effect of extracellular GrK on PAR activation, intracellular signaling and cytokine was assessed using cultured human lung fibroblasts. Extracellular GrK induced secretion of IL-6, IL-8 and MCP-1 in a dose- and time-dependent manner in lung fibroblasts. Heat-inactivated GrK did not induce cytokine release indicating that protease activity is required. Furthermore, GrK induced activation of both the ERK1/2 and p38 MAP kinase signaling pathways, and significantly increased fibroblast proliferation. Inhibition of ERK1/2 abrogated the GrK-mediated cytokine release. Through the use of PAR-1 and PAR-2 neutralizing antibodies, it was determined that PAR-1 is essential for GrK-induced IL-6, IL-8 and MCP-1 release. In summary, extracellular GrK is capable of activating PAR-1 and inducing fibroblast cytokine secretion and proliferation.
Collapse
Affiliation(s)
- Dawn M. Cooper
- Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dmitri V. Pechkovsky
- Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tillie L. Hackett
- Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Darryl A. Knight
- Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J. Granville
- Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
11
|
Coagulation and autoimmunity in scleroderma interstitial lung disease. Semin Arthritis Rheum 2010; 41:212-22. [PMID: 21168185 DOI: 10.1016/j.semarthrit.2010.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/07/2010] [Accepted: 10/14/2010] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Interstitial lung disease in systemic sclerosis (SSc-ILD) is often an irreversible and progressive fibrosing process that now is the leading cause of scleroderma-related deaths. In this review we present our current understanding of the role played by coagulation and particularly by thrombin in autoimmune-mediated tissue injury and fibrosis, mainly as it relates to SSc-ILD. METHODS We used PubMed to search for articles published up to October 2010 for keywords referring to autoimmunity, coagulation, pulmonary fibrosis, and scleroderma. RESULTS SSc-ILD is an autoimmune disease associated with lymphocyte activation and release of various cytokines and growth factors. The production of autoantibodies is a central feature in SSc. Activation of the coagulation cascade with release of thrombin is 1 of the earliest events following tissue injury. Thrombin contributes to autoimmune responses by activating of pathogenic Th2 lymphocyte profile in SSc. Thrombin also modulates tissue repair responses, stimulates transformation of epithelial cells, endothelial cells, and fibroblasts into myofibroblast phenotype, and induces secretion of several pro-immune and profibrotic factors, which serve as antigens for pathogenic autoantibodies production in SSc-ILD. CONCLUSIONS The identification of links between autoimmunity and coagulation would provide new insights into the pathogenesis of pulmonary fibrosis associated with autoimmune diseases and further acknowledge the importance of thrombin in the development of SSc-ILD.
Collapse
|
12
|
Bogatkevich GS, Ludwicka-Bradley A, Silver RM. Dabigatran, a direct thrombin inhibitor, demonstrates antifibrotic effects on lung fibroblasts. ACTA ACUST UNITED AC 2010; 60:3455-64. [PMID: 19877031 DOI: 10.1002/art.24935] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Myofibroblasts are the principal mesenchymal cells responsible for tissue remodeling, collagen deposition, and the restrictive nature of lung parenchyma associated with pulmonary fibrosis. We previously reported that thrombin activates protease-activated receptor 1 (PAR-1) and induces a myofibroblast phenotype in normal lung fibroblasts resembling the phenotype of scleroderma lung myofibroblasts. We undertook this study to investigate whether a selective direct thrombin inhibitor, dabigatran, interferes with signal transduction in human lung fibroblasts induced by thrombin and mediated via PAR-1. METHODS Lung fibroblast proliferation was analyzed using the Quick Cell Proliferation Assay. Expression and organization of alpha-smooth muscle actin (alpha-SMA) was studied by immunofluorescence staining and immunoblotting. Contractile activity of lung fibroblasts was measured by a collagen gel contraction assay. Connective tissue growth factor (CTGF) and type I collagen expression was analyzed on Western blots. RESULTS Dabigatran, at concentrations of 50-1,000 ng/ml, inhibited thrombin-induced cell proliferation, alpha-SMA expression and organization, and the production of collagen and CTGF in normal lung fibroblasts. Moreover, when treated with dabigatran (1 microg/ml), scleroderma lung myofibroblasts produced 6-fold less alpha-SMA, 3-fold less CTGF, and 2-fold less type I collagen compared with untreated cells. CONCLUSION Dabigatran restrains important profibrotic events in lung fibroblasts and warrants study as a potential antifibrotic drug for the treatment of fibrosing lung diseases such as scleroderma lung disease and idiopathic pulmonary fibrosis.
Collapse
|
13
|
Yu CC, Hsu MJ, Kuo ML, Chen RFC, Chen MC, Bai KJ, Yu MC, Chen BC, Lin CH. Thrombin-Induced Connective Tissue Growth Factor Expression in Human Lung Fibroblasts Requires the ASK1/JNK/AP-1 Pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:7916-27. [PMID: 19494316 DOI: 10.4049/jimmunol.0801582] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bae JS, Kim YU, Park MK, Rezaie AR. Concentration dependent dual effect of thrombin in endothelial cells via Par-1 and Pi3 Kinase. J Cell Physiol 2009; 219:744-51. [PMID: 19189342 DOI: 10.1002/jcp.21718] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Disruption of endothelial barrier is a critical pathophysiological factor in inflammation. Thrombin exerts a variety of cellular effects including inflammation and apoptosis through activation of the protease activated receptors (PARs). The activation of PAR-1 by thrombin is known to have a bimodal effect in endothelial cell permeability with a low concentration (pM levels) eliciting a barrier protective and a high concentration (nM levels) eliciting a barrier disruptive response. It is not known whether this PAR-1-dependent activity of thrombin is a unique phenomenon specific for the in vitro assay or it is part of a general anti-inflammatory effect of low concentrations of thrombin that may have a physiological relevance. Here, we report that low concentrations of thrombin or of PAR-1 agonist peptide induced significant anti-inflammatory activities. However, relatively high concentration of thrombin or of PAR-1 agonist peptide showed pro-inflammatory activities. By using function-blocking anti-PAR-1 antibodies and PI3 kinase inhibitor, we show that the direct anti-inflammatory effects of low concentrations of thrombin are dependent on the activation of PAR-1 and PI3 kinase. These results suggest a role for cross communication between PAR-1 activation and PI3 kinase pathway in mediating the cytoprotective effects of low concentrations of thrombin in the cytokine-stimulated endothelial cells. J. Cell. Physiol. 219: 744-751, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jong-Sup Bae
- Department of Herbal Pharmaceutical Engineering, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan, Republic of Korea.
| | | | | | | |
Collapse
|
15
|
Sokolova E, Hartig R, Reiser G. Downregulation of protease-activated receptor-1 in human lung fibroblasts is specifically mediated by the prostaglandin E receptor EP2 through cAMP elevation and protein kinase A. FEBS J 2008; 275:3669-79. [PMID: 18537828 DOI: 10.1111/j.1742-4658.2008.06511.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many cellular functions of lung fibroblasts are controlled by protease-activated receptors (PARs). In fibrotic diseases, PAR-1 plays a major role in controlling fibroproliferative and inflammatory responses. Therefore, in these diseases, regulation of PAR-1 expression plays an important role. Using the selective prostaglandin EP2 receptor agonist butaprost and cAMP-elevating agents, we show here that prostaglandin (PG)E(2), via the prostanoid receptor EP2 and subsequent cAMP elevation, downregulates mRNA and protein levels of PAR-1 in human lung fibroblasts. Under these conditions, the functional response of PAR-1 in fibroblasts is reduced. These effects are specific for PGE(2). Activation of other receptors coupled to cAMP elevation, such as beta-adrenergic and adenosine receptors, does not reproduce the effects of PGE(2). PGE(2)-mediated downregulation of PAR-1 depends mainly on protein kinase A activity, but does not depend on another cAMP effector, the exchange protein activated by cAMP. PGE(2)-induced reduction of PAR-1 level is not due to a decrease of PAR-1 mRNA stability, but rather to transcriptional regulation. The present results provide further insights into the therapeutic potential of PGE(2) to specifically control fibroblast function in fibrotic diseases.
Collapse
Affiliation(s)
- Elena Sokolova
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Germany
| | | | | |
Collapse
|
16
|
Procoagulant signalling mechanisms in lung inflammation and fibrosis: novel opportunities for pharmacological intervention? Br J Pharmacol 2008; 153 Suppl 1:S367-78. [PMID: 18223674 DOI: 10.1038/sj.bjp.0707603] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is compelling evidence that uncontrolled activation of the coagulation cascade following lung injury contributes to the development of lung inflammation and fibrosis in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and fibrotic lung disease. This article reviews our current understanding of the mechanisms leading to the activation of the coagulation cascade in response to lung injury and the evidence that excessive procoagulant activity is of pathophysiological significance in these disease settings. Current evidence suggests that the tissue factor-dependent extrinsic pathway is the predominant mechanism by which the coagulation cascade is locally activated in the lungs of patients with ALI/ARDS and pulmonary fibrosis. Whilst, fibrin deposition might contribute to the pathophysiology of ALI/ARDS following systemic insult; current evidence suggests that the cellular effects mediated via activation of proteinase-activated receptors (PARs) may be of particular importance in influencing inflammatory and fibroproliferative responses in experimental models involving direct injury to the lung. In this regard, studies in PAR(1) knockout mice have shown that this receptor plays a major role in orchestrating the interplay between coagulation, inflammation and lung fibrosis. This review will focus on our current understanding of excessive procoagulant signalling in acute and chronic lung injury and will highlight the novel opportunities that this may present for therapeutic intervention.
Collapse
|
17
|
HASEGAWA M. The roles of chemokines in the development of systemic sclerosis. ACTA ACUST UNITED AC 2008; 31:23-36. [DOI: 10.2177/jsci.31.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Minoru HASEGAWA
- Department of Dermatology, Kanazawa University Graduate School of Medical Science
| |
Collapse
|
18
|
Ostojic P, Cerinic MM, Silver R, Highland K, Damjanov N. Interstitial lung disease in systemic sclerosis. Lung 2007; 185:211-20. [PMID: 17717851 DOI: 10.1007/s00408-007-9012-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We reviewed the literature concerning pathogenesis, clinical features, diagnosis and treatment of interstitial lung disease (ILD) in patients with systemic sclerosis (SSc). ILD is detectable in approximately 70% of patients at autopsy. Nonspecific interstitial pneumonia (NSIP) is the most common pathologic finding. The earliest phase of ILD in SSc is characterized by microvascular injury and alveolitis. Endothelial lesions, activation of coagulation proteases, especially thrombin, fibroblast proliferation, and differentiation of normal lung fibroblasts to a myofibroblasts phenotype are hallmarks of ILD in SSc. Diagnostic procedures used to detect ILD are chest X-ray, high-resolution computed tomography, bronchoalveolar lavage, lung function tests, and sometimes thoracoscopic lung biopsy. Novel and potentially useful methods to diagnose ILD in SSc are induced sputum and technetium-labeled diethylenetriamine pentaacetate (99mTC-DTPA) clearance time. Cyclophosphamide seems to be relatively effective to treat ILD in the earliest phase, but the effects of other immunosuppressive drugs on the lungs are less convincing.
Collapse
Affiliation(s)
- Predrag Ostojic
- Institute of Rheumatology, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
19
|
Andersson E, Axelsson J, Pedersen LC, Elm T, Andersson R. Treatment with anti-factor VIIa in acute pancreatitis in rats: blocking both coagulation and inflammation? Scand J Gastroenterol 2007; 42:765-70. [PMID: 17506000 DOI: 10.1080/00365520701295632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Acute pancreatitis starts as an autodigestive process restricted to the pancreas and progresses to a systemic inflammation via cytokine release into the blood stream. Several inhibitors of the coagulation cascade, including active-site-inactivated factor VIIa, have shown anti-inflammatory properties in other inflammatory models than acute pancreatitis. Free radical scavengers have proven useful in reducing the oxidative damage during hyperinflammatory conditions. The aim of this study was to investigate whether pretreatment with FVIIai would have any effect on the multiple organ dysfunction syndrome (MODS) in severe acute pancreatitis. MATERIAL AND METHODS Experimental acute pancreatitis was induced by intraductal infusion of taurodeoxycholate in the pancreatic duct. The animals were pretreated with N-acetyl-cysteine and active-site-inactivated factor VIIa. Neutrophil infiltration in the lungs, ileum and colon was quantified by myeloperoxidase activity. Inflammatory markers, IL-6 and MIP-2, were measured using ELISA. RESULTS Tissue infiltration of neutrophils in the lungs, ileum and colon significantly increased during acute pancreatitis as compared to sham operation. These levels were reduced by pretreatment with N-acetylcysteine and active-site-inactivated factor VIIa. Levels of interleukin-6 and macrophage inflammatory protein-2 increased significantly during acute pancreatitis. Pretreatment with NAC and FVIIai reduced these levels. CONCLUSIONS Both N-acetylcysteine and active-site-inactivated factor VIIa showed powerful anti-inflammatory properties in experimental acute pancreatitis. As they exert their effects through different physiological mechanisms, they represent potential candidates for future multimodal treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Ellen Andersson
- Department of Surgery, Lund University Hospital, Lund, Sweden
| | | | | | | | | |
Collapse
|
20
|
Naldini A, Morena E, Filippi I, Pucci A, Bucci M, Cirino G, Carraro F. Thrombin Inhibits IFN-γProduction in Human Peripheral Blood Mononuclear Cells by Promoting a Th2 Profile. J Interferon Cytokine Res 2006; 26:793-9. [PMID: 17115897 DOI: 10.1089/jir.2006.26.793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thrombin, the key enzyme of the coagulation cascade, is involved in inflammation. It was proposed recently that thrombin activity may play an important role in allergic inflammation. Interferon-gamma (IFN-gamma) is a potent Th1-related cytokine secreted by activated T cells and is usually downregulated in allergic inflammation. We recently demonstrated that thrombin enhances interleukin-10 (IL-10) in peripheral blood mononuclear cells (PBMC). Thus, we hypothesized that thrombin may promote a Th2 profile. We here report that human alpha- thrombin downregulates IFN-gamma expression at both protein and mRNA levels in activated PBMCs. The use of proteolytically inactive thrombin and of the specific thrombin receptor agonist peptide, SFLLRN, shows that this downregulation is thrombin specific and requires thrombin proteolytic activity. The addition of an anti- IL-10 monoclonal antibody (mAb) to thrombin-treated PBMCs abolishes IFN-gamma downregulation, suggesting that thrombin exerts its effect through IL-10, a Th2-related cytokine. Furthermore, IFN-gamma reduction was accompanied by increased IL-4 release, as well as by an increase in the proinflammatory cytokine IL-1. In conclusion, the observation that thrombin affects the production of IFN-gamma (Th1 profile) and IL-4 (Th2 profile) provides further evidence for the role played by thrombin in modulating Th1/Th2 cytokine balance, which could be particularly relevant in allergic inflammation.
Collapse
|
21
|
Lin CH, Cheng HW, Hsu MJ, Chen MC, Lin CC, Chen BC. c-Src Mediates Thrombin-Induced NF-κB Activation and IL-8/CXCL8 Expression in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3427-38. [PMID: 16920985 DOI: 10.4049/jimmunol.177.5.3427] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we examined the regulation of NF-kappaB activation and IL-8/CXCL8 expression by thrombin in human lung epithelial cells (EC). Thrombin caused a concentration-dependent increase in IL-8/CXCL8 release in a human lung EC line (A549) and primary normal human bronchial EC. In A549 cells, thrombin, SFLLRN-NH2 (a protease-activated receptor 1 (PAR1) agonist peptide), and GYPGQV-NH2 (a PAR4 agonist peptide), but not TFRGAP-NH2 (a PAR3 agonist peptide), induced an increase in IL-8/CXCL8-luciferase (Luc) activity. The thrombin-induced IL-8/CXCL8 release was attenuated by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (a thrombin inhibitor), U73122 (a phosphoinositide-phospholipase C inhibitor), Ro-32-0432 (a protein kinsase C alpha (PKC alpha) inhibitor), an NF-kappaB inhibitor peptide, and Bay 117082 (an IkappaB phosphorylation inhibitor). Thrombin-induced increase in IL-8/CXCL8-Luc activity was inhibited by the dominant-negative mutant of c-Src and the cells transfected with the kappaB site mutation of the IL-8/CXCL8 construct. Thrombin caused time-dependent increases in phosphorylation of c-Src at tyrosine 416 and c-Src activity. Thrombin-elicited c-Src activity was inhibited by Ro-32-0432. Stimulation of cells with thrombin activated IkappaB kinase alphabeta (IKK alphabeta), IkappaB alpha phosphorylation, IkappaB alpha degradation, p50 and p65 translocation from the cytosol to the nucleus, NF-kappaB-specific DNA-protein complex formation, and kappaB-Luc activity. Pretreatment of A549 cells with Ro-32-4032 and the dominant-negative mutant of c-Src DN inhibited thrombin-induced IKK alphabeta activity, kappaB-Luc activity, and NF-kappaB-specific DNA-protein complex formation. Further studies revealed that thrombin induced PKC alpha, c-Src, and IKK alphabeta complex formation. These results show for the first time that thrombin, acting through PAR1 and PAR4, activates the phosphoinositide-phospholipase C/PKC alpha/c-Src/IKK alphabeta signaling pathway to induce NF-kappaB activation, which in turn induces IL-8/CXCL8 expression and release in human lung EC.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Wang L, Luo J, Fu Y, He S. Induction of interleukin-8 secretion and activation of ERK1/2, p38 MAPK signaling pathways by thrombin in dermal fibroblasts. Int J Biochem Cell Biol 2006; 38:1571-83. [PMID: 16697690 DOI: 10.1016/j.biocel.2006.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 03/12/2006] [Accepted: 03/25/2006] [Indexed: 02/05/2023]
Abstract
It was reported that thrombin could induce IL-8 secretion from human dermal fibroblasts (HDFs) through activation of proteinase activated receptor (PAR)-1. However, little is known of intracellular signaling pathways involved in the event. In the present study, expression of PARs in primarily cultured HDFs was determined by flow cytometry analysis and reverse transcription polymerase chain reaction (RT-PCR), levels of IL-8 were determined by using ELISA and signaling pathways were examined by using Western blot. It was found that HDFs express PAR-1 and PAR-3, and thrombin induces approximately 7.4-fold increase in IL-8 secretion from HDFs. Hirudin and a PAR-1 blocking antibody completely abolish the action of thrombin. It was also found that PD98059, a mitogen-activated protein kinase (MAPK) pathway inhibitor and U0126, an inhibitor of extracellular signal-regulated kinase (ERK) blocks thrombin-induced phosphorylation of ERK1/2 and IL-8 secretion, indicating the involvement of MAPK/ERK signaling pathway in thrombin-induced IL-8 secretion. p38 MAPK pathway appears also being involved as SB203580, a selective inhibitor of p38 MAPK inhibit phosphorylation of p38 MAPK and thrombin-induced IL-8 secretion. Furthermore, Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway, but not phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway may also be activated by thrombin. In conclusion, thrombin potently induce IL-8 release via PAR-1 from HDFs. Thrombin elicited IL-8 release is predominantly conducted through MAPK/ERK and p38 MAPK signaling pathways. Discovery of the signaling pathways of thrombin in HDFs may help to understand the role of thrombin in inflammation and tissue remodeling.
Collapse
Affiliation(s)
- Li Wang
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, The Shantou University Medical College, Shantou 515031, China
| | | | | | | |
Collapse
|
23
|
Al-Fayez M, Russell D, Wayne Davies R, Shiels PG, Baker PJ, Payne AP. Deficits in the mid-brain raphe nuclei and striatum of the AS/AGU rat, a protein kinase C-γ mutant. Eur J Neurosci 2005; 22:2792-8. [PMID: 16324113 DOI: 10.1111/j.1460-9568.2005.04502.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AS/AGU rat carries a recessive mutation (agu) in the gene coding for the gamma isoform of protein kinase C. The rat is characterized by disordered locomotion and progressive dysfunction of the nigrostriatal dopaminergic (DA) system. This dysfunction begins with a failure to release DA within the striatum and culminates in cell loss within the substantia nigra pars compacta. The present study examines another midbrain aminergic system with input to the basal ganglia, the serotonergic (5-HT) raphe-striatal system originating in the dorsal raphe nucleus. By 3 months after birth, there is a very substantial reduction in the extracellular levels of 5-HT in the dorsal caudate-putamen of the mutants compared with controls (c. 70%). This is accompanied by a proportional increase in the levels of the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA). At a later age, there are reductions in whole tissue 5-HT (and increases in 5-HIAA) in both the striatum and the region containing the dorsal raphe nucleus, as well as numbers of 5-HT-immunoreactive cells in the dorsal raphe nucleus. The median raphe appears to be unaffected. The results are seen in terms of an initial dysfunction in transmitter release leading to cell death, perhaps through the formation of free radicals or neurotoxins.
Collapse
Affiliation(s)
- M Al-Fayez
- Department of Anatomy, King Saud University, Kingdom of Saudi Arabia
| | | | | | | | | | | |
Collapse
|
24
|
Ma Y, Kadner SS, Guller S. Differential effects of lipopolysaccharide and thrombin on interleukin-8 expression in syncytiotrophoblasts and endothelial cells: implications for fetal survival. Ann N Y Acad Sci 2005; 1034:236-44. [PMID: 15731315 DOI: 10.1196/annals.1335.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Syncytiotrophoblasts (SCTs) are directly bathed by maternal blood and, as such, are in direct contact with proinflammatory stimuli present in the maternal circulation. The extent and nature of cytokine responses induced in SCTs play a central role in the maintenance of pregnancy. Thrombin is a critical mediator of tissue factor-initiated blood coagulation. Thrombin has been more recently demonstrated to induce cytokine expression and inflammation in several cell types. To dissect the patterns of regulation of cytokine production in the placental villus, we compared the effects of thrombin and lipopolysaccharide (LPS) treatments on cytokine expression in SCTs and endothelial cells. For studies, primary cultures of cytotrophoblasts from human term placentas were differentiated to SCTs. We observed that the presence of thrombin only modestly enhanced interleukin-8 (IL-8) levels in SCTs in a manner that was not dose-dependent. Conversely, SCTs were exquisitely sensitive to LPS, the presence of which induced approximately a 10-fold increase in IL-8 levels with an EC(50) approximately 1 ng/mL. Northern blotting and real-time PCR results indicated that LPS (but not thrombin) treatment induced a >4-fold increase in levels of IL-8 mRNA. The addition of the anti-inflammatory steroid, dexamethasone, significantly reduced the LPS-mediated increase in levels of IL-8 in SCTs. Conversely, in human umbilical vein endothelial cells, thrombin and LPS treatments induced 10- and 20-fold increases in IL-8 expression, respectively. These results indicate that LPS, but not thrombin, promotes proinflammatory processes in SCTs, with cell-type specificity. The inability of thrombin in the intervillous space to evoke inflammatory responses in SCTs may constitute an important aspect of fetal survival. Conversely, our results suggest that SCTs do play a key role in infection-associated changes in placental cytokine expression.
Collapse
Affiliation(s)
- Yuehong Ma
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, 339 FMB, P. O. Box 208063, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
25
|
Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 2005; 26:1-43. [PMID: 15689571 DOI: 10.1210/er.2003-0025] [Citation(s) in RCA: 364] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine proteinases such as thrombin, mast cell tryptase, trypsin, or cathepsin G, for example, are highly active mediators with diverse biological activities. So far, proteinases have been considered to act primarily as degradative enzymes in the extracellular space. However, their biological actions in tissues and cells suggest important roles as a part of the body's hormonal communication system during inflammation and immune response. These effects can be attributed to the activation of a new subfamily of G protein-coupled receptors, termed proteinase-activated receptors (PARs). Four members of the PAR family have been cloned so far. Thus, certain proteinases act as signaling molecules that specifically regulate cells by activating PARs. After stimulation, PARs couple to various G proteins and activate signal transduction pathways resulting in the rapid transcription of genes that are involved in inflammation. For example, PARs are widely expressed by cells involved in immune responses and inflammation, regulate endothelial-leukocyte interactions, and modulate the secretion of inflammatory mediators or neuropeptides. Together, the PAR family necessitates a paradigm shift in thinking about hormone action, to include proteinases as key modulators of biological function. Novel compounds that can modulate PAR function may be potent candidates for the treatment of inflammatory or immune diseases.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Boltzmann Institute for Immunobiology of the Skin, University of Münster, von-Esmarch-Strasse 58, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hayakawa Y, Hirashima Y, Yamamoto H, Hayashi N, Kurimoto M, Kuwayama N, Endo S. Adenovirus-mediated expression of heparin cofactor II inhibits thrombin-induced cellular responses in fibroblasts and vascular smooth muscle cells. Thromb Res 2005; 116:357-63. [PMID: 16038721 DOI: 10.1016/j.thromres.2005.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 01/03/2005] [Accepted: 01/04/2005] [Indexed: 11/21/2022]
Abstract
Heparin cofactor II functions as a physiological inhibitor of thrombin activity. The rate of inactivation of thrombin by heparin cofactor II is increased in the presence of dermatan sulfate, which is produced by fibroblasts or smooth muscle cells. To elucidate the role of heparin cofactor II in the extravascular cells, we induced expression of heparin cofactor II in cultured human fibroblasts or vascular smooth muscle cells using adenovirus-mediated gene transfer. After infection of adenovirus vector, these cells secreted heparin cofactor II protein into culture medium. The expressed heparin cofactor II formed the complex with exogenous thrombin and inhibited the proteolytic activity of thrombin. Expression of heparin cofactor II by infection of adenovirus vector inhibited thrombin-induced tissue-type plasminogen activator and interleukin-6 releases from fibroblasts and thrombin-induced interleukin-6 release from vascular smooth muscle cells. These findings show that fibroblasts and vascular smooth muscle cells expressing heparin cofactor II are resistant to thrombin-induced cellular responses.
Collapse
Affiliation(s)
- Yumiko Hayakawa
- Department of Neurosurgery, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bogatkevich GS, Gustilo E, Oates JC, Feghali-Bostwick C, Harley RA, Silver RM, Ludwicka-Bradley A. Distinct PKC isoforms mediate cell survival and DNA synthesis in thrombin-induced myofibroblasts. Am J Physiol Lung Cell Mol Physiol 2005; 288:L190-201. [PMID: 15447940 DOI: 10.1152/ajplung.00448.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombin activates protease-activated receptor (PAR)-1 and induces a myofibroblast phenotype in normal lung fibroblasts that resembles the phenotype of scleroderma lung fibroblasts. We now demonstrate that PAR-1 expression is dramatically increased in lung tissue from scleroderma patients, where it is associated with inflammatory and fibroproliferative foci. We also observe that thrombin induces resistance to apoptosis in normal lung fibroblasts, and this process is regulated by protein kinase C (PKC)-epsilon but not by PKC-alpha. Overexpression of a constitutively active (c-a) form of PAR-1 or PKC-epsilon significantly inhibits Fas ligand-induced apoptosis in lung fibroblasts, whereas scleroderma lung fibroblasts are resistant to apoptosis de novo. Thrombin translocates p21Cip1/WAF1, a signaling molecule downstream of PKC, from the nucleus to cytoplasm in normal lung fibroblasts mimicking the localization of p21Cip1/WAF1 in scleroderma lung fibroblasts. Overexpression of c-a PKC-alpha or PKC-epsilon results in accumulation of p21Cip1/WAF1 in the cytoplasm. Depletion of PKC-alpha or inhibition of mitogen-activated protein kinase (MAPK) blocks thrombin-induced DNA synthesis in lung fibroblasts. Inhibition of PKC by calphostin or PKC-alpha, but not PKC-epsilon, by antisense oligonucleotides prevents thrombin-induced MAPK phosphorylation and accumulation of G(1) phase regulatory protein cyclin D1, suggesting that PKC-alpha, MAPK, and cyclin D1 mediate lung fibroblast proliferation. These data demonstrate that two distinct PKC isoforms mediate thrombin-induced resistance to apoptosis and proliferation and suggest that p21Cip1/WAF1 promotes both phenomena.
Collapse
Affiliation(s)
- Galina S Bogatkevich
- Division of Rheumatology and Immunology, Dept. of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Archiniegas E, Neves CY, Candelle D, Cardier JE. Thrombin and Its Protease-Activated Receptor-1 (PAR1) Participate in the Endothelial–Mesenchymal Transdifferentiation Process. DNA Cell Biol 2004; 23:815-25. [PMID: 15684708 DOI: 10.1089/dna.2004.23.815] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The serine protease thrombin, independently of its participation in hemostasis and thrombosis, has been involved in tissue repair and remodeling, embryogenesis, angiogenesis, and development and progression of atherosclerosis. Many of these functions appear to be mediated by specific thrombin receptors, particularly the protease-activated receptor-1 (PAR1). In this study, we investigated whether both thrombin and PAR1 were present in the aortic wall of chicken embryos at days 11 and 12 of development. We found that PAR1 was limited to some cells of the intimal thickening and the inner media, whereas thrombin appeared distributed across the aortic wall. We also investigated whether PAR1 was present during endothelial-mesenchymal transdifferentiation (EMT) in vitro. A moderate immunoreactivity was detected in the monolayer of endothelial cells. In contrast, a strong cytoplasmic immunoreactivity was observed in the detaching and migrating cells and those that had acquired mesenchymal characteristics. This PAR1 expression was confirmed by flow cytometry. In this study, the addition of thrombin to arrested endothelial cell cultures was assessed. We found that thrombin stimulated endothelial cell spreading and migration, as no migrating cells were observed in serum-free medium (SFM) condition. Immunolocalization of PAR1 in the thrombin-treated cultures showed strong cytoplasmic immunoreactivity in the monolayers and in spreading and migrating cells, whereas in the SFM condition undetectable PAR1 immunoreactivity was observed. Flow cytometry of these cultures revealed an elevated expression of PAR1 in the presence of thrombin, in contrast to that detected in SFM and complete medium. These data indicate that both thrombin and PAR1 are involved in the remodeling of the aortic wall and intimal thickening formation, and in the endothelial-mesenchymal transdifferentiation process.
Collapse
Affiliation(s)
- Enrique Archiniegas
- Laboratorio de Microscopía Electrónica, Servicio Autónomo Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | |
Collapse
|
29
|
Abstract
Pulmonary fibrosis occurs in up to 70% of scleroderma patients and progresses to cause severe restrictive lung disease in about 15% of patients. The mechanisms that cause pulmonary fibrosis in scleroderma remain incompletely understood. Increased amounts of mRNA or protein for multiple profibrotic cytokines and chemokines have been identified in lung tissue or broncholveolar lavage samples from scleroderma patients, when compared to healthy controls. These cytokines include transforming growth factor (TGF)-beta, connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), oncostatin M (OSM), monocyte chemotactic factor-1 and pulmonary and activation-regulated chemokine (PARC). Potential cellular sources of these profibrotic cytokines and chemokines in scleroderma lung disease include alternatively activated macrophages, activated CD8+ T cells, eosinophils, mast cells, epithelial cells and fibroblasts themselves. This review summarizes the literature on involvement of cytokines and chemokines in the development of pulmonary fibrosis in scleroderma.
Collapse
Affiliation(s)
- Sergei P Atamas
- Baltimore VA Medical Center, University of Maryland School of Medicine, Research Service (151), Room 3C-126, 10 North Greene Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
30
|
Baier RJ, Majid A, Parupia H, Loggins J, Kruger TE. CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia. Pediatr Pulmonol 2004; 37:137-48. [PMID: 14730659 DOI: 10.1002/ppul.10417] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammation is one of the primary processes underlying respiratory distress syndrome (RDS) and its evolution into bronchopulmonary dysplasia (BPD). Recruitment and subsequent activation of macrophages in the lung are mediated by CC chemokines. The role of CC chemokines has not been extensively studied in the course of RDS. Serial tracheal aspirates (TA) were obtained from 56 mechanically ventilated infants with birth weights less than 1,500 g during intervals in the first 21 days of life. Tracheal aspirate concentrations of monocyte chemoattractant proteins-1,2,3 (MCP-1,2,3) and macrophage inflammatory proteins-1alpha and -1beta (MIP-1alpha, MIP-1beta) were determined by enzyme-linked immunosorbent assay (ELISA). Tracheal aspirate concentrations of MCP-1, MCP-2, MCP-3, and MIP-1beta increased during the first week of life in infants with RDS, whereas MIP-1alpha concentrations did not increase appreciably. Increased TA cytokine concentrations were associated with the development of BPD. Maximal TA concentrations of MCP-1, MCP-2, MCP-3, MIP-1alpha, and MIP-1beta were significantly higher in infants who were oxygen-dependent at 28 postnatal days compared to infant who were not. Similarly, maximal TA MCP-1, MCP-2, and MCP-3 but not MIP-1alpha and MIP-1beta concentrations were significantly higher in infants who were oxygen-dependent at 36 weeks of postconceptional age (PCA) than those who were not oxygen-dependent at 36 weeks PCA. Histologic chorioamnionitis and isolation of Ureaplasma urealyticum from the airways were associated with higher maximal TA concentrations of MIP-1alpha and MIP-1beta. Pulmonary hemorrhage was associated with increased maximal concentrations of MCP-1, MCP-2, and MCP-3. These data suggest a role for CC chemokines in the development of BPD in the newborn infant.
Collapse
Affiliation(s)
- R John Baier
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA.
| | | | | | | | | |
Collapse
|
31
|
Terada M, Kelly EAB, Jarjour NN. Increased Thrombin Activity after Allergen Challenge. Am J Respir Crit Care Med 2004; 169:373-7. [PMID: 14630620 DOI: 10.1164/rccm.200308-1156oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In addition to its central role in hemostasis, thrombin may play a role in inflammation and remodeling. To investigate the contribution of thrombin to allergic airway inflammation in asthma, we used an enzymatic assay to determine thrombin activity in bronchoalveolar lavage fluid obtained from 19 subjects with atopic asthma before (Day 0) and 48 hours after (Day 2) segmental bronchoprovocation with antigen. Thrombin activity increased from 0 (0, 2.9) on Day 1 to 41.1 (0.3, 75.6) U x 10(-3)/ml on Day 2 (p = 0.002) and correlated with total protein levels in lavage fluid on Day 2 (r = 0.885, p < 0.001). After antigen challenge, thrombin activity also showed significant correlations with interleukin-5 (r = 0.66, p = 0.002), transforming growth factor beta1 (r = 0.70, p < 0.001), fibronectin (r = 0.85, p < 0.001) and tissue factor (r = 0.55, p = 0.03) levels in lavage fluid. Furthermore, Day 2, but not Day 0 lavage fluid, induced proliferation of human airway fibroblasts. This mitogenic effect was significantly reduced with hirudin, a specific thrombin inhibitor. Taken together, our findings suggest that allergen-driven airway inflammation in asthma is associated with enhanced potential for fibroblast proliferation that is related, at least in part, to increased thrombin activity. We propose that enhanced thrombin activity provides a potential link between allergic inflammation and initiation of airway remodeling.
Collapse
Affiliation(s)
- Masaki Terada
- Pulmonary and Critical Care Medicine Section, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | |
Collapse
|
32
|
Lan RS, Stewart GA, Goldie RG, Henry PJ. Altered expression and in vivo lung function of protease-activated receptors during influenza A virus infection in mice. Am J Physiol Lung Cell Mol Physiol 2003; 286:L388-98. [PMID: 14633513 DOI: 10.1152/ajplung.00286.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protease-activated receptors (PARs) are widely distributed in human airways, and recent evidence indicates a role for PARs in the pathophysiology of inflammatory airway disease. To further investigate the role of PARs in airway disease, we determined the expression and function of PARs in a murine model of respiratory tract viral infection. PAR-1, PAR-2, PAR-3, and PAR-4 mRNA and protein were expressed in murine airways, and confocal microscopy revealed colocalization of PAR-2 and cyclooxygenase (COX)-2 immunostaining in basal tracheal epithelial cells. Elevated levels of PAR immunostaining, which was particularly striking for PAR-1 and PAR-2, were observed in the airways of influenza A/PR-8/34 virus-infected mice compared with sham-infected mice. Furthermore, increased PAR-1 and PAR-2 expression was associated with significant changes in in vivo lung function responses. PAR-1 agonist peptide potentiated methacholine-induced increases in airway resistance in anesthetized sham-infected mice (and in indomethacin-treated, virus-infected mice), but no such potentiation was observed in virus-infected mice. PAR-2 agonist peptide transiently inhibited methacholine-induced bronchoconstriction in sham-infected mice, and this effect was prolonged in virus-infected mice. These findings suggest that during viral infection, the upregulation of PARs in the airways is coupled to increased activation of COX and enhanced generation of bronchodilatory prostanoids.
Collapse
Affiliation(s)
- Rommel S Lan
- School of Medicine and Pharmacology, Faculty of Medicine and Dentistry, University of Western Australia, Perth, 6009 W. A., Australia
| | | | | | | |
Collapse
|
33
|
Neaud V, Duplantier JG, Mazzocco C, Kisiel W, Rosenbaum J. Thrombin up-regulates tissue factor pathway inhibitor-2 synthesis through a cyclooxygenase-2-dependent, epidermal growth factor receptor-independent mechanism. J Biol Chem 2003; 279:5200-6. [PMID: 14623891 DOI: 10.1074/jbc.m306679200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine proteinase inhibitor tissue factor pathway inhibitor-2 (TFPI-2) inhibits the tissue factor-factor VIIa complex and thereby impairs factor Xa and subsequently thrombin generation. Here we show that thrombin itself up-regulates TFPI-2 mRNA and protein expression in human liver myofibroblasts, a cell type shown to express high levels of TFPI-2 (Neaud, V., Hisaka, T., Monvoisin, A., Bedin, C., Balabaud, C., Foster, D. C., Desmoulière, A., Kisiel, W., and Rosenbaum, J. (2000) J. Biol. Chem. 275, 35565-35569). This effect required thrombin catalytic activity, as shown by its abolition with hirudin. Although the thrombin effect could be mimicked by agonists of both protease-activated receptor (PAR)-1 and PAR-4, it was largely blocked by a PAR-1 blocking antibody. Transactivation of the epidermal growth factor (EGF) receptor has been reported as a common event in thrombin signaling. However, thrombin did not detectably transactivate the EGF receptor in liver myofibroblasts, and blocking the EGF receptor did not affect TFPI-2 induction. On the other hand, thrombin increased the expression of cyclooxygenase-2 (COX-2) mRNA via a MAPK-dependent pathway, and a specific COX-2 inhibitor abolished the effect of thrombin on TFPI-2 expression. Thus, thrombin, through PAR-1 signaling, up-regulates the synthesis of TFPI-2 via a MAPK/COX-2-dependent pathway. The up-regulation of TFPI-2 expression by thrombin could in turn down-regulate thrombin generation and contribute to limit blood coagulation.
Collapse
Affiliation(s)
- Véronique Neaud
- Groupe de Recherches pour l'Etude du Foie, INSERM E362 and IFR66, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France
| | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The triad of pathologic changes that defines systemic sclerosis (scleroderma) includes immune system activation with autoimmunity; an obliterative, proliferative small vessel vasculopathy; and fibrosis. Available data suggest that several cytokines, including chemokines, contribute to the development of scleroderma complications. This review focuses on chemokines and their contribution to tissue fibrosis and pulmonary hypertension in scleroderma. RECENT FINDINGS Proteins and mRNAs for monocyte chemoattractant protein-1; pulmonary and activation-regulated chemokine; macrophage inflammatory protein-1, regulated upon activation normal T cell expressed and secreted; interleukin-8; and transforming growth factor-beta have been found in increased amounts in blood or involved tissue from scleroderma patients. These factors are likely to contribute directly to tissue damage in scleroderma through several pathways, including stimulation of extracellular matrix production, induction of TGF-beta production and activation, and chemoattraction of T cells and nonspecific inflammatory cells into tissues. SUMMARY Multiple chemokines are part of the pathologic network that causes tissue damage in scleroderma, and, as such, may provide therapeutic targets in scleroderma.
Collapse
Affiliation(s)
- Sergei P Atamas
- Baltimore Veterans Administration Medical Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
35
|
Chambers RC. Proteinase-activated receptors and the pathophysiology of pulmonary fibrosis. Drug Dev Res 2003. [DOI: 10.1002/ddr.10317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Bogatkevich GS, Tourkina E, Abrams CS, Harley RA, Silver RM, Ludwicka-Bradley A. Contractile activity and smooth muscle alpha-actin organization in thrombin-induced human lung myofibroblasts. Am J Physiol Lung Cell Mol Physiol 2003; 285:L334-43. [PMID: 12665468 DOI: 10.1152/ajplung.00417.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activated fibroblasts, or myofibroblasts, are crucial players in tissue remodeling, wound healing, and various fibrotic disorders, including interstitial lung fibrosis associated with scleroderma. Here we characterize the signaling pathways in normal lung fibroblasts exposed to thrombin as they acquire two of the main features of myofibroblasts: smooth muscle (SM) alpha-actin organization and collagen gel contraction. Our results show that the small G protein Rho is involved in lung myofibroblast differentiation. Thrombin induces Rho-35S-labeled guanosine 5'-O-(3-thiotriphosphate) binding in a dose-dependent manner. It potently stimulates Rho activity in vivo and initiates protein kinase C (PKC)-epsilon-Rho complex formation. Toxin B, which inactivates Rho by ADP ribosylation, inhibits thrombin-induced SM alpha-actin organization, collagen gel contraction, and PKC-epsilon-SM alpha-actin and PKC-epsilon-RhoA coimmunoprecipitation. However, it has no effect on PKC-epsilon activation or translocation of PKC-epsilon to the membrane. Overexpression of constitutively active PKC-epsilon and constitutively active RhoA induces collagen gel contraction or SM alpha-actin organization, whereas, individually, they do not perform these functions. We therefore conclude that the contractile activity of myofibroblasts induced by thrombin is mediated via PKC-epsilon- and RhoA-dependent pathways and that activation of both of these molecules is required. We postulate that PKC-epsilon-RhoA complex formation is an early event in thrombin activation of lung fibroblasts, followed by PKC-epsilon-SM alpha-actin coimmunoprecipitation, which leads to the PKC-epsilon-RhoA-SM alpha-actin ternary complex formation.
Collapse
Affiliation(s)
- Galina S Bogatkevich
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Lan RS, Stewart GA, Henry PJ. Role of protease-activated receptors in airway function: a target for therapeutic intervention? Pharmacol Ther 2003; 95:239-57. [PMID: 12243797 DOI: 10.1016/s0163-7258(02)00237-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protease-activated receptors (PARs) are G-protein-coupled, seven transmembrane domain receptors that act as cellular enzyme sensors. These receptors are activated by the proteolytic cleavage at the amino terminus, enabling interaction between the newly formed "tethered ligand" and the second extracellular loop of the receptor to confer cellular signalling. PARs can also be activated by small peptides that mimic the tethered ligand. In the respiratory tract, PARs may be regulated by endogenous proteases, such as airway trypsin and mast cell tryptase, as well as exogenous proteases, including inhaled aeroallergens such as those from house dust mite faecal pellets. Immunoreactive PARs have been identified in multiple cell types of the respiratory tract, and PAR activation has been reported to stimulate cellular mitogenesis and to promote tissue inflammation. Activation of PARs concurrently stimulates the release of bronchorelaxant and anti-inflammatory mediators, which may serve to induce cytoprotection and to minimise tissue trauma associated with severe chronic airways inflammation. Furthermore, airway inflammatory responses are associated with increased epithelial PAR expression and elevated concentrations of PAR-activating, and PAR-inactivating, proteases in the extracellular space. On this basis, PARs are likely to play a regulatory role in airway homeostasis, and may participate in respiratory inflammatory disorders, such as asthma and chronic obstructive pulmonary disease. Further studies focussing on the effects of newly developed PAR agonists and antagonists in appropriate models of airway inflammation will permit better insight into the role of PARs in respiratory pathophysiology and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rommel S Lan
- Department of Pharmacology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Perth, Australia
| | | | | |
Collapse
|
38
|
Jin E, Fujiwara M, Pan X, Ghazizadeh M, Arai S, Ohaki Y, Kajiwara K, Takemura T, Kawanami O. Protease-activated receptor (PAR)-1 and PAR-2 participate in the cell growth of alveolar capillary endothelium in primary lung adenocarcinomas. Cancer 2003; 97:703-13. [PMID: 12548614 DOI: 10.1002/cncr.11087] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cell growth can be induced via elicitation of protease-activated receptors (PAR) with serine proteases such as thrombin and trypsin. METHODS To understand whether PAR are involved in tumor vessel formation in the neoplastic cell-bearing alveolar walls, immunohistochemical and reverse transcriptase-polymerase chain reaction analyses were performed using the lung tissues from 16 patients with primary lung adenocarcinomas. RESULTS In microdissected tumor alveolar walls, the expressions of PAR-1 and PAR-2 mRNA were increased by 10-fold (P < 0.05) and 16-fold (P < 0.01), respectively, as compared with normal alveolar walls. Confocal microscopy revealed that tumor capillary endothelial cells in alveolar walls lost thrombomodulin expression. Instead, the expression of PAR-2 often became obvious at the normal border. Both PAR-1 and PAR-2 were expressed in the microvessel endothelial cells in tumors. Trypsin mRNA was expressed in 7 of the 16 cancer cell-bearing tissue specimens in contrast to 1 of the 14 normal alveolar walls. Immunohistochemically, trypsin was positive in the neoplastic cells from 10 patients and in lung adenocarcinoma cell lines (A549, HLC-1, LC-2, and PC-14). An in vitro assay showed a significant increase in idoxuridine (IdU) or bromodeoxyuridine uptake in human pulmonary artery endothelial cells and human umbilical cord vein endothelial cells after treatments with alpha-thrombin or activating peptides; SFLLRN for PAR-1 and SLIGKV for PAR-2, respectively. CONCLUSIONS Thus, proliferation of alveolar capillary endothelial cells is initialized in part by PAR activation with serum thrombin and neoplastic cell-released trypsin. These results suggest a synergistic effect of PAR with vascular endothelial growth factor in alveolar angiogenesis.
Collapse
MESH Headings
- Adenocarcinoma/blood supply
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Capillaries/metabolism
- Capillaries/pathology
- Cell Division/drug effects
- Cell Division/genetics
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Fluorescent Antibody Technique
- Humans
- Immunohistochemistry
- Lung Neoplasms/blood supply
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Microscopy, Confocal
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Oligopeptides/pharmacology
- Peptide Fragments/pharmacology
- Pulmonary Alveoli/blood supply
- RNA, Messenger/analysis
- Receptor, PAR-1
- Receptor, PAR-2
- Receptors, Thrombin/genetics
- Receptors, Thrombin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Thrombin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Enjing Jin
- Department of Molecular Pathology, Institute of Gerontology, Nippon Medical School, Graduate School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Roemisch J, Gray E, Hoffmann JN, Wiedermann CJ. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis 2002; 13:657-70. [PMID: 12441904 DOI: 10.1097/00001721-200212000-00001] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antithrombin (AT) is a plasma-derived, single-chain glycoprotein with a molecular weight of 58 kDa. It is a serine protease inhibitor (serpin), sharing about 30% homology in amino acid sequence with other serpins. AT is a complex molecule with multiple biologically important properties. It is a potent anticoagulant that has been demonstrated to provide benefit in animal models and small cohorts of patients with coagulation disorders. AT also has remarkable anti-inflammatory properties, several of which result from its actions in the coagulation cascade. Activated coagulation proteases like activated factor X and thrombin contribute to inflammation; for instance, by the release of pro-inflammatory mediators. Inhibition of these proteases by AT prevents their specific interaction with cells and subsequent reactions. Anti-inflammatory properties of AT independent of coagulation involve direct interactions with cells leading to the release of, for instance, prostacyclin. Binding of AT to a recently identified cellular receptor, syndecan-4, leads to the interference with the intracellular signal induced by mediators like lipopolysaccharides and, thereby, to a down-modulation of the inflammatory response. AT has been shown to be effective in prospective and well-controlled small-scale studies of patients with inflammatory conditions, including sepsis. Although AT did not decrease overall patient mortality in a double-blind, placebo-controlled, phase III trial of patients with sepsis, it is important to note that AT improved the survival of individuals in this study not receiving heparin as a prophylactic regimen, which can be explained by the impaired interaction of AT with its cellular receptor in the presence of heparin, resulting in the reduction of the anti-inflammatory properties. Accordingly, the supplementation of AT without concomitant heparin may be beneficial in disorders with inflammatory characteristics, which has to be demonstrated in further clinical studies. Finally, recent results suggest that latent AT can induce apoptosis of endothelial cells by disrupting cell-matrix interactions. Further investigations will have to demonstrate whether latent and/or cleaved AT are physiological means to control angiogenesis. A potential prophylactic or therapeutic use as an anti-angiogenic and antitumor agent merits further exploration, including whether the growth of vessels in tumor tissues or close to tumors can be controlled by latent AT without affecting the formation of blood vessels during wound healing processes.
Collapse
Affiliation(s)
- J Roemisch
- Aventis Behring GmbH, Research, Marburg, Germany
| | | | | | | |
Collapse
|
40
|
Wiedermann CJ, Römisch J. The anti-inflammatory actions of antithrombin--a review. ACTA MEDICA AUSTRIACA 2002; 29:89-92. [PMID: 12168569 DOI: 10.1046/j.1563-2571.2002.02012.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leukocyte-endothelial cell interaction and microvascular perfusion failure are characteristic deteriorations of the microcirculation in endotoxaemia and are known to play a crucial role in the development of septic multiple organ dysfunction. Recent studies have indicated that antithrombin III treatment is capable of significantly ameliorating these microcirculatory disorders. Endothelial cells have important anticoagulant systems, including the heparan sulfate-antithrombin system. Antithrombin III stimulates prostacyclin generation in endothelial cells by interacting with heparan sulfate of endothelial cells and inhibits cytokine and tissue factor production in endothelial cells and monocytes. Similar mechanisms may be involved in cellular actions of antithrombin III causing desensitization of chemoattractant receptors of leukocytes by activating the heparan sulfate proteoglycan, syndecan-4. Thus, antithrombin III might be among the useful agents for treating coagulation abnormalities associated with sepsis or other inflammation because it inhibits not only coagulation but also downregulation of anticoagulant activities of endothelial cells and affects leukocyte activation.
Collapse
Affiliation(s)
- Ch J Wiedermann
- Division of General Internal Medicine, Department of Internal Medicine, University of Innsbruck
| | | |
Collapse
|
41
|
Baier RJ, Loggins J, Kruger TE. Increased interleukin-8 and monocyte chemoattractant protein-1 concentrations in mechanically ventilated preterm infants with pulmonary hemorrhage. Pediatr Pulmonol 2002; 34:131-7. [PMID: 12112780 DOI: 10.1002/ppul.10141] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pulmonary hemorrhage (PH) is a serious complication causing acute respiratory distress in the premature infant, and it is associated with significant mortality and morbidity. The role of inflammatory mediators in this condition is largely undefined. Serial tracheal aspirates (TA) were obtained at intervals from 65 mechanically ventilated infants with birth weights less than 1,250 g during the first 21 days of life. Clinically significant PH developed in 15 infants. TA concentrations of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) were determined by enzyme-linked immunosorbent assay (ELISA).PH was associated with an increased risk of death, bronchopulmonary dysplasia, intraventricular hemorrhage, and prolonged need for mechanical ventilation and supplemental oxygen. TA aspirate concentrations of IL-8 and MCP-1 (P = 0.001, ANOVA) were significantly increased in infants with PH compared to infants who did not develop this condition. TA cytokine concentrations were also significantly increased in infants who developed bronchopulmonary dysplasia (BPD). Peak TA concentrations of IL-8 and MCP-1 were significantly higher in infants with poor outcome (BPD or death). TA MCP-1 but not IL-8 concentrations were significantly higher in infants who were oxygen-dependent at 36 weeks postconceptional age. These data suggest a pathogenic role for IL-8 and MCP-1 in the development of adverse pulmonary outcome in preterm infants with clinically significant PH.
Collapse
Affiliation(s)
- R John Baier
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport 71130-3932, USA.
| | | | | |
Collapse
|
42
|
Cytokines and the pathogenesis of atherosclerosis. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1566-3124(02)11027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Bogatkevich GS, Tourkina E, Silver RM, Ludwicka-Bradley A. Thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via the proteolytically activated receptor-1 and a protein kinase C-dependent pathway. J Biol Chem 2001; 276:45184-92. [PMID: 11579091 DOI: 10.1074/jbc.m106441200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myofibroblasts are ultrastructurally and metabolically distinctive fibroblasts that express smooth muscle (SM)-alpha actin and are associated with various fibrotic lesions. The present study was undertaken to investigate the myofibroblast phenotype that appears after activation of normal lung fibroblasts by thrombin. We demonstrate that thrombin induces smooth muscle-alpha actin expression and rapid collagen gel contraction by normal lung fibroblasts via the proteolytically activated receptor-1 and independent of transforming growth factor-beta pathway. Using antisense oligonucleotides we demonstrate that a decreased level of PKCepsilon abolishes SM-alpha actin expression and collagen gel contraction induced by thrombin in normal lung fibroblasts. Inhibition of PKCepsilon translocation also abolishes thrombin-induced collagen gel contraction, SM-alpha actin increase, and its organization by normal lung fibroblasts, suggesting that activation of PKCepsilon is required for these effects. In normal lung fibroblasts PKCepsilon binds to SM-alpha actin after thrombin treatment, but in activated fibroblasts derived from scleroderma lung they associate even in untreated cells. This suggests that SM-alpha actin may serve as a substrate for PKCepsilon in lung fibroblasts when activated by thrombin. We propose that thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via a PKC-dependent pathway. Thrombin-induced differentiation of normal lung fibroblasts to a myofibroblast phenotype resembles the phenotype observed in scleroderma lung fibroblasts. Therefore, we conclude that chronic exposure to thrombin after microvascular injury leads to activation of normal lung fibroblasts and to the appearance of a myofibroblast phenotype in vivo. Our study provides novel, compelling evidence that thrombin is an important mediator of the interstitial lung fibrosis associated with scleroderma.
Collapse
Affiliation(s)
- G S Bogatkevich
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
44
|
Oido-Mori M, Rezzonico R, Wang PL, Kowashi Y, Dayer JM, Baehni PC, Chizzolini C. Porphyromonas gingivalis gingipain-R enhances interleukin-8 but decreases gamma interferon-inducible protein 10 production by human gingival fibroblasts in response to T-cell contact. Infect Immun 2001; 69:4493-501. [PMID: 11401991 PMCID: PMC98524 DOI: 10.1128/iai.69.7.4493-4501.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proteases produced by Porphyromonas gingivalis, an oral pathogen, are considered important virulence factors and may affect the responses of cells equipped with proteinase-activated receptors. The aim of this study was to investigate the effect of the arginine-specific cysteine protease gingipain-R produced by P. gingivalis on chemokine production by human gingival fibroblasts (HGF) and the effect of gingipain-R treatment on the subsequent contact-dependent activation of HGF by T cells. HGF incubated in the presence of purified 47-kDa gingipain-R showed increased levels of interleukin-8 (IL-8) mRNA. Cyclooxygenase-2 (COX-2) mRNA was also induced. Further exposure of HGF to activated T cells resulted in the dose- and time-dependent enhancement of IL-8 transcription and release. T-cell membrane-bound tumor necrosis factor (TNF) was the ligand inducing IL-8 production by HGF, since TNF neutralization abrogated HGF responses to T-cell contact. The enhanced IL-8 release was due, at least in part, to prostaglandin-E(2) production, which was mostly blocked by indomethacin. Gingipain-R proteolytic activity was required since heat inactivation, specific synthetic protease inhibitors, and the natural substrate competitor histatin 5 abrogated its effects. The enhanced production of IL-8 in response to T-cell contact was specific since monocyte chemotactic protein-1 (MCP-1) production was unaffected while interferon-gamma-inducible protein-10 (IP-10) was inhibited. The sum of these activities may result in the recruitment of differential cell types to sites of inflammation since IL-8 preferentially recruits neutrophils and IP-10 attracts activated T cells and may be relevant to the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- M Oido-Mori
- Department of Preventive Dentistry, School of Dental Medicine, University of Geneva, 1211 Geneva 14, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
Tourkina E, Hoffman S, Fenton JW, Lipsitz S, Silver RM, Ludwicka-Bradley A. Depletion of protein kinase Cepsilon in normal and scleroderma lung fibroblasts has opposite effects on tenascin expression. ARTHRITIS AND RHEUMATISM 2001; 44:1370-81. [PMID: 11407697 DOI: 10.1002/1529-0131(200106)44:6<1370::aid-art230>3.0.co;2-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To determine whether the extracellular matrix protein tenascin-C (TN-C) is overexpressed in lung fibroblasts from systemic sclerosis (SSc) patients, the molecular mechanisms regulating TN-C secretion in SSc and normal lung fibroblasts, and how these processes might contribute to lung fibrosis in SSc patients. METHODS TN-C secretion by SSc and normal fibroblasts was compared in vivo (in bronchoalveolar lavage [BAL] fluid) and in vitro (in culture medium). The ability of thrombin to induce TN-C was confirmed at both the protein and the messenger RNA (mRNA) level. The role of protein kinase Cepsilon (PKCepsilon) in the expression of TN-C was evaluated by determining the effects of thrombin on PKCepsilon levels and by directly manipulating PKCepsilon levels via the use of antisense oligonucleotides. RESULTS BAL fluid from SSc patients contained high levels of TN-C, whereas that from normal subjects contained little or no TN-C. In vitro, SSc lung fibroblasts expressed much higher amounts of TN-C than did normal lung fibroblasts. Consistent with the idea that thrombin is a physiologic inducer of TN-C, thrombin stimulated TN-C mRNA and protein expression in both SSc and normal lung fibroblasts by a mechanism that required proteolytic cleavage of the thrombin receptor. Surprisingly, thrombin treatment and antisense oligonucleotide-mediated depletion of PKCepsilon indicated that TN-C expression is regulated via opposite signaling mechanisms in SSc and normal cells. In SSc lung fibroblasts, thrombin decreased PKCepsilon levels, and the decreased PKCepsilon induced TN-C secretion; in normal fibroblasts, thrombin increased PKCepsilon levels, and the increased PKCepsilon induced TN-C secretion. Normal and SSc lung fibroblasts also differed in the subcellular localization of PKCepsilon, both before and after thrombin treatment. CONCLUSION These studies are the first to demonstrate that thrombin is a potent simulator of TN-C in lung fibroblasts and that PKCepsilon is a critical regulator of TN-C protein levels in these cells. Furthermore, our results indicate that both the regulation of PKCepsilon levels by thrombin and the regulation of TN-C levels by PKCepsilon are defective in SSc lung fibroblasts.
Collapse
Affiliation(s)
- E Tourkina
- Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | |
Collapse
|